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Measurement precision 
enhancement of surface plasmon 
resonance based angular scanning 
detection using deep learning
Kitsada Thadson1, Suvicha Sasivimolkul2, Phitsini Suvarnaphaet2, 
Sarinporn Visitsattapongse1 & Suejit Pechprasarn2*

Angular scanning-based surface plasmon resonance measurement has been utilized in label-free 
sensing applications. However, the measurement accuracy and precision of the surface plasmon 
resonance measurements rely on an accurate measurement of the plasmonic angle. Several methods 
have been proposed and reported in the literature to measure the plasmonic angle, including 
polynomial curve fitting, image processing, and image averaging. For intensity detection, the 
precision limit of the SPR is around 10–5 RIU to 10–6 RIU. Here, we propose a deep learning-based 
method to locate the plasmonic angle to enhance plasmonic angle detection without needing 
sophisticated post-processing, optical instrumentation, and polynomial curve fitting methods. 
The proposed deep learning has been developed based on a simple convolutional neural network 
architecture and trained using simulated reflectance spectra with shot noise and speckle noise added 
to generalize the training dataset. The proposed network has been validated in an experimental 
setup measuring air and nitrogen gas refractive indices at different concentrations. The measurement 
precision recovered from the experimental reflectance images is 4.23 × 10–6 RIU for the proposed 
artificial intelligence-based method compared to 7.03 × 10–6 RIU for the cubic polynomial curve fitting 
and 5.59 × 10–6 RIU for 2-dimensional contour fitting using Horner’s method.

Surface plasmon resonance (SPR) is a phenomenon that occurs at the surface of noble metals1, such as gold and 
silver. The resonating electron on a metal surface can be excited by light illumination matching the resonant 
frequency, causing a resonant oscillation and generating a surface wave propagating along the metal surface called 
a plasmonic wave or surface plasmon polaritons. The light to electron energy coupling leads to an energy loss 
appearing as an intensity dip in reflectance spectra; a dark band called SPR dip or plasmonic dip. The surface plas-
mon coupling condition is sensitive to the external environment in contact with the plasmonic metal’s surface. 
Therefore, it has been widely utilized as a label-free, non-invasive, and real-time sensor and has gained interest 
in many research fields, such as SPR-based sensing2–5, SPR-based microscopy6, voltage sensing7,8, biomolecular 
interaction analysis9,10, environment monitoring11,12 and medical diagnosis13–15.

The reflectance spectra can be measured using a camera sensor or a linear photodiode array12 that transforms 
photons into electrons. However, for the SPR measurement, the camera captures an image of the SPR reflectance 
dip in which the optical intensity is typically low and usually in a shot-noise dominant measurement16,17. There-
fore, the measurement precision depends on the accuracy of a plasmonic dip position measurement under the 
noise constraint. Several minimum reflectance dip determination methods have been proposed and developed, 
including polynomial curve fitting18,19, cross correlation20, and centroid determination21.

Convolutional neural network (CNN) is a well-known type of deep learning widely employed in image rec-
ognition because of its ability to analyze and recognize a spatial data pattern22. The network has been utilized 
in many fields and applications, such as medical imaging23, image classification24,25, image regression26,27, phase 
retrieval28, and image enhancement29.

Here, we propose a deep learning-based method for automatically and accurately locating the plasmonic 
dip position in real-time to enhance precision in the plasmonic measurement of surface plasmon resonance-
based angular scanning detection using the CNN architecture. We also demonstrate that simulated data can be 
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employed to train the neural network. First, the simulated reflectance spectra with added shot-noise and speckle 
noise were prepared to mimic images from the experimental setup generalizing the simulated dataset for the 
CNN training. The proposed trained network was later evaluated in an experimental setup measuring refrac-
tive index change in real-time to quantify the measurement precision enhancement compared to conventional 
methods, including one-dimension and two-dimensional curve fitting methods. To the best of the authors’ 
knowledge, the proposed CNN method to enhance the accuracy in SPR measurement has never been reported 
before in the literature.

