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A B S T R A C T   

Disparate diagnostic categories from the Diagnostic and Statistical Manual of Mental Disorders (DSM), including 
generalized anxiety disorder, major depressive disorder and post-traumatic stress disorder, share common 
behavioral and phenomenological dysfunctions. While high levels of comorbidity and common features across 
these disorders suggest shared mechanisms, past research in psychopathology has largely proceeded based on the 
syndromal taxonomy established by the DSM rather than on a biologically-informed framework of neural, 
cognitive and behavioral dysfunctions. In line with the National Institute of Mental Health’s Research Domain 
Criteria (RDoC) framework, we present a Human Connectome Study Related to Human Disease that is inten
tionally designed to generate and test novel, biologically-motivated dimensions of psychopathology. The 
Dimensional Connectomics of Anxious Misery study is collecting neuroimaging, cognitive and behavioral data 
from a heterogeneous population of adults with varying degrees of depression, anxiety and trauma, as well as a 
set of healthy comparators (to date, n = 97 and n = 24, respectively). This sample constitutes a dataset uniquely 
situated to elucidate relationships between brain circuitry and dysfunctions of the Negative Valence construct of 
the RDoC framework. We present a comprehensive overview of the eligibility criteria, clinical procedures and 
neuroimaging methods of our project. After describing our protocol, we present group-level activation maps from 
task fMRI data and independent components maps from resting state data. Finally, using quantitative measures of 
neuroimaging data quality, we demonstrate excellent data quality relative to a subset of the Human Connectome 
Project of Young Adults (n = 97), as well as comparable profiles of cortical thickness from T1-weighted imaging 
and generalized fractional anisotropy from diffusion weighted imaging. This manuscript presents results from the 
first 121 participants of our full target 250 participant dataset, timed with the release of this data to the National 
Institute of Mental Health Data Archive in fall 2020, with the remaining half of the dataset to be released in 2021.   

1. Introduction 

The term “anxious misery” has gained traction among anxiety and 
depression researchers (Krueger, 1999; Watson, 2005) and describes 
over 800 million people worldwide affected by these mental health is
sues. Diagnostic categories from the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5) that fall within the framework of anxious 
misery include generalized anxiety disorder (GAD), major depressive 

disorder (MDD), dysthymic disorder and post-traumatic stress disorder 
(PTSD) (Watson, 2009). These disorders are not distinct entities, as they 
frequently co-occur and share important behavioral and phenomeno
logical features, such as increased negative affect (sad mood, negative 
attentional biases, anxiety), decreased positive affect (anhedonia) and 
cognitive impairment (dysfunctions in cognitive control, problems with 
working memory, excessive rumination). 

In order to address this overlap in symptoms and underlying 
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mechanisms, the Research Domain Criteria (RDoC) project of the Na
tional Institute of Mental Health (NIMH) is designed to implement 
Strategy 1.4 of the NIMH Strategic Plan: “Develop new ways of classi
fying disorders based on dimensions of observable behaviors and brain 
functions.” NIMH intends RDoC to serve as a research framework 
encouraging new approaches for research on mental disorders, in which 
fundamental dimensions that cut across traditional disorder categories 
are used as an alternative approach to characterizing patients in clinical 
studies (Insel, 2014). One of the RDoC domains, the Negative Valence 
System (NVS), includes the constructs: 1) responses to sustained threat; 
2) loss; 3) frustrative non-reward; 4) responses to potential harm; and 5) 
responses to acute threat. Motivated by this goal, our project, “Func
tional Connectomics of Anxious Misery” aims to decipher the underlying 
neurocognitive mechanisms of the NVS by combining high-resolution 
neuroimaging acquisitions with a comprehensive array of cognitive 
and behavioral assessments of psychopathology. 

Connectivity is a major organizing principle of the nervous system 
and is fundamental to understanding both brain function and dysfunc
tion (Bressler and Menon, 2010; Friston, 1996). Advances in computa
tion and magnetic resonance imaging (MRI), motivated in part by large 
efforts such as the Human Connectome Project (HCP; Van Essen et al., 
2013), have inspired the generation of novel methods to decipher 
fundamental aspects of brain organization. By acquiring neural, genetic, 
neurocognitive and demographic data from hundreds of healthy adults, 
the HCP has made significant progress towards developing and sharing 
knowledge about the structural and functional connectivity of the 
human brain. Further, by establishing standards for data acquisition and 
image preprocessing, the HCP facilitates the harmonization of data 
collected from multiple scanners and subject groups. These processes 
offer the opportunity for analyses that merge data from multiple imag
ing projects encompassing large sample sizes, a critical requisite for 
testing and verification of hypotheses in neuroimaging and psychiatry 
(Van Horn and Toga, 2009). 

The current project replicates the same imaging procedures devel
oped for the HCP Lifespan Project (Bookheimer et al., 2019) and adds 
measures that specifically probe the association of NVS constructs with 
brain circuits thought to be disrupted in anxious misery disorders. In 
addition to a suite of neurocognitive measurements standard to the HCP 
(NIH Toolbox and Penn Computerized Neurocognitive Battery), the 
present project collected a variety of clinician-administered and self- 
report instruments that capture a broad spectrum of behavioral and 
cognitive variability related to anxious and depressive psychopathology. 
Further, participants performed three separate tasks during their func
tional MRI scanning session that are relevant to emotional processing, 
cognitive control and incentive processing. This provides a rich array of 
important NVS measures to correlate with brain and behavior measures. 
In addition to a target sample of 200 participants with anxious misery 
disorders, the Anxious Misery project will enroll 50 healthy participants 
for comparison and harmonization purposes. 

The present article serves as a reference point for researchers inter
ested in using this study’s data. After briefly describing the study’s in
clusion criteria and overall study design, this paper will (i) detail the 
neurocognitive, clinician-administered and self-report instruments 
given to assess participants’ cognitive and behavioral characteristics, (ii) 
describe the imaging acquisition protocols, (iii) report descriptive ana
lyses of the imaging data, including structural, functional and diffusion 
modalities and (iv) report data quality and comparisons of data quality 
with a representative sample from the HCP Young Adult (HCP-YA) 
dataset (Van Essen et al., 2013). Our analyses indicate excellent image 
quality relative to the HCP-YA dataset and neuroimaging profiles that 
match expected outputs. This manuscript will present results from the 
first 121 (97 anxious misery, 24 healthy comparators) participants, 
timed with the projected initial release of these data to the National 
Institute of Mental Health Data Archive (NDA). 

2. Study overview 

2.1. Study sample 

To date, this project has collected neuroimaging, clinical and neu
rocognitive data from 97 participants experiencing symptoms of anxious 
misery and 24 healthy comparators (n = 121) aged 18–60 years 
(Table 1, education and employment characteristics in Supplementary 
Table 1), with a target enrollment of 200 participants experiencing 
symptoms of anxious misery and 50 healthy comparators (n = 250). 
Participants were recruited using a wide range of methods including 
flyers, online advertisements, social media and brochures in clinics. 
Interested participants were prescreened via a phone or online survey 
and were scheduled for an in-person screening if they met preliminary 
eligibility criteria. Full inclusion/exclusion criteria for participation in 
the study (Table 2) were verified during the in-person screening. 
Exclusionary criteria included MRI contraindications (impairing claus
trophobia, aneurysm clips, shunts, non-removable body piercings, non- 
removable cochlear or ear implants, permanent dentures or dental im
plants, joint replacements or prosthesis, pacemakers, defibrillators, or 
other implanted metal devices), histories of certain neurological or 
cognitive disorders and events (amyotrophic lateral sclerosis, brain an
eurysms, brain injury, brain tumors, cerebral palsy, Chiari malforma
tion, dementia, encephalopathy, multiple sclerosis, Parkinson’s disease, 
recurrent epilepsy or seizures, stroke, or transient ischemic attacks), 
histories of exclusionary psychiatric conditions (bipolar I, schizo
phrenia, schizophreniform disorder, schizoaffective disorder, or psy
chosis) or any other factors that in the investigator’s judgement may 
have affected patient safety or compliance. 

Given that participant recruitment and data collection was local to 
Philadelphia, USA, this project strived to attain a racially and ethnically 
diverse sample to reflect the diversity of the city of Philadelphia and the 
US population at large (LeWinn et al., 2017). This study oversampled 
female participants to approximate sex disparities in the prevalence of 
anxious misery disorders (Cyranowski et al., 2000). Sex was defined as 
biological sex assigned at birth; current gender identity was also 

Table 1 
Participant characteristics.  

% 
Total 

Category Total (N =
121) 

Control (N =
24) 

Anxious Misery (N 
= 97) 

Sex 
71.1% Female 86 17 69 
28.9% Male 35 7 28 
Age (median = 26) 
28.9% 18–23 y/o 35 7 28 
35.5% 24–29 y/o 43 9 34 
19.0% 30–35 y/o 23 5 18 
11.6% 36–41 y/o 14 2 12 
2.5% 42–47 y/o 3 1 2 
0.0% 48–53 y/o 0 0 0 
2.5% 54–59 y/o 3 0 3 
Race 
12.4% Asian 15 3 12 
20.7% Black 25 4 21 
5.8% Multiracial 7 1 6 
3.3% Other 4 1 3 
4.9% Undisclosed 6 0 6 
52.9% White 64 15 49 
Ethnicity 
5.0% Hispanic 6 0 6 
92.5% Not Hispanic 112 24 88 
2.5% Undisclosed 3 0 3 
Medication status 
26.8% Medicated – – 26 
73.2% Unmedicated – – 71  

Education and employment characteristics are detailed in Supplementary 
Table 1. Descriptions of medication use are detailed in Supplementary Table 2. 
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collected. 
We did not require participants to cease taking psychotropic medi

cation that they were currently taking, although current addiction to 
alcohol, recreational drugs or prescription medications was exclu
sionary. The majority of our study participants (73.2%) were unmedi
cated, and extensive efforts were made to record any past or present 
medication use (see Supplementary Table 2 for a summary of medica
tion use). 

2.2. Study groupings and clinical classification 

For group-level analyses, participants were placed into either the 
healthy control (HC) or anxious misery (AM) groups. Group assignment 
was based on participants’ raw Neuroticism score on the Neuroticism- 
Extraversion-Openness Five-Factor Inventory (NEO FFI; (McCrae et al., 
2007) collected during Visit 1. Neuroticism was selected as an eligibility 
criterion because it captures general elements of psychopathology that 
are shared by participants diagnosed with depression, anxiety and 
trauma-related disorders (Andrews et al., 1990; Khan et al., 2005). 
Importantly, it also does not overlap with the diagnostic criteria of any 
Axis I disorders in the DSM-5, helping to ensure a truly transdiagnostic 
dataset. Based on previously collected data from a sample of 635 adults 
(McCrae et al., 2007), AM participants were required to have raw 
Neuroticism scores at least 1 standard deviation above the mean, which 
had different distributions for males (raw score ≥ 26.2) and females 
(raw score ≥ 30.1). There were seven AM participants recruited in the 
first month of the project, prior to the implementation of the NEO 
threshold, whose NEO scores were above the mean but not by a full 
standard deviation. HC participants were required to have raw 
Neuroticism scores at least one standard deviation below the mean (by 
sex) and were excluded if they met the criteria for a current diagnosis of 
any psychiatric disorder. 

Diagnoses of current psychiatric disorders according to the DSM-5 
were provided using the Structured Clinical Interview for DSM-5 
(SCID-5). Diagnoses were provided either directly by a psychiatrist or 
a SCID-certified clinical research coordinator under the supervision of a 
psychiatrist. Aside from these exclusionary diagnoses, depressive, 
anxious or trauma-related SCID diagnoses were not used to determine 
eligibility; rather, they were obtained for comparison purposes in future 
analyses. 

2.3. Participant schedule 

A schematic of the study schedule is presented in Fig. 1. Interested 
participants who completed the phone or online screening survey were 
eligible for an in-person screening (Visit 1). During Visit 1, participants 
provided informed consent before any study-related procedures were 
conducted. Screening procedures included an evaluation of medical 
history (e.g., hospitalizations, psychiatric medication use), a structured 
diagnostic interview (SCID-5) to determine current anxious misery di
agnoses and a collection of demographic information. If the individual 
was confirmed to be eligible for the study, they also completed a series of 
clinician-administered measures, the Penn Computerized Neuro
cognitive Battery (Penn CNB) for neurocognitive assessment and several 
self-report assessments of thoughts, mood and behaviors. Completion of 
Visit 1 took approximately 3–4 h. 

At the beginning of Visit 2, participants were taken to a Siemens 
Prisma 3 T scanner for an MRI scan. After the MRI scan, participants 
completed the NIH Toolbox Neurocognitive and Emotion batteries (see 
Supplementary Tables 5, 7). Completion of Visit 2 took approximately 
3–4 h. Attempts were made to minimize the time between Visits 1 and 2. 
82.6% of participants were imaged within two weeks of Visit 1, and 
94.2% were imaged within three weeks. 

3. Protocol: Self-report and clinician-administered measures 

3.1. Clinically relevant dimensional measures 

A rich array of clinical measures were selected to operationalize 
cognition and behavior beyond traditional diagnostic categorizations. 
Eligible participants completed a total of 32 self-report measures as well 
as clinician-administered measures, including measures of behavior, 
thoughts, health, mood, life stress and trauma (Table 3, Supplementary 
Tables 3 and 4 for detailed descriptions of each instrument). 14 of these 
measures came from the National Institutes of Health (NIH) Emotional 
Batteries, a set of computerized measures that overlap with those 
administered in other HCP studies (Gershon et al., 2013; Mungas et al., 
2014). 

3.2. Cognitive and neuropsychological measures 

Cognitive and neuropsychological function measures were selected 
from the National Institutes of Health (NIH) Toolbox (Gershon et al., 
2013; Mungas et al., 2014) and the University of Pennsylvania 
Computerized Neurocognitive Battery (Penn CNB; (Gur, 2001; Gur et al., 
2010; Moore et al., 2015). Please refer to Table 4 for a list of each task 
and Supplementary Tables 5-6 for detailed descriptions of each task. 
Participants completed a total of 12 computerized measures from these 
standardized batteries, 6 of which are from the NIH Toolbox Cognition 
Batteries. We selected measures to assess a range of cognitive domains 
and provide deep cognitive phenotyping for those domains expected to 

Table 2 
Summary of inclusion and exclusion criteria.  

Inclusion Criteria Exclusion Criteria 

Patients exhibited sufficiently high 
neuroticism score based on the NEO 
FFI (at least one standard deviation 
above a point estimate of the 
general adult population mean*) 

History of exclusionary neurological or 
cognitive disorder(s)/event(s), psychiatric 
conditions, or mood disorders, including 
schizophrenia and bipolar I 

Controls did not meet DSM-5 criteria 
(currently or historically) for the 
diagnosis of any psychiatric or 
cognitive disorder and exhibited 
sufficiently low neuroticism based 
on the NEO FFI (at least one 
standard deviation below a point 
estimate of the general adult 
population mean*) 

Current substance use disorder (as defined 
by the DSM-5), including addiction to 
alcohol, recreational drugs (e.g. cocaine, 
heroin, and methamphetamines), or 
prescription medication 

Age 18–60 MRI contraindication 
Fluent in English (written and oral) HIV positive  

Active Hepatitis B or Hepatitis C  
Female participant was pregnant, 
breastfeeding, or trying to become 
pregnant  

* Mean NEO-FFI neuroticism scores were determined from separate distribu
tions for males (mean = 19.1, sd = 7.1) and females (mean = 22.2, sd = 7.9) 
based on previously collected data from a sample of 635 adults (McCrae et al., 
2007). 

Fig. 1. Schematic of the participant schedule for both healthy controls and 
clinical participants. Listed below each event of the study are the procedures 
that participants completed for that event. The majority of participants (82.6%) 
completed Visit 2 within two weeks of Visit 1. 

D. Seok et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 28 (2020) 102489

4

be most associated with NVS dysfunction (e.g. attention, working 
memory, executive control, episodic memory, processing speed) based 
on prior work (Etkin et al., 2013; Scott et al., ; Snyder,). 