Materials and methods
Surface plasmon resonance optical alignment.  An SPR angular interrogation-based Kretschmann 
configuration was aligned to demonstrate the capability of the proposed CNN method compared with cubic 
polynomial curve fitting and Horner’s method. The setup consisted of two main parts: a gas flow-control system 
for varying the refractive index of the SPR sensing region and an optical system, as depicted in Fig. 1.

The gas flow-control system equipped with pressure gauges was employed to control nitrogen gas pressure in 
the sensing region (gas chamber), providing an independent measurement to cross-validate and approximate the 
refractive indices of the gas inside the chamber. The gas system consisted of a nitrogen gas tank, a gas regulator 
for pressure control, an inlet valve, an 18 × 18 × 18 mm3 plastic gas chamber, and an outlet valve.

The optical detection system captured the reflectance spectrum using a CMOS camera (MT9P006, 
Huatengvision). The camera was monochromatic with a bit-depth of 8 bits, 2592 pixels × 1944 pixels, pixels 
size 2.2 μm × 2.2 μm, the camera well depth of 4796 electrons per pixel, and quantum efficiency of 61% at the 
incident wavelength λ of 650 nm. The plasmonic layer consisted of a 45 nm plasmonic gold with a 2 nm chro-
mium adhesion layer on a standard BK7 microscope coverslip (No. 0, Sigma-Aldrich) prepared by electron 
beam sputtering. The gold plasmonic sensor was mounted on an 80 mm diameter semicylindrical glass prism 
(80 mm prism, Scitrader) using a microscope matching oil (MOIL-30, Olympus). For SPR excitation, the system 
consisted of a 7 mW laser diode 650 nm (L650P007, Thorlabs), a half waveplate (WPH10E-633, Thorlabs); an 
achromatic plano-convex doublet lens with a diameter of 12.7 mm and focal length of 20 mm (LA1074-A-N-BK7, 

Figure 1.   Kretschmann-based SPR experiment equipped with an acrylic gas chamber and nitrogen gas control 
unit (a) schematic diagram of the SPR system, (b) photo the experimental setup.
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Thorlabs) and an achromatic plano-convex doublet lens with a diameter of 38.1 mm and focal length of 150 mm 
(LA1388-A-N-BK7, Thorlabs) for beam expansion. The magnified beam then passed through an iris diaphragm 
(D255, Thorlabs), reducing the beam diameter to 20 mm. The beam is then focused using a 1-inch plano-convex 
cylindrical lens with a focal length of 100 mm (LJ1567L2-A-N-BK7). Finally, a plano-convex cylindrical lens 
expands the reflected beam with a focal length of 200 nm (LJ1309L1-A-N-BK7). The coverage incident angle 
of the sensor can be calculated from the optical system to 5.73 × 10–4 degrees per pixel or 0.00001 in sinθ0 unit, 
similar to the angular resolution employed in the literature30. The 5.73 × 10–4 degrees per pixel or 0.00001 in sinθ0 
unit were calculated from the demagnified camera sensor size of 5.7 mm using two cylindrical lenses, providing 
a demagnification factor of 2 when projecting back to the f100 cylindrical lens, as shown in Fig. 1. The demagni-
fied camera pixel can cover a specific range of incident angles, which can be calculated using numerical aperture 
(NA) relationship sin(tan−1(D/2f)) corresponding to the NA of 0.014, where D is the camera size. The 2NA can 
then be divided by the total number of pixels of 2592 pixels along with the angular space leading to the angular 
resolution of 0.00001 in sinθ0.

SPR active research groups have widely adopted the camera-based SPR dip measurement for various 
applications31,32, although measurement accuracy and precision can be improved by employing a linear diode 
array33. Here, the paper aims to demonstrate that the measurement precision can be improved by increasing the 
efficacy of data utilization using artificial intelligence compared to the other conventional methods with no need 
for additional optical instrument modification.