4. Protocol: Imaging 

4.1. Procedures and hardware 

Participants were scanned using a Siemens Prisma 3 T whole-body 
MRI system equipped with a 64-channel head/neck array with 80mT/ 
m maximum gradient amplitude and a 200 T/m/s maximum slew rate. 
Stimuli were presented using an MRI-compatible LCD panel (InVivo 
SensaVue), with responses collected via a 4-button response box corre
sponding to the four non-thumb digits, held in the right hand. All par
ticipants had a heart rate monitor attached to their left index finger 
during scanning and a respiration belt placed around their diaphragm. 
In order to ensure consistency across participant sessions, all technicians 
followed a uniform procedure during scanning. 

4.2. Data management 

Imaging data was stored and managed using the Flywheel infra
structure (https://flywheel.io/); preprocessing took place on the Penn 
Center for Biomedical Image Computing and Analytics (CBICA) high 
performance computing cluster, a secure computing cluster housed at 
the University of Pennsylvania. Only personnel with study approval 
were able to access these data. All protected health information was 
stored on REDCap, a secure web application for managing clinical 
research databases (www.project-redcap.org). 

4.3. Imaging protocols 

Please refer to Table 5 for an overview of the scanning sequence. All 
scans were calibrated automatically via onboard Siemens autoalign 
software, followed by a visual inspection from the operator to ensure 
that the FOV and alignment are correct. 

Table 3 
Clinically relevant dimensional measures (self-report and clinician- 
administered).  

Domain Measure Subscale 

Hedonic capacity Snaith-Hamilton Pleasure Scale (SHAPS;  
Snaith et al., 1995)  

Anxious and 
depressive 
symptoms 

Anxiety Depression Distress Inventory-27 
(ADDI-27 / MASQ-Short; Taylor et al.,) 

Positive 
Affect 
Somatic 
Anxiety 
General 
Distress 

Anxiety sensitivity Anxiety Sensitivity Index-3 (ASI-3; Reiss 
et al., 1986) 

Physical 
Concerns 
Cognitive 
Concerns 
Social 
Concerns 

State and quasi-trait 
anxiety 

Anxiety 8 – PROMIS (Pilkonis, 2011)  

Insomnia Insomnia Severity Index (ISI; Bastien 
et al., 2001)  

Motivational 
systems 

Behavioral Inhibition and Activation 
questionnaire (BIS-BAS Carver and 
White,) 

BIS 
BAS-Drive 
BAS-Fun 
BAS-Reward 

Rumination Ruminative Thought Style Questionnaire 
(RTSQ; Nolen-Hoeksema et al.,)  

Life stress and 
trauma 

Childhood Trauma Questionnaire (CTQ;  
Bernstein, 1994)      

Holmes-Rahe Life Stress Inventory Noone, 
20172017) 
Maltreatment and Abuse Chronology of 
Exposure (MACE; Bernstein, 1994) 
PTSD Checklist for DSM-5 (PCL-5; ( 
Blanchard et al., 1996) 
Life Events Checklist for DSM-5 (LEC-5;  
Michalos and Kahlke, 2014) 

Emotional 
Abuse 
Physical 
Abuse 
Sexual Abuse 
Emotional 
Neglect 
Physical 
Neglect   

Severity 
Multiplicity 

General health 12-item Short-Form Health Survey (SF-12; 
WARE et al., 1996) 
Sheehan Disability Scale (SDS; (Sheehan 
et al., 1996)  

Acute pain Visual Analog Scale for Pain (VAS;  
Kertzman et al., 2004)  

Nicotine 
dependence 

Fagerstrom Test for Nicotine Dependence 
(FTND; Heatherton et al., 1991)  

Social adjustment Social Adjustment Scale - Self Report 
(SAS-SR; Weissman and Bothwell, 1976)  

Threat sensitivity 20-item Trait Fear inventory (TF-20;  
Marks and Mathews, 1979)  

Depressive 
symptoms 

Montgomery-Asberg Depression Rating 
Scale (MADRS; Montgomery and Åsberg, 
1979) 
Hamilton Depression Rating Scale (HAM- 
D / HDRS; Hamilton, 1960)  

Suicide Columbia-Suicide Severity Rating Scale 
(C-SSRS; Posner and Columbia-, , 2016) 

Past 3 Months 
Lifetime 

Negative affect* Anger   

Fear  

Sadness 

Affect 
Hostility 
Physical 
Aggression 
Affect 
Somatic 

Psychological well- 
being* 

Positive Affect 
General Life Satisfaction 
Meaning and Purpose  

Social cognition* Emotional Support 
Instrumental Support 
Loneliness 
FriendshipPerceived Hostility 
Perceived Rejection 
Stress and Self-Efficacy 
Self-Efficacy   

* All instruments in these domains are from the National Institutes of Health 
Toolbox Emotional Batteries. 

Table 4 
Cognitive and Neuropsychological Measures.  

Domain Tasks Battery 

Cognitive control/ 
attention 

Flanker Inhibitory Control and 
Attention Test 

NIH Toolbox 

Cognitive flexibility Dimensional Change Card Sort NIH Toolbox 
Complex cognition Penn Matrix Analysis Test Penn CNB 
Episodic memory Picture Sequence Memory Test 

Penn Word Memory Test 
Penn Word Memory Test - Delayed 
Recall 

NIH Toolbox 
Penn CNB 
Penn CNB 

Impulsivity/self- 
regulation 

Delayed Discounting Penn CNB 

Processing speed Pattern Comparison Processing 
Speed Test 
Penn Trailmaking Test, Part A 

NIH Toolbox Penn 
CNB 

Social cognition Emotion Recognition Test  Penn CNB  

Vocabulary 
knowledge 

Picture Vocabulary Test NIH Toolbox 

Working memory List Sorting Working Memory Test NIH Toolbox 

NIH Toolbox = National Institutes of Health Toolbox Cognition Batteries; Penn 
CNB = University of Pennsylvania Computerized Neurocognitive Battery. 
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4.4. Structural imaging 

4.4.1. Acquisition parameters  

1. T1-weighted: TE = 2.22 ms, TR = 2.40 s, FA = 8, acquisition time =
6:38, FOV = 256 × 256 mm, slice thickness = 0.80 mm, fat sup
pression = water excitation, orientation = sagittal, receiver band
width = 220 Hz/Px.  

2. T2-weighted: TE = 563.00 ms, TR = 3.20 s, acquisition time = 5:57, 
FOV = 256 × 256 mm, slice thickness = 0.80 mm, fat suppression =
none, orientation = sagittal, receiver bandwidth = 744 Hz/Px.  

3. Spin Echo: TE = 66.00 ms, TR = 8.00 s, FA = 90, acquisition time =
0:32, FOV = 208 mm × 208 mm, slice thickness = 2.00 mm, slice 
orientation = T > C-20.0, phase encoding = AP and PA, echo spacing 
= 0.58 ms, fat suppression = fat saturation, receiver bandwidth =
2290 Hz/Px. 

4. Single-band calibration: TE = 1.03 ms, TR = 0.25 s, FA = 3, acqui
sition time = 0:26, FOV = 256 mm × 256 mm, slice thickness = 2.00 
mm, slice orientation = sagittal, phase encoding = AP and PA , echo 
spacing = 3.1 ms, fat suppression = none, receiver bandwidth = 540 
Hz/Px.  

5. T2-weighted hippocampus: TE = 80.0 ms, TR = 9.24 s, FA = 180, 
acquisition time = 8:10, FOV = 180 × 180 mm, slice thickness =
1.20 mm, fat suppression = none, orientation = C > T-26.8, receiver 
bandwidth = 100 Hz/Px. 

4.4.2. Hippocampus imaging 
We collected a dedicated T2-weighted MRI of the hippocampus, to be 

analyzed using an automated subfield segmentation technique (Yush
kevich et al., 2010). The appearance of the hippocampus in standard T1- 
weighted scans is largely indistinguishable between subjects, necessi
tating more precise imaging methods. This acquisition-analysis pipeline 
has been shown to be comparable to manual segmentation methods, 
while being more efficient and less susceptible to inter-rater bias 
(Yushkevich et al., 2010). 

4.5. Diffusion imaging 

Diffusion imaging was conducted while participants viewed a blank 
screen. Participants were allowed to close their eyes but were instructed 
to remain awake. Two pairs of acquisitions with opposite phase 
encoding were collected. Further, to improve registration to the struc
tural image, an anatomical coplanar image was also collected. 

4.5.1. Acquisition parameters  

1. Diffusion-weighted: 2 pairs of acquisitions = 4 acquisitions total, TE 
= 89.20 ms, TR = 3.23 s, acquisition time = 5:37, FOV = 210 mm ×
210 mm, slice orientation = T > C-20.0, FA = 78, phase encoding =
AP and PA, echo spacing = 0.69 ms, voxel size = 1.5 mm isotropic, 
diffusion weightings = 2, b-Values = 1500, 3000 s/mm2, # of di
rections = 93 (b = 1500), 92 (b = 3000), # of b0 = 14. 

4.6. Functional imaging 

All functional scans were acquired using multi-band EPI sequences 
with identical parameters. To correct for susceptibility distortions, two 
pairs of spin echo fieldmaps with opposite phase encoding directions 
(one anterior-posterior, the other posterior-anterior) were acquired 
during the scanning session. Similarly, each task was conducted in pairs 
of scans with opposite phase encoding directions (some scans, like 
resting state and the emotional interference task, had two pairs of scans). 
To improve registration to the structural scan, an anatomical coplanar 
image was also acquired. 

4.6.1. Acquisition parameters 

1. EPI fMRI: TE = 37.00 ms, TR = 0.80 s, FA = 52, multi-band accel
eration factor = 8, resting-state acquisition time = 5:46, EIT acqui
sition time = 4:02, IPT acquisition time = 3:12, EPT acquisition time 
= 4:42, FOV = 208 × 208 mm, slice orientation = T > C-20.0, phase 
encoding = AP/PA, echo spacing = 0.58 ms, number of volumes =
420, slice thickness = 2.00 mm, fat suppression = fat saturation, 
receiver bandwidth = 2290 Hz/Px. 

Table 5 
Acquisition Sequence.   

Modality PE Volumes Duration 
(min.) 

Resolution 
(mm) 

Stimulus 

1 Localizer – – 0:09 1.2 × 1.2 ×
5.0 

– 

2 AAHeadScout – – 0:17 1.6 × 1.6 ×
1.6 

– 

3 Localizer 
(aligned) 

– – 0:21 1.2 × 1.2 ×
5.0 

– 

4 Bias 
Correction 
Map 

– – 0:26 2.0 × 2.0 ×
2.0 

– 

5 Bias 
Correction 
Map (64CH) 

– – 0:26 2.0 × 2.0 ×
2.0 

– 

6 Spin Echo AP 3 0:32 2.0 × 2.0 ×
2.0 

– 

7  PA 3 0:32 2.0 × 2.0 ×
2.0 

– 

8 Resting-state 
fMRI 

AP 420 5:46 2.0 × 2.0 ×
2.0 

Fixation 

9  PA 420 5:46 2.0 × 2.0 ×
2.0 

Fixation 

10 T1w – 1 6:38 0.8 × 0.8 ×
0.8 

– 

11 T2w – 1 5:57 0.8 × 0.8 ×
0.8 

– 

12 Spin Echo AP 3 0:32 2.0 × 2.0 ×
2.0 

– 

13 Spin Echo PA 3 0:32 2.0 × 2.0 ×
2.0 

– 

14 Resting-state 
fMRI 

AP 420 5:46 2.0 × 2.0 ×
2.0 

Fixation 

15  PA 420 5:46 2.0 × 2.0 ×
2.0 

Fixation 

16 T2w - 
Hippocampus 

– 1 8:10 0.4 × 0.4 ×
1.2 

– 

17 Conflict fMRI AP 290 4:02 2.0 × 2.0 ×
2.0 

Conflict 

18  PA 290 4:02 2.0 × 2.0 ×
2.0 

Conflict 

19  AP 290 4:02 2.0 × 2.0 ×
2.0 

Conflict 

20  PA 290 4:02 2.0 × 2.0 ×
2.0 

Conflict 

21 dMRI AP 1 5:37 1.5 × 1.5 ×
1.5 

– 

22  PA 1 5:37 1.5 × 1.5 ×
1.5 

– 

23  AP 1 5:41 1.5 × 1.5 ×
1.5 

– 

24  PA 1 5:41 1.5 × 1.5 ×
1.5 

– 

25 Faces fMRI AP 340 4:42 2.0 × 2.0 ×
2.0 

Faces 

26  PA 340 4:42 2.0 × 2.0 ×
2.0 

Faces 

27 Gambling 
fMRI 

AP 228 3:12 2.0 × 2.0 ×
2.0 

Gambling 

28  PA 228 3:12 2.0 × 2.0 ×
2.0 

Gambling 

Note. PE = phase encoding; AP = anterior to posterior phase encoding; PA =
posterior to anterior phase encoding. 
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2. Spin Echo: TE = 66.00 ms, TR = 8.00 s, FA = 90, acquisition time =
0.32, FOV = 208 mm × 208 mm, slice thickness = 2.00 mm, slice 
orientation = T > C-20.0, phase encoding = AP and PA, echo spacing 
= 0.58 ms, fat suppression = fat saturation, receiver bandwidth =
2290 Hz/Px. 

4.6.2. Functional imaging tasks 
Emotional interference task (EIT): This task aims to capture deficits 

in cognitive control in the presence of negatively valenced emotional 
distractors. In this event-related design adapted from Fales et al. (2008) 
and Vuilleumier et al. (2001), participants are instructed to indicate 
through button press whether two pictures on either the horizontal or 
vertical axes are identical or different (Fig. 2a). After a cue indicating 
which axis to attend to, four images are briefly shown on the top, bot
tom, left and right of the screen, and participants are given a short period 
to respond. 

Images are either human faces or houses. Further, faces can have 
either a neutral expression or a fearful one. Images sharing an axis will 
always be of the same category and emotion, if applicable. Therefore, 
there are four conditions of interest that were entered into our task 
modeling procedures: attending to fearful faces, attending to neutral 
faces, ignoring fearful faces and ignoring neutral faces. Each condition is 
presented 24 times across all runs of this task. 

After a 1 s fixation cross, images are presented for 250 ms, and 
participants are allotted 2.2 s to respond. Intertrial intervals of 2150, 
4660, 9680 and 12190 ms are randomly and equally distributed 
throughout each run. Total run duration is 3:54 and the task is run 4 
times, resulting in a total scan time of 15:36 for this task. 

Emotional processing task (EPT): This task aims to capture abnor
malities in the processing of emotional faces and follows the same design 
as the one implemented in the HCP (Van Essen et al., 2013). In this 
block-related design originally adapted from Hariri et al. (2002); par
ticipants are presented with three images and are instructed to indicate 
through button press whether the image on the left or the image on the 

right matches the image at the top (Fig. 3a). Images can belong to one of 
four categories: fearful faces, neutral faces, happy faces and control 
stimuli (e.g. fruits and vegetables). These four categories were the four 
event types entered into our task modeling procedures. 

Images are present for 3 s each and each block is composed of six 
images of the same category, resulting in a block duration of 18 s. Each 
of the four categories, in addition to a baseline condition (white fixation 
cross on a black background), is allocated three blocks, resulting in a 
total run time of 4:32. Each participant completes two runs, resulting in 
a total scan time of 9:04 for this task. 

Incentive processing task (IPT): This task addresses neural abnor
malities in reward processing and follows the same design as the one 
implemented in the HCP (Van Essen et al., 2013). In this block-related 
design originally adapted from Delgado et al. (Delgado et al., 2000), a 
question mark is presented on screen, and participants have to guess 
whether the number obscured by the question mark (which can range 
1–9) is greater than or less than five (Fig. 4a). If the participant guesses 
correctly, a green arrow pointing upwards with text indicating “+$1.00” 
is shown. If the participant guesses incorrectly, the participant sees a red 
arrow pointing downwards with text indicating “-$0.50”. If the number 
was five, a gray double-headed arrow is presented, indicating that 
money was neither gained nor lost. If the participant does not respond 
within the time allocated for the trial (1.5 s after the question mark is 
presented), then the text “no response” is presented, along with an 
indication that no money is gained or lost that round. Participants were 
told that they should perform the task as if they would earn real money, 
but no rounds were actualized in participant payoff. 