Experimental procedure.  The experimental procedure consisted of (1) opening the inlet and outlet valves 
for airflow through the gas chamber for SPR detection at the air refractive index stage, (2) flowing the nitrogen 
gas to replace the air in the gas chamber, (3) closing the outlet valve for keeping the nitrogen gas of 5 pressure 
levels of 5 psi, 40 psi, 110 psi, 130 psi, and 150 psi, respectively, (4) closing the inlet-controlled valve when the 
pressure raised to the stabilized pressure. The plasmonic dip was then measured as a video file capturing at an 
8-fps camera framerate. At the stable pressure levels, 100 video frames for each pressure level were employed as 
a testing dataset to evaluate the performance of three plasmonic angle measurement methods. The experiment 
was carried out when the vibration isolation system was switched off and deflated the optical table. Note that the 
gas pressure range is the maximum pressure that the plastic chamber can withstand before the gas leaks out, and 
the range is within the detection requirements for gas sensing reported in the literature34,35.

Calibration procedure and method to recover sample’s refractive index.  The plasmonic angles 
recovered for the air case from each method were calibrated to the same initial value of sinθsp of 0.6783, cor-
responding to the air refractive index of 1.00027636. The sinθsp of 0.6783 was obtained from the theoretical value 
computed using Fresnel equations and the transfer matrix approach for the 45 nm gold and the 2 nm chromium 
layer on a BK7 glass substrate and the incident wavelength of 650 nm computed using the chromium and gold 
refractive indices reported by Johnson and Christy37. Then the change in the plasmonic angle Δsinθsp due to the 
nitrogen pressures can be then determined based on the number of pixels that the plasmonic dip moves com-
pared to the air case.

Nitrogen gas pressures.  The gas refractive index can be related to its concentration, proportional to the 
gas pressure. The experimental setup was in a condition of a constant temperature and volume. A gas refractive 
index can be estimated as gas pressure based on the empirical equation and Boyle’s relationship. For nitrogen and 
air compound in a constant volume chamber, the gas pressure and its corresponding gas refractive index were 
extracted from the experimental results reported in Wong et al.38 and fitted using a linear function as expressed 
in Eq. (1). Note that the coefficient of determination R2 of 0.9999 and the root mean square error (RMSE) of 
1.0087 × 10−6 RIU.

where, ns is the gas refractive index, and P is the tank pressure in the Pa unit.

Data analysis procedure.  The video recorded file from the experiment described in the earlier section was 
analyzed using the following three methods:

Cubic polynomial curve fitting.  Figure  2 shows the process flow to determine the plasmonic angle from a 
recorded camera frame. First, the line-scan reflectance was prepared by averaging all the rows in the camera 
frame and applying a cubic polynomial curve fitting39 through the minimum reflectance for the averaged SPR 
dip. It will be shown later in the “Results” section that the accuracy of the curve fitting method depends on the 
number of data points included in the polynomial curve fitting.

Horner’s curve fitting method.  Horner’s curve fitting method is a well-known algorithm for 2-dimensional 
polynomial surface fitting. This method was employed to calculate a fitting surface of plasmonic dip image data, 
as depicted in Fig. 3 and expressed in Eq. (2). First, a line-scan reflectance was evaluated from the curve fitting 
contour by considering all the rows. Then, the 2D function with polynomial coefficients allowed us to accurately 
obtain the sinθsp for each row using function differentiation; these sinθsp values were averaged to determine the 
sinθsp for a camera frame.

It is crucial to point out that the plasmonic dips are usually asymmetrical because of the loss and coupling 
mechanism40. Several asymmetrical SPR dip curve fitting techniques claim the performance enhancement, such 

(1)ns = 1.892395105× 10
−5P + 1.000277923
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as the sigmoid-asymmetric fitting algorithm18 and poles-zeros-based fitting function41. Horner’s curve fitting 
nature allows the cross-polynomial terms between x and y to form an asymmetric fitting, as depicted in Fig. 3. 
As a result, the method should provide better data usage of the asymmetrical fitting and noise averaging than 
the symmetrical one-dimensional curve fitting explained earlier.

where, pn are the polynomial coefficients. n is the number of orders of x, which is the sinθ0. m is the number 
of orders of y, which is the row number of the camera frame, and in this study, m is 1. In other words, linear 
response along the camera rows.

CNN based method.  The CNN predicted the plasmonic angle position in the pixel, which later converted to 
the plasmonic angle sinθsp. Table 1 shows the proposed neural network architecture for the image regression 
problem in this study. The network consisted of an input image size of 70 pixels × 2592 pixels and four additional 
levels. Each level consisted of a 9 × 9 × 32 convolutional layer, a batch normalization layer, and a rectified linear 
unit (ReLU) layer. The last layer was a 1 × 1 fully connected layer and a mean-absolute-error regression layer to 
estimate the pixel number of the minimum reflectance with four additional decimal points, which was equiva-

(2)

f (x, y) = p1x
nym + p2x

(n−1)ym + · · · + pn+1y
m
+ · · ·
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(n−1)ym−1
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Figure 2.   Steps in the cubic polynomial curve fitting-based method for determining the minimum position of 
SPR reflectance dip.

Figure 3.   Steps in Horner’s curve fitting for SPR dip estimation.
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lent to 0.00000001 in sinθ0 unit and 4.20 × 10–8 RIU. Note that the minimum RIU corresponded to the current 
state-of-the-art RIU measurement precision of metasurfaces42,43 and phase-sensitive SPR measurement44,45.

The training options consisted of adaptive momentum estimation (Adam) optimizer46, batch size of 64 images, 
and 0.0001 initial learning rate. The CNN training was under a single graphic processor unit (GPU) NVIDIA 
TITAN RTX with 16 GB RAM. Note that the 64 images were the maximum number of images under the 16 GB 
RAM environment. The effect of the number batch size will be discussed in the “Results” section.

The network was trained with 1000 epochs to ensure that the root-mean-square validation error (RMSE) 
reached the convergence of RMSE of 10–4 pixels, which was the same level as the decimal precision.

It is essential to point out that the 70 input rows were much lower than the 1944 rows in the camera frame. 
It will be shown later that this is not due to the memory limitation in the GPU, but the higher number of rows 
can degrade the accuracy.

Training dataset preparation for CNN training.  The training dataset was simulated camera frames 
computed using the Fresnel equations and the transfer matrix method47. The simulation process is as described 
and shown in Fig. 4. Firstly, each camera frame had 70 pixels in a row and the same columns as raw data of 2592 
pixels. The control parameters for simulated reflectance consisted of a 45 nm gold thickness-based sensor with 
a 650 nm wavelength source mimicking the experimental setup. The simulation then varied the refractive index 
in the sensing region to form 64 camera frames with 8-bit precision covering the sample refractive index of 
1.00–1.05 with the RIU step size of 0.00078 RIU increment.

The shot and speckle noises were added to the simulated images to generalize and mimic the experimental 
responses; experimental data obtained in an SPR experiment is usually shot noise dominant due to low optical 
intensity at the plasmonic dip30. The shot noise was randomly added with the noise amplitude proportional 
to 

√

Rp  , where Rp is the reflectance simulated using Fresnel equations and the transfer matrix approach, as 
depicted in Fig. 5a and followed by adding a random speckle-noise pattern, as shown in Fig. 5b. The random 
speckle-noise patterns were generated using the random Gaussian process method proposed by Byun et al.48. 
The process can be summarized as (1) generating a digital randomized array of 0 and 1 for 70 pixels × 2592 pix-
els. (2) The digital randomized array was then convoluted to a Gaussian distribution function with a mean of 0 
pixels and a standard deviation of 100 pixels to generate a speckle pattern, which was (3) then normalized the 
speckle pattern to 0 to 1 range and added to the shot-noise added images. These simulated camera frames were 
then applied in the CNN training.

Testing dataset for the CNN based method.  The testing dataset was the experimental data obtained from the 
experimental procedure explained in the “Experimental procedure” section. The raw data from the camera was 
recorded in a video format that captured a range of refractive index changes from air to different nitrogen pres-
sures of 5 psi, 40 psi, 110 psi, 130 psi, and 150 psi. Each camera frame was then separated into subframes with 
an identical size of 70 pixels × 2592 pixels with no overlapping rows, as depicted in Fig. 6. Thus, there were 27 
subframes from each video frame, and the bottom 54 rows were excluded from the CNN analysis. The 27 sub-

Table 1.   The proposed convolutional neural network architecture.