Unknown to the participant, the sequence of “reward” and “loss” 
trials is pre-set such that blocks of stimuli are composed of primarily 
reward and primarily loss trials. To obscure this, a primarily “reward” 
block will always contain two “neutral” or “loss” trials and vice-versa for 
primarily “loss” blocks. Trial types are pseudo-randomized within each 
block. Tasks were modeled using an event-wise design with three event 
types: “reward”, “neutral” and “loss”. Timings corresponded to the onset 

Fig. 2. a. Task design for the Emotional Interference Task. After a 1000 ms cue indicating which set of stimuli to attend to (above), two faces and two houses are 
flashed on the screen for 250 ms (below). Participants are allotted 2200 ms to respond whether the attended stimuli were the same or different. b. Z-statistic maps 
thresholded using Gaussian random field theory (cluster-defining threshold, z > 2.3; cluster extent threshold, p < 0.01). Warm colors indicate significant clusters for 
the attend fearful faces > ignore fearful faces contrast while cool colors indicate significant clusters for the ignore fearful faces > attend fearful faces contrast. 
Coordinates of slices are in MNI space. Color bars indicate Z-statistics. 
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of the response feedback portion of the task. 
Each trial is composed of the question mark cue for 1.5 s, followed by 

feedback images for 1.0 s. Each trial is separated by a 1.0 s inter-trial 
interval. Blocks are composed of 8 trials each, resulting in a block 

length of 28 s. Runs are composed of two “reward” blocks, two “loss” 
blocks and a baseline condition block (fixation cross, 15 s), for a total 
run duration of 3:02. Each participant completes two runs, for a total 
scan time of 6:04 for this task. 

Fig. 3. a. Task design for the Emotional Processing Task. Participants view three images at a time for 3 s and are instructed to indicate whether the picture on the left 
or right matches the picture in the center. Each block is composed of 6 sets of images. b. Z-statistic maps thresholded using Gaussian random field theory (cluster- 
defining threshold, z > 2.3; cluster extent threshold, p < 0.01). Warm colors indicate significant clusters for the fearful face > object contrast while cool colors 
indicate significant clusters for the object > fearful face contrast. Coordinates of slices are in MNI space. Color bars indicate Z-statistics. 

Fig. 4. a. Task design for the Incentive Processing Task. During a 1.5 s cue, participants guess whether a hidden number is greater than or less than five, after which 
feedback images are shown for 1 s. The timeline of events is illustrated above, while the three possible response feedback stimuli are illustrated below. b. Z-statistic 
maps thresholded using Gaussian random field theory (cluster-defining threshold, z > 2.3; cluster extent threshold, p < 0.01). Warm colors indicate significant 
clusters for the reward > loss contrast while cool colors indicate significant clusters for the loss > reward contrast. Coordinates of slices are in MNI space. Color bars 
indicate Z-statistics. 
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4.6.3. Resting-state fMRI 
During resting state scans, participants viewed a gray screen with a 

white crosshair (Fig. 5a). Participants were instructed to fixate on the 
crosshair, while blinking normally and keeping their eyes open. This was 
performed in two sets of two, for a total of four scans, each of which 
lasted for 5:46 min (resulting in a total scan time of 23:04 for resting 
state). Participants were given a series of follow-up questions after each 
run concerning their mental state during the scan (e.g. frequency of 
thought wandering, frequency of sleeping) and responded via the 4-but
ton box. 

4.7. Image preprocessing and analysis 

4.7.1. Structural and functional imaging 
All structural and functional images were processed using FMRI

PREP, a well-validated preprocessing pipeline. Note that data will also 
be preprocessed using the HCP minimal preprocessing pipelines (Glasser 
et al., 2013) upon public release of this dataset to the NDA. The 
following is boilerplate text provided by FMRIPREP describing the steps 
taken during preprocessing. 

Results included in this manuscript come from preprocessing per
formed using FMRIPREP version stable (Esteban et al., 2019), a Nipype 
(Gorgolewski, 2011) based tool. Each T1w (T1-weighted) volume was 
corrected for INU (intensity non-uniformity) using N4BiasFieldCorrec
tion v2.1.0 (Tustison et al., 2010) and skull-stripped using ants
BrainExtraction.sh v2.1.0 (using the OASIS template). Spatial 
normalization to the ICBM 152 Nonlinear Asymmetrical template 
version 2009c (Fonov et al., 2009) was performed through nonlinear 
registration with the antsRegistration tool of ANTs v2.1.0 (AVANTS 
et al., 2008), using brain-extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white- 
matter (WM) and gray-matter (GM) was performed on the brain- 
extracted T1w using fast (Zhang et al., 2001) (FSL v5.0.9). 

Functional data was motion corrected using mcflirt, calculating one 
rigid-body transform for each BOLD time-step (FSL v5.0.9 (Jenkinson 
et al., 2002). Distortion correction was performed using an imple
mentation of the TOPUP technique (Andersson et al., 2003) using 

3dQwarp (AFNI v16.2.07 (Cox, 1996). This was followed by co- 
registration to the corresponding T1w using boundary-based registra
tion (Greve and Fischl, 2009) with six degrees of freedom, using flirt 
(FSL). Motion correcting transformations, field distortion correcting 
warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp 
were concatenated and applied in a single step using antsApplyTrans
forms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor 
(Behzadi et al., 2007). Principal components were estimated for the two 
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). A 
mask to exclude signal with cortical origin was obtained by eroding the 
brain mask, ensuring it only contained subcortical structures. Six 
tCompCor components were then calculated including only the top 5% 
variable voxels within that subcortical mask. For aCompCor, six com
ponents were calculated within the intersection of the subcortical mask 
and the union of CSF and WM masks calculated in T1w space, after their 
projection to the native space of each functional run. Frame-wise 
displacement (Power et al., 2014) was calculated for each functional 
run using the implementation of Nipype. 

Many internal operations of FMRIPREP use Nilearn (Abraham, 
2014), principally within the BOLD-processing workflow. For more de
tails of the pipeline see https://fmriprep.readthedocs.io/en/stable/ 
workflows.html. 

Resting state data were further preprocessed using the eXtensible 
Connectivity Pipeline (XCP Engine; (Ciric et al., 2018). The workflow is 
summarized as follows: (i) removal of the 10 initial volumes (8 s) to 
achieve signal stabilization, (ii) demeaning and removal of quadratic 
trends using a general linear model to account for scanner drift, (iii) 
intensity despiking using 3dDespike from AFNI (Cox, 1996), (iv) band
pass temporal filtering of time series between 0.01 Hz and 0.08 Hz using 
a first-order Butterworth filter (Biswal et al., 2010), (v) regression of 
nine confounding signals (six motion parameters + global signal + mean 
white matter signal + mean cerebral spinal fluid signal) and as well as 
the temporal derivative, quadratic term and temporal derivatives of 
each quadratic term (resulting in 36 regressors total; (Satterthwaite 
et al., 2013) and (vi) spatial smoothing with SUSAN from FSL (Smith and 
Brady, 1997) using a 6 mm FWHM kernel. 

Fig. 5. a. Task design for resting state acquisitions. Participants were instructed to lie still with their eyes open, blinking normally. b. Z-statistic spatial weights for 
three independent components from ICA. For display purposes, weights were thresholded at z = 2.3. Coordinates of slices are in MNI space. 
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Task activation maps were generated using FSL (Smith et al., 2004), 
using a generalized linear modeling (GLM) approach. Task timings were 
convolved with a double-gamma hemodynamic response function. 
Variance due to motion was accounted for by including the six trans
lational and rotational motion parameters, plus the temporal derivative, 
quadratic term and temporal derivatives of each quadratic term 
(resulting in 24 nuisance regressors total) in the regression model. 
Parameter estimates from contrasts of interest were combined within- 
subject using fixed effects modeling and then combined across sub
jects using hierarchical mixed modeling (using FSL’s FLAME). Finally, 
cluster-based inference using Gaussian random field theory was con
ducted on the resulting z-statistic image (cluster-defining threshold, z >
2.3; cluster extent threshold, p < 0.01; easythresh utility in FSL). For the 
purpose of this descriptive analysis, group-level activation maps for 
contrasts of interest pooled AM and HC participants together. 