Layers Activations Learnable variables Descriptions

Image input 70 × 2592 × 1 – 70 × 2592 × 1 images

Convolution Weights 9 × 9 × 1 × 32
Bias 1 × 1 × 32 1 stride, 1 padding

Batch normalization Offset 1 × 1 × 32
Scale 1 × 1 × 32 –

ReLU – –

Convolution Weights 9 × 9 × 1 × 32
Bias 1 × 1 × 32 1 stride, 1 padding

Batch normalization Offset 1 × 1 × 32
Scale 1 × 1 × 32 –

ReLU – –

Convolution 70 × 2592 × 32 Weights 9 × 9 × 1 × 32
Bias 1 × 1 × 32 1 stride, 1 padding

Batch normalization Offset 1 × 1 × 32
Scale 1 × 1 × 32 –

ReLU – –

Convolution Weights 9 × 9 × 1 × 32
Bias 1 × 1 × 32 1 stride, 1 padding

Batch normalization Offset 1 × 1 × 32
Scale 1 × 1 × 32 –

ReLU – –

Fully connected 1 × 1 × 1 Weights 1 × 5,806,080
Bias 1 × 1 1 fully connected

Regression output – – Mean absolute error
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frames were then analyzed using the trained CNN network, providing 27 regression outputs in the pixel unit 
corresponding to the minimum plasmonic reflectance captured in each subframe. The averaged pixel value of 
the 27 regression outputs was then evaluated, converted, and calibrated to sinθsp using the calibration process 
explained in the calibration section.

Quantitative parameters.  Sensitivity (S) is defined as the sensor plasmonic angular response � sinsp over 
the change in the refractive index in the sensing chamber �ns , as expressed in Eq. (3).

Figure 4.   Flowchart of a simulated dataset process.

Figure 5.   (a) 64 camera frames corresponding to different sample refractive indices with shot-noise, and (b) 
shot-noise and speckle pattern added camera frames.

Figure 6.   The DL testing process analyzing the experimental data.
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Measurement standard deviation ( σ ) represents the lowest quantity that the sensor can measure, which is of 
sinsp values recovered from 100 recovered sinsp values for each gas pressure and the three measurement methods.

Results and discussion
The experiment was calibrated at the initial air stage at 23 °C standard room temperature and pressure; Fig. 7a 
shows the corresponding SPR angular response. The N2 pressure was then increased to the five pressure levels 
of 5 psi, 40 psi, 110 psi, 130 psi, and 150 psi; the SPR angular responses for each pressure level were shown in 
Fig. 7b–f, respectively. Note that the equivalent reflectance spectra shown on the right side of Fig. 7a–f were 
simulated the Fresnel equation and the transfer matrix approach explained earlier with the sample refractive 
indices of 1.000276 for the refractive index of air31 and 1.000373 1.001035, 1.002360, 1.002738 and 1.003117 for 
the other five N2 pressure levels calculated using Eq. (1).

The first 100 frames for the air case were analyzed using the three methods working out the corresponding 
plasmonic angles from the three methods and calibrating them to the sinθsp of 0.6783 for the theoretical air 
refractive index 1.00027636.

Cubic polynomial method.  For the curve fitting method, the number of data points around the minimum 
reflectance dip plays a crucial role in the accuracy of the plasmonic dip. The number of data points included in 
the cubic polynomial fitting varied from 41 to 401 pixels to demonstrate the point. The minimum value of this 
fitted curve is an approximated SPR dip position in pixels unit.