We used MELODIC (Multivariate Exploratory Linear Decomposition 
into Independent Components) version 3.15, part of FSL, to extract 
functional connectivity networks from preprocessed resting state func
tional data. Spatial activation patterns were projected onto a 10-dimen
sional subspace using temporally-concatenated group independent 
component analysis (ICA) with MELODIC’s Incremental Group-PCA 
(MIGP; (Smith et al., 2014). MIGP uses an incremental approach to 
decompose 4D functional data into non-Gaussian spatial source distri
butions for the estimation of group-average spatial eigenvectors. The 10 
strongest spatial eigenvectors underwent an unmixing algorithm to 
identify spatially-independent group-average network components. 

4.7.2. Diffusion imaging 
Diffusion weighted images were preprocessed using QSIprep, an 

open-source software package that configures pipelines for processing 
diffusion-weighted data (retrieved from https://github. 
com/PennBBL/qsiprep; QSIprep is not affiliated or endorsed by the 
creators of FMRIPREP). QSIprep includes options to replicate the out
puts of the HCP dMRI pipelines (Sotiropoulos et al., 2013). In short, this 
pipeline performs (i) anatomical preprocessing and spatial normaliza
tion to MNI template space using ANTs (Avants et al., 2011), (ii) head 
motion correction, susceptibility distortion correction and eddy current 
correction using TOPUP and eddy (Andersson et al., 2003; Smith et al., 
2004) and (iii) calculation of generalized fractional anisotropy (GFA) 
using generalized q-sampling imaging (Yeh et al.,). GFA was sampled 
along 16 standard tracts from the HCP Diffusion MRI Template (Yeh 
et al., 2018). 

4.7.3. Myelin maps and cortical thickness 
In order to generate group average cortical thickness meshes, 

structural images were preprocessed using the HCP minimal pre
processing pipelines (Glasser et al., 2013), version 4.1.3 (retrieved from 
https://github.com/BIDS-Apps/HCPPipelines/releases/tag/v4.1.3). 
The PreFreeSurfer, FreeSurfer and PostFreeSurfer workflows were used to 
process T1w and T2w images. In brief, these workflows performed (i) 
gradient nonlinearity distortion correction, (ii) coregistration of T1w 
and T2w images, (iii) bias field correction using spin-echo field maps, 
(iv) spatial normalization to the MNI template, (v) segmentation of 
cortical and subcortical structures, (vi) reconstruction onto pial and 
white matter surfaces and (vii) registration to 32k_fs_LR mesh (Van Essen 
et al., 2012), a standard space template. For the purpose of this 
descriptive analysis, the group-average cortical thickness surface pooled 
AM and HC participants together. 

4.7.4. Image quality metrics 
Automated image quality assessments were performed on each set of 

data. The primary metric used to assess image quality for our structural 
images (T1w, T2w) was signal-to-noise ratio (SNR), which was calcu
lated by dividing the mean white and grey matter intensity by the 
standard deviation of image intensities in a background ROI containing 
no tissue. For functional images, we used temporal signal-to-noise ratio 

(tSNR), reported as the average tSNR for all brain voxels, including 
white and grey matter. Finally, diffusion images were assessed using 
neighbor DWI correlation, a model-free method of accessing diffusion 
weighted signal quality (Yeh, 2019). Neighbor DWI correlation com
putes pairwise spatial correlation between each dMRI volume and its 
“neighbor”, meaning another volume that samples the closest point in q- 
space. The correlations are then averaged over all voxels and pairs of 
DWI volumes. Generally, a higher quality acquisition should have a 
higher neighbor correlation. 

4.7.5. Comparisons with HCP-YA 
As a comparison of image quality and preliminary results, we drew 

from a representative sample of the HCP Young Adult (HCP-YA) dataset 
(Van Essen et al., 2013). Given our interests in identifying the neural 
substrates of the NVS in its pathological state (to be conducted in ana
lyses that are outside of the scope of this report), we prioritized the se
lection of the healthiest participants in order to minimize any potential 
symptom overlap with our clinical population. As it is this subset of the 
HCP-YA with which our data will be harmonized, we present image 
quality metrics from these data. In order to be considered, participants 
had to meet the following criteria: (i) No parental history of mental 
illness; (ii) Adult Self Report scores (adjusted by age and sex) below 65 
in the following categories: anxious/depressed, withdrawn, somatic 
complaints, thought problems, attention problems, aggressive behavior, 
rule breaking behavior, intrusive thoughts, internalizing, externalizing, 
total problems; (iii) Semi-Structured Assessment for the Genetics of 
Alcoholism scores <2 for childhood conduct problems, panic disorder, 
agoraphobia, any lifetime depressive episodes, and fewer than two 
depressive symptoms present; (iv) All relevant scans present. This se
lection criteria left us with 248 out of 1200 HCP-YA participants, from 
which we randomly selected 97 healthy controls to match our 97 AM 
participants, matching for age and sex. Due to the differences in age 
range in our sample (18–59 yoa) and the HCP-HYA sample (22–36 yoa), 
we were unable to match precisely for age, resulting in similar means 
with different distributions. In order to account for potential age and sex 
related effects on image quality, we utilize linear regression to remove 
these covariates in any of our statistical tests of image quality. 

Throughout our quantitative comparisons of image quality, we also 
report metrics from our sample of healthy controls in order to assess 
whether the presence of NVS pathology affects measures of image 
quality, which could potentially complicate the interpretation of any 
associations between neural and behavioral data (Roalf et al., 2016; 
Satterthwaite et al., 2012). 

5. Results 

5.1. Functional imaging 

EIT: Group-level activation patterns (Fig. 2b) indicate significant 
activation of the R fusiform gyrus for one contrast of interest, attend 
fearful faces > ignore fearful faces (Vuilleumier et al., 2001; Kanwisher 
et al., 1997) (illustrated by warm colors), and significant activation of 
bilateral parahippocampal gyri and L posterior middle temporal gyrus 
for the opposite contrast, ignore fearful faces > attend fearful faces 
(Epstein and Kanwisher, 1998) (illustrated by cool colors). 

EPT: Group-level activation patterns (Fig. 3b) for fearful face > ob
ject indicate significant activation of the R amygdala and bilateral 
fusiform gyri (Hariri et al., 2002) (illustrated by warm colors), as well as 
significant activation of the L posterior parahippocampal gyrus and 
posterior cingulate gyrus for the opposite contrast, object > fearful face 
(Davachi, 2006) (illustrated by cool colors). 

IPT: Group-level activation patterns (Fig. 4b) of the contrast of in
terest, reward > loss, indicate significant activation of subcortical re
gions implicated in reward processing (illustrated by warm colors), like 
the bilateral nucleus accumbens and caudate, as well as the ventrome
dial prefrontal cortex (O’Doherty et al., 2001). 
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Resting: MELODIC successfully identified several canonical resting 
state networks, including the default mode (Raichle et al., 2001), ventral 
attention (Fox et al., 2006) and somatomotor networks (Geyer, 2004) 
(Fig. 5b). 

5.2. Comparison with HCP data 

We compared our imaging data with 97 healthy control participants 
from the HCP-YA dataset who passed our eligibility criteria. While ef
forts were made to match for age and sex, different recruitment criteria 
between the HCP-YA and the AM projects resulted in different ranges 
and distributions of ages (HCP-YA mean age ± SD = 29.08 ± 3.62, AM 
mean age ± SD = 28.46 ± 7.99; HCP-YA range = (Bastien et al., 2001; 
Carver and White, 1994; Nolen-Hoeksema et al., 1993; Bernstein, 1994; 
Noone, 2017; Blanchard et al., 1996; Michalos and Kahlke, 2014; Ware 
et al., 1996; Sheehan et al., 1996; Kertzman et al., 2004; Heatherton 
et al., 1991; Weissman and Bothwell, 1976; Marks and Mathews, 1979; 
Montgomery and Åsberg, 1979; Hamilton, 1960), AM range = (Taylor 
et al., 2007; Reiss et al., 1986; Pilkonis, 2011; Bastien et al., 2001; 
Carver and White, 1994; Nolen-Hoeksema et al., 1993; Bernstein, 1994; 
Noone, 2017; Blanchard et al., 1996; Michalos and Kahlke, 2014; Ware 
et al., 1996; Sheehan et al., 1996; Kertzman et al., 2004; Heatherton 
et al., 1991; Weissman and Bothwell, 1976; Marks and Mathews, 1979; 
Montgomery and Åsberg, 1979; Hamilton, 1960; Posner, 2016; Gur, 
2001; Gur et al., 2010; Moore et al., 2015; Etkin et al., 2013; Scott et al., 
2015; Snyder, 2013; Yushkevich et al., 2010; Fales et al., 2008; Vuil
leumier et al., 2001; Hariri et al., 2002; Delgado et al., 2000; Glasser 
et al., 2013; Esteban et al., 2019; Gorgolewski, 2011; Tustison et al., 
2010; Fonov et al., 2009; Avants et al., 2008; Zhang et al., 2001; Jen
kinson et al., 2002; Andersson et al., 2003; Cox, 1996; Greve and Fischl, 
2009; Behzadi et al., 2007); HCP-YA n female = 58/97, AM n female =
69/97). 

5.2.1. Structural imaging 
Cortical thickness. Penn participants had generally higher mean 

cortical thickness values (3.11 mm, SD = 0.40 mm) compared to HCP- 
YA participants (2.65 mm, SD = 0.35 mm), although the relative dis
tributions of thickness values across the brain share similar features 
between the two projects, as illustrated in Fig. 6. 

SNR. Structural scans obtained from the Penn sample showed 
generally higher SNR compared to HCP subjects for both T1w (median 
HPC = 8.78, median Penn = 10.10) and T2w (median HPC = 5.18, 
median Penn = 8.29). One-way analysis of variance (ANOVA) tests 
controlling for age and sex revealed significant differences between 
groups for both T1w and T2w SNR (results summarized in Fig. 7). Post- 
hoc Tukey tests revealed significantly greater T1w SNR in our anxious 
misery and healthy participants compared to the HCP-YA (anxious 
misery & HCP-YA, t(97.7) = 5.934, p < .001; healthy comparators & 
HCP-YA, t(27.7) = 17.488, p < .001) and similarly for T2w SNR (anxious 
misery & HCP-YA, t(187.8) = 7.554, p < .001; healthy comparators & 
HCP-YA, t(29.2) = 3.833, p < .001). Our anxious misery and healthy 
participants did not differ in T1w SNR (t(110) = -0.522, p = 0.603) or 
T2w SNR (t(37.3) = -0.700, p = 0.488). No significant age or sex effects 
were detected. 

5.2.2. Functional imaging 
Following preprocessing, mean root mean squared movement (RMS) 

was calculated for each scan, across all participants, and scans exceeding 
a predetermined threshold (RMS > median(RMS) + 3 * interquartile 
range) were excluded from further analyses of image quality, as well as 
analyses of task activation and resting state networks. A “scan” included 
all volumes of a single acquisition (i.e. a single row of Table 5). If all of a 
subject’s scans exceed this threshold, they were dropped entirely from 
the analyses for that task. Two subjects were removed from resting state 
analyses due to movement; 35 total scans were removed from resting 
state due to movement. For the EIT, two subjects were cut and 39 scans 
removed; for the EPT, one subject was cut and seven scans removed; for 
the IPT, two subjects were cut and six scans removed. 

tSNR. Across all functional scans, one-way ANOVAs did not detect 
significant differences between groups, controlling for age and sex. 
Scans for EIT showed good tSNR across all Penn subjects (M = 22.18, SD 
= 3.11), as did EPT (M = 21.93, SD = 2.95), IPT (M = 22.52, SD = 2.74) 
and rfMRI (M = 21.89, SD = 2.60). Results are summarized in Fig. 8. No 
significant age or sex effects were detected. 

5.2.3. Diffusion imaging 
Neighbor correlation. Diffusion scans obtained from the Penn sample 

showed generally higher neighbor correlation compared to HCP subjects 
(median HPC = 0.63, median Penn = 0.81). A one-way ANOVA con
trolling for age and sex revealed significant differences between groups 
(results are summarized in Fig. 9). Post-hoc Tukey tests revealed that 
both anxious misery individuals and healthy comparators had higher 
neighbor correlations than HCP-YA participants (anxious misery & HCP- 
YA, t(167.5) = 20.223, p < .001; healthy comparators & HCP-YA, t 
(35.1) = 10.34, p < .001). Our anxious misery and healthy participants 
did not differ in neighbor correlation (t(28.4) = 1.24, p = .222). No 
significant age or sex effects were detected. 

Trackwise profiles of GFA. GFA values sampled along 16 standard 
tracts revealed similar average profiles between the Penn and HCP 
samples (Fig. 10, shaded area = standard deviation), although partici
pants in the Anxious Misery project had generally higher GFA values. 

6. Discussion 

6.1. Comparison to HCP-YA acquisition 

Based on the above SNR and structural measures, our data shows 
comparable quality with HCP-YA data, with higher measures of SNR in 
T1w/T2w images, equivalent measures of tSNR in functional images and 
higher neighbor correlation in diffusion-weighted images. Differences in 
T1w/T2w SNR may partially be explained by the background region-of- 
interest method that we utilized. Given that multi-element receive coils 
(like those used in the HCP-YA and Anxious Misery protocols) do not 
guarantee spatially uniform levels of noise, SNR calculated using 
“signal-free” regions may not accurately represent a true difference in 
data quality. However, alternative methods of calculating SNR are 
problematic for other reasons; for example, calculating contrast-to-noise 
requires the identification of uniform regions of gray and white matter, 
but coil shading makes such identifications difficult. 

Fig. 6. Comparison of cortical thickness between Penn and HCP samples. Values reported in mm. HCP = Human Connectome Project.  
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Differences in image quality and results can also be explained in part 
due to differences in sample; our subjects cover a wider range of ages 
than those present in the 1200 subject release of HCP-YA, and while we 
attempted to match across samples in age and controlled for age and sex 

in our quantitative comparisons of image quality, our data still extend 
beyond the 36 years of age cutoff present in the HCP-YA release. Once 
the HCP-Aging dataset is fully released through the NIH-NDA, we will 
conduct further comparisons between our imaging data and data 

Fig. 7. Signal-to-noise ratio (SNR) for T1w and T2w scans. AM = anxious misery (n = 97), HC = healthy control (n = 24), HCP = Human Connectome Project (n =
97). ** = significant at p < .001. 

Fig. 8. Top row: temporal signal-to-noise ratio (tSNR) for Emotional Interference Task (EIT) and Emotional Processing Task (EPT); bottom row: tSNR for Incentive 
Processing Task (IPT) and resting state fMRI (rfMRI). AM = anxious misery (n = 97), HC = healthy control (n = 24), HCP = Human Connectome Project (n = 97). No 
significant group differences were observed. F-values and significance reported. 
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collected across the ongoing HCP Lifespan Studies. 
Finally, differences reported in SNR and results may also be attrib

uted to hardware differences between HCP-YA collection and our own. 
Notably, the Siemens Skyra platform in use at WashU is custom-built for 
the purpose of HCP acquisition and uses a 32-channel head coil, while all 
of our scans were collected on a Siemens Prisma 3 T system utilizing a 
64-channel head coil. The Siemens Prisma (80 mT/m gradients for 
diffusion and ~ 42 mT/m gradient for imaging) has gradients similar to 
the custom Skyra system (100 mT/m gradients for diffusion and ~ 42 
mT/m gradient for imaging), allowing for an exact duplication of 
structural and functional protocols in relation to TE and resolution; 

diffusion encoding is necessarily different in our own protocol due to the 
difference in maximal gradient strength between Skyra and Prisma 
systems. For functional imaging, HCP recommends a multiband (MB) 
factor of 6 to 8 and a resolution of 2.0–2.5 mm, depending on the spe
cifics of the system in use. In our functional imaging, we matched the 
recommended MB of 8 with a resolution of 2.0 mm in an attempt to 
obtain data of similar quality to HCP (Snyder, 2013). Due to the dif
ferences in each system, even identical parameters can yield different 
results across time, and we performed regular checks of temporal sta
bility throughout data collection. 