The first camera frame of the experimental data for the air case shown in Fig. 7a was averaged to a 1D line 
scan, as shown in Fig. 8a. Then the different amount of data points around the minimum dip was included in 
cubic spline polynomial curve fitting, as shown in Fig. 8b. Next, the corresponding sinθsp for each data point 
widths were evaluated and stored. Finally, the same analysis was applied to the other 99 air case images and the 
σ of the 100 recovered sinθsp values for each data point width, as shown in Fig. 8c. For example, the number of 
data points of 153 had the lowest σ of 5.52 × 10–6 in sinθsp, corresponding to 3.16 × 10–4 degrees and 7.03 × 10–6 
RIU. The number of data points included in the curve fitting also affect the sensitivity; here, we applied the same 
data processing to the data obtained for the pressure level of 150 psi and determined the averaged sinθsp for 
the same data point widths. The Δsinθsp values between the two cases for the analyzed data points are shown in 
Fig. 8d. The higher number of data points degraded the sensitivity performance for the polynomial curve fitting 
method. The average sinθsp and σ values for all the pressure levels recovered using the polynomial curve fitting 
are summarized in Table 2 compared to the other methods.

Horner’s method.  The same experimental test dataset was analyzed using Horner’s method for surface 
fitting. First, the images were cropped to 1944 pixels × 1944 pixels, where the 648 rightmost columns were dis-
carded from the computation to center the plasmonic dip since they did not contain reflectance dip information, 

(3)S =
∂Signal

∂Measurand
=

�sinsp

�ns

Figure 7.   Experimental camera frames (left) and simulated reflectance spectra (right) showing the plasmonic 
dip positions for 6 different pressures: (a) air case, (b) 5 psi, (c) 40 psi, (d) 110 psi, (e) 130 psi, and (f) 150 psi.
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as shown in Fig. 7a. There were two polynomial degrees in Eq. (2): the parameters n for the x-axis (sinθ0) and 
m for the y-axis (camera’s row). The m parameter was fixed at 1, mimicking the consistent plasmonic dip line-
scans in all the rows. The n parameter was then varied from the 3rd to the 9th polynomial order to determine 
the effects of the polynomial on the recovered measurement values by evaluating σ for the 100 frames of the air 
case and Δsinθsp between the air, and 150 psi cases, as shown in Fig. 9a,b. The lowest σ of 4.39 × 10–6 in sinθsp, 
corresponding to 2.34 × 10–4 degrees and 5.59 × 10–6 RIU, was at the n of 6 orders, which was lower than the cubic 
polynomial fitting. Thus, Horner’s method can utilize the image data more effectively using the surface fitting, 
considering the relationship between rows and columns. Horner’s method based on sixth-order polynomial was 
then employed to analyze the other pressure levels and summarized in Table 2, comparing to the other measure-
ment methods.

CNN based method.  Multiple networks with varying input row numbers were trained for 50 rows to 100 
rows optimizing for the lowest σ value. All the networks and training functions were the same except the num-
ber of input rows. The network with 100 rows was the last configuration to be trained under the GPU before 
exceeding the GPU memory capacity. Figure 10a shows the σ values for the 100 experimental frames from the 

Figure 8.   (a) Average line-scan calculated from 1944 rows of the first frame of the air case, (b) cubic 
polynomial fitting curves for data points of 101 (solid blue curve), 201 (dashed red curve). 301 (dashed yellow 
curve). 401 (dashed purple curve), (c) σ of 100 recovered sinθsp values for each data point width, and (d) Δsinθsp 
between the air and 150 psi cases for each data point width.

Table 2.   Mean and standard deviation values of plasmonic dip from three methods in sinθ unit.