We also observed generally higher measures of cortical thickness 
(although relative distributions across the brain share similar features) 
and GFA (although trajectories across tracts appear similar) in our 
sample compared to the HCP-YA data. In addition to the possible sources 
listed above, these differences may be attributable to the as-of-yet un
identified effects of NVS pathology on the brain, although we reserve 
rigorous hypothesis testing to analyses that are outside of the scope of 
this report. 

6.2. Comparison to HCP-YA neuropsychological and behavioral measures 

In addition to the standard measures of the HCP, this project 
expanded its scope by implementing measures aimed at characterizing 
the behavioral and cognitive facets of anxious misery. Supplemental 
Table 7 gives a comprehensive comparison of the instruments used in 
this project compared with the ones in the HCP (Barch et al., 2013). 

While this project employed the foundational measures of the HCP, 
such as the NIH Toolbox Cognitive and Emotional Batteries and Penn 
CNB, it did not implement measurements for motor, sensory or visual 
functioning, instead implementing two self-report surveys to measure 
physical functioning. Further, our project implemented additional 
clinician-administered and self-report measurements to assess the NVS 
constructs of loss and response to sustained threat. Specifically, 

Fig. 9. Neighbor correlation for diffusion weighted scans. AM = anxious misery 
(n = 97), HC = healthy control (n = 24), HCP = Human Connectome Project (n 
= 97). ** = significant at p < .001. 

Fig. 10. Profiles of generalized fractional anisotropy (GFA) for 16 standard tracts. Group means are plotted, with shaded areas denoting standard deviation. X-axis 
indicates position along the tract. IFOF = inferior fronto occipital fasciculus, ILF = inferior lateral fasciculus, MLF = middle lateral fasciculus, SLF = superior lateral 
fasciculus, AM = anxious misery, HC = healthy control, HCP = Human Connectome Project. 

D. Seok et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 28 (2020) 102489

13

clinician-administered measures including the Montgomery-Asberg 
Depression Rating Scale (MADRS) and the Hamilton Rating Scale for 
Depression (HAMD) were used to evaluate depression severity, and the 
Columbia Suicide Severity Rating Scale was used to assess suicidal 
ideation. Self-report measures including the Anxiety Sensitivity Index 
(ASI), the Snaith-Hamilton Pleasure Scale (SHAPS) and the Ruminative 
Thought Scale (RTS) were administered to gather additional informa
tion regarding participants’ depressive and anxious moods and behav
iors. Additionally, this project implemented several measures measuring 
trauma in childhood, including the Childhood Trauma Questionnaire 
(CTQ) and the Maltreatment and Abuse Chronology of Exposure 
(MACE), as well as life stressors, including the Perceived Stress Scale 
(PSS), Life Events Stress (LES) Scale and Holmesrahe Life Stress In
ventory (LSI). 

6.3. Dimensional perspective 

Designed to align with the NIMH RDoC framework, the Anxious 
Misery study has collected a comprehensive set of cognitive and 
behavioral measurements paired with state-of-the-art neuroimaging 
acquisitions. Importantly, our sample of participants has a heteroge
neous mix of depressive, anxious and trauma related symptomology, 
making it an ideal dataset to examine transdiagnostic associations be
tween elements of the Negative Valence domain of the RDoC matrix and 
neural circuit abnormalities as measured by MRI. As such, investigators 
are encouraged to adopt such a dimensional approach in their analyses 
of this dataset and seek to relate specific cognitive, behavioral and 
phenomenological elements with brain circuits. 

Dimensional approaches can still benefit from a sample of healthy 
comparators. For example, when harmonizing neuroimaging data from 
multiple scanners, care must be taken to account for site- and scanner- 
related effects, as significant scanner effects can still be detected even 
when imaging protocols and scanning parameters are standardized 
(Noble et al., 2017). Methods like ComBat, which utilizes an empirical 
Bayes framework to improve the estimation of scanner effects, have 
proven successful in accounting for scanner-related variance of func
tional connectivity matrices, diffusion imaging metrics and cortical 
thickness (Fortin et al., 2018, 2017; Yu et al., 2018). However, estima
tion of scanner-related variance may be confounded by the effects of 
psychopathology, particularly when merging with a dataset of primarily 
healthy participants, like the HCP-YA dataset. Therefore, when aggre
gating the Anxious Misery cohort with datasets comprising exclusively 
healthy participants, we recommend that models of scanner effects be fit 
using our sample of healthy comparators and subsequently applied to 
our anxious misery participants in order to minimize these confounding 
effects. Examples of other uses of our sample of healthy comparators 
include methods like normative modeling, which can leverage tech
niques such as Gaussian process regression to model healthy brain im
aging data distributions and examine how individual patients deviate 
from these normative patterns (Marquand et al., 2019, 2016). 

6.4. Medication use 

Past and present medication use is known to affect neuroimaging 
signatures of psychopathology (Phillips et al., 2008; Savitz et al., 2010; 
Smith et al., 2013). We did not require participants to have a washout 
period of current psychotropic medication, although the majority of 
participants (73.2%) were unmedicated at the time of enrollment. One 
potential limitation of the current project is the confounding effect of 
medication on neuroimaging measures in our medicated participants. 
To address this limitation, we collected extensive records of past and 
current medication use in order to account for medication-related effects 
on neuroimaging variables. Further, the inclusion of medicated in
dividuals may also be a strength, as it improves the generalizability of 
our results to a wider population, as well as offers the opportunity to 
directly examine the effect of medication on neuroimaging data by 

analyzing medicated and unmedicated participants separately. 

6.5. Future directions 

The current project is part of a larger series of studies within the HCP 
framework known collectively as the Human Connectome Studies 
Related to Human Disease (CRHD) and will contribute to building a 
database for comparisons between diverse populations. In particular, 
three other projects studying similar aspects of human psychopathology 
were funded at approximately the same time as the Anxious Misery 
project: Connectomes Related to Anxiety & Depression (PIs: Whitfield- 
Gabrieli & Gabrieli; Northeastern University & Massachusetts Institute 
of Technology) (Hubbard, 2020; Siless, 2020), Mapping Connectomes 
for Disordered Mental States (PI: Williams, Stanford University) (Tozzi, 
2020) and Perturbation of the Treatment of Resistant Depression Con
nectome by Fast-Acting Therapies (PIs: Espinoza, Narr, & Wang; Uni
versity of California, Los Angeles) (Loureiro et al., 2020; Vasavada et al., 
2020). Respectively focusing on adolescents, patients experiencing 
emotional dysregulation and treatment-resistant patients, each of these 
projects has slightly different goals and patient populations. 

The data collected in the present study will be harmonized with data 
from these three other studies of human psychopathology. This will 
require careful harmonization of imaging data to remove site and 
scanner-related effects, which, as we have previously described (Yu 
et al., 2018), is critical for the interpretability and validity of any results. 
In addition, the varied behavioral assessments implemented by each site 
will require careful attention to ensure that similar domains of psy
chopathology are captured in any metrics of patient variability (see 
Supplementary Table 8 for an overview of overlapping behavioral 
measures). Despite these challenges, concordance of scanning parame
ters and overlapping behavioral tasks with these three other CRHD 
projects enhances the viability of such a harmonization, which will ul
timately result in a comprehensive database of brain and behavior data 
for over 800 participants across a wide range of age, disease-type and 
geographic locations. 

7. Conclusion 

The HCP study “Dimensional Connectomics of Anxious Misery” 
combines well-validated measures of psychopathology, emotion, and 
neurocognitive function with HCP-standard neuroimaging acquisitions. 
Measures of image quality indicate superior quality of structural ac
quisitions and equivalent quality of functional acquisitions to the HCP- 
YA sample. The availability of multimodal imaging together with 
behavioral and neurocognitive data will spur research on the relation
ships between dimensions of behavior and neuroimaging features, 
supporting Strategy 1.4 of the NIMH Strategic Plan: “Develop new ways 
of classifying disorders based on dimensions of observable behaviors 
and brain functions.” The Anxious Misery dataset contributes to a new, 
dimensional description of psychopathology that is grounded in 
neuroscience and aims to capitalize on novel, circuit-based associations 
with measures of behavioral dimensions and neuropsychological 
dysfunction. Data will be made publicly available through the Con
nectome Coordinating Facility. The first half of the dataset (n = 121) 
will be available upon the initial public release to the NIH-NDA in fall 
2020, with the remaining half of the dataset available in 2021. 
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