Plasmonic dip in sinθsp

Cubic polynomial Horner’s method CNN

μ σ μ σ μ σ

Air 5.52 × 10–6 4.39 × 10–6 3.32 × 10–6

N2 at 5 psi 0.67843 5.05 × 10–6 0.67842 4.70 × 10–6 0.67841 3.54 × 10–6

N2 at 40 psi 0.67881 5.93 × 10–6 0.67894 4.22 × 10–6 0.67883 3.69 × 10–6

N2 at 110 psi 0.67986 5.86 × 10–6 0.67986 4.55 × 10–6 0.67969 3.77 × 10–6

N2 at 130 psi 0.68013 5.33 × 10–6 0.68014 4.49 × 10–6 0.67996 4.06 × 10–6

N2 at 150 psi 0.68046 5.84 × 10–6 0.68047 4.74 × 10–6 0.68042 3.85 × 10–6
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air backing experiment. The network output was in pixels, later converted to sinθsp by the calibration process 
described in the “Materials and methods” section. Figure 10b shows the Δsinθsp between the air and 150 psi cases 
analyzed using the networks. The number of input rows did affect the sensitivity much when it was less than 100 
rows; moreover, the higher row numbers did not produce a higher measurement accuracy. It is possibly due to 
the relative size of noise artifacts in the experimental results. The lowest σ of 3.32 × 10–6 in sinθsp, correspond-
ing to 1.90 × 10–4 degrees and 4.23 × 10–6 RIU, was at the input row number of 70. Like the first two SPR dip 
recovery methods, all the other gas concentrations were then analyzed using the CNN-based network with 70 
pixels × 2592 pixels input image size.

The results in Fig. 10 were analyzed using the batch size of 64 images. Figure 11 shows the effect of networks 
trained using different batch sizes ranging from 20 to 64 images. The trained networks were then applied to 
analyze the 100 experimental frames for the air case to evaluate the standard deviation and the mean value. Note 
that the 64 images were the maximum limit for the computer memory consisting of 64 images of 8-bit grey-scale 
images with the size of 70 × 2592 pixels. Therefore, a larger batch size can provide higher accuracy for the same 
number of epochs of 1000. In contrast, the smaller batch size needs a higher epoch. In other words, it requires 
a longer training time to achieve the same accuracy. Therefore the batch size of 64 images was applied in the 
analysis for the following section.

Figure 9.   (a) σ of 100 recovered sinθsp values for each data point width, and (b) Δsinθsp between the air and 
150 psi cases using Horner’s curve fitting method with varying the n polynomial order from 3 to 9.

Figure 10.   (a) σ of 100 recovered sinθsp values, and (b) Δsinθsp between the air and 150 psi cases using CNN 
networks with various input rows ranging from 50 to 100 rows.
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Performance comparison of the three methods.  Table 2 summarizes the recovered mean values and 
standard derivations of all the three mentioned plasmonic angle recovery methods in sinθsp. The σ values of 
the three methods indicated that the cubic spline had the worse performance with an averaged σ of 5.59 × 10–6; 
followed by Horner’s curve fitting method with an averaged σ of 4.51 × 10–6, and the best-performed method 
was the CNN with its average σ of 3.71 × 10–6. Therefore, the CNN can improve the σ value by 66% and 32% 
compared to the cubic polynomial curve fitting and Horner’s method. The stability in the σ measurement tells us 
about the reproducibility of experiments. The three methods had a similar reproducibility performance regard-
less of the measurement methods and the gas concentrations.

Figure 12 shows the sensorgram for the air case and the 5 N2 pressures and summarized in Table 2 for 100 
frames of stabilized responses for each case. Student t tests were then applied to statistically analyze and compare 
the recovered sinθsp values for the three plasmonic angle measurement methods. For the cubic polynomial curve 
fitting and Horner’s method, the t and the p values were 0.1872 and 0.8517, respectively. The cubic polynomial 
curve fitting and the CNN method had the t value of 0.3990 and the p-value of 0.6903. In addition, Horner’s 
method and the CNN method had the t value of 0.2271 and the p-value of 0.8206. The three measurement 
methods were not significantly different, which indicated that the sinθsp values recovered from the three meth-
ods agreed with each other. The statistical analysis shows that CNN has the narrowest distribution, followed by 
Horner’s method and the cubic polynomial curve fitting.

The sinθsp in Table 2 can then be converted to the corresponding refractive index change compared to the 
theoretical values calculated from Fresnel equations and the transfer matrix approach, as reported in Table 3. For 
precision and sensitivity demanding applications, including single-molecule detection, DNA and virus detection, 
scientists and engineers would need to increase the measurement precision of their sensor as much as possible. 
In addition, it is challenging to enhance the measurement performance, especially when the system operates near 
its measurement precision limit49. Here we demonstrate one of the ways to use the measurement data and the 
artificial intelligence to learn and relate the measurement noise to cancel out the noise and improve the measure-
ment accuracy with no need for additional instrumentation and sophisticated equipment for any existing SPR 
setup. Only the software upgrade is needed, and also the software upgrade and the CNN training can be done 
as a background operating when the SPR system is in use.

Table 3 shows the recovered refractive index inside the sensing chamber, and the σ values in the RIU unit, and 
the expected refractive index calculated using the pressure reading from the second pressure gauge and Eq. (1) to 
validate the recovered refractive indices. Again, the pressure gauge reading and the SPR measurements agree well.

The current state-of-the-art measurement precision for angular scanning SPR ranges from 10–5 RIU50,51 to 
10–6 RIU52 for angular interrogation measurements. Therefore, the σ value of the CNN agrees with the reported 
measurement precision values in the literature. In addition, several optical techniques53 have been employed to 
enhance the limit involving a more demanding optical instrumentation, for example, an optical interferometer54, 
a spatial light modulator-based illumination55, metasurfaces56,57, and nanowires58.

Here, we have demonstrated that the proposed CNN method can enhance and utilize the data by finding 
the relationship between pixels to cancel the noise out. In other words, deep learning provides more efficient 
data utilization than the other two conventional methods without generating any new information. This study’s 

Figure 11.   Shows σ of 100 recovered sinθsp values for the air case analyzed using CNN networks trained with a 
varying batch size ranging from 30 to 64 images.
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three plasmonic angle measurement methods had a similar sensitivity performance of 53.75 degrees/RIU, 53.83 
degrees/RIU, and 53.96 degrees/RIU calculated using Eq. (3) for cubic polynomial method, Horner’s method, 
and CNN method, respectively. The sensitivity error was less than 0.4%. It, however, cannot reach the ultralow 
measurement precision like in the phase-sensitive techniques since the phase information was not in the experi-
mental data. Developing a phase retrieval deep learning-based for angular interrogation measurement; higher 
frequency components, such as sharper plasmonic phase transition, are artificially added to the data by deep 
learning. However, the artificially added information by deep learning is questionable.

Figure 12.   (a) Sensorgram of three methods for the five N2 pressure levels with 0.005 offset for each 
sensorgram, (b) Δsinθsp noise levels in the cubic polynomial method, (c) Δsinθsp noise levels in Horner’s 
method, and (d) Δsinθsp noise levels in the CNN method.
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Conclusion
The proposed deep learning for SPR measurement precision enhancement of surface plasmon resonance-based 
angular scanning detection has been developed. The convolutional neural network was utilized to approximate 
plasmonic angle position in pixel and later converted to corresponding plasmonic angle. The designed CNN 
network architecture was designed for this purpose. The simulated dataset was simulated reflectance spectra 
of the p-polarized incident wave at 650 nm wavelength, computed using the Fresnel equation and the transfer 
matrix for network training. The paper has also demonstrated that simulated data can be employed for deep 
learning neural network training; the trained network was later tested with experimental data. The experimental 
setup was developed, integrating an optical system and a gas flow-control system for experimental data collection 
measuring six refractive index levels controlled by gas pressure. The experimental data were analyzed using two 
conventional curve fitting methods compared to the proposed CNN network. The three measurement methods 
show similar sensitivity and reproducibility responses.

Furthermore, the refractive indices recovered using the SPR measurements agreed well with the refractive 
indices converted from recorded gas pressures. The measurement standard deviations were 4.23 × 10–6 RIU for 
the proposed CNN compared to 7.03 × 10–6 RIU for the cubic polynomial curve fitting and 5.59 × 10–6 RIU for 
Horner’s method corresponding to 66% and 32% enhancement. The CNN operates by identifying the relation-
ship between every pixel in the input frame of the CNN, leading to more efficient usage of existing data than the 
cubic polynomial curve fitting and Horner’s method without creating an artificial profile or higher frequency 
components.
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