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Animals that depend on ephemeral, patchily distributed prey often use public informa-
tion to locate resource patches. The use of public information can lead to the aggrega-
tion of foragers at prey patches, a mechanism known as local enhancement. However,
when ephemeral resources are distributed over large areas, foragers may also need to
increase search efficiency, and thus apply social strategies when sampling the landscape.
While sensory networks of visually oriented animals have already been confirmed, we
lack an understanding of how acoustic eavesdropping adds to the formation of sensory
networks. Here we radio-tracked a total of 81 aerial-hawking bats at very high spatio-
temporal resolution during five sessions over 3 y, recording up to 19 individuals simul-
taneously. Analyses of interactive flight behavior provide conclusive evidence that bats
form temporary mobile sensory networks by adjusting their movements to neighboring
conspecifics while probing the airspace for prey. Complementary agent-based simula-
tions confirmed that the observed movement patterns can lead to the formation of
mobile sensory networks, and that bats located prey faster when networking than when
relying only on local enhancement or searching solitarily. However, the benefit of net-
working diminished with decreasing group size. The combination of empirical analyses
and simulations elucidates how animal groups use acoustic information to efficiently
locate unpredictable and ephemeral food patches. Our results highlight that declining
local populations of social foragers may thus suffer from Allee effects that increase
the risk of collapses under global change scenarios, like insect decline and habitat
degradation.
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Animals can use social information inadvertently provided by con- and heterospecifics
to locate food resources (1). The use of social information, delivered via the location
and performance of other foragers, becomes particularly beneficial when the occurrence
of food varies unpredictably in space and time (2–5). The most prominent mechanism
for social information transfer among foragers is termed “local enhancement” (6): for-
aging individuals spot and approach nearby feeding con- or heterospecifics, and conse-
quently aggregate at food patches. However, local enhancement may be an insufficient
mechanism for animals that must search for food across large areas, can detect feeding
con- or heterospecifics only at relatively short distances, or feed on rapidly depleting or
spatiotemporally ephemeral resources. For predatory fish, and recently also for vultures
and insectivorous bats, it has been suggested that individuals can overcome the limita-
tions of individual prey detection by forming foraging “arrays” or “chains” (7–10). We
term these assemblages “mobile sensory networks,” based on a similar term used in
robotics and control systems (11), to emphasize the key elements of this social foraging
mechanism.
In contrast to local enhancement, members of a mobile sensory network do not only

use information from others that already found prey, but constantly exchange informa-
tion while searching for food. Food-searching individuals move while actively sensing
both their environment and the behavior of their neighbors, allowing each forager to
gather sensory information across a much larger area than it alone could scan. Mobile
sensory networks are more efficient in gathering information than groups of solitary
foragers, but require frequent coordination of movements among individuals (Fig. 1).
Cohesion of moving groups can be maintained by simple movement rules that lead to
the alignment of neighboring individuals (12). Theoretical studies have explored the
idea of mobile sensory networks maximizing the efficiency of foragers that depend on
ephemeral and patchily distributed food resources (7, 9, 13, 14). Empirical studies sug-
gest the existence of mobile sensory network formation in bats, yet this is based only
on observations that foraging individuals were attracted to the broadcast of specific
echolocation calls from successfully foraging conspecifics, so-called feeding buzzes (15),

Significance

For predators that depend on
ephemeral prey patches, like
aerial-hawking insectivores,
searching for prey is akin to
finding the proverbial needle in a
haystack. Global change and
resulting insect decline and
habitat degradation make finding
prey evenmore challenging.
Simultaneous high-throughput
radio-tracking of common noctule
bats suggests that social strategies
may be the key to mastering this
challenge. When searching for
insects, bats adjusted their
movements to their neighbors
consistent with the formation of
mobile sensory networks. A
simulation model confirmed that
the observed behavior leads to
increased search efficiency when
prey is patchily distributed.
However, the model also revealed
that mobile sensory networks
become unstable when the group
becomes too small, indicating
synergistic negative effects of local
population declines.

Author contributions: M.R., T.B., F.J., and C.C.V.
designed research; M.R., J.P., and T.B. performed
research; U.E.S., C.G., R.N., and S.T. contributed new
reagents/analytic tools; M.R., U.E.S., and C.G. analyzed
data; J.P. and F.J. conducted tracking system operation;
R.N. and S.T. provided tracking system development;
F.J. and C.C.V. provided resources; and M.R. and C.G.
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
roeleke@uni-potsdam.de.
2F.J. and C.C.V. contributed equally to this work.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2203663119/-/DCSupplemental.

Published August 8, 2022.

PNAS 2022 Vol. 119 No. 33 e2203663119 https://doi.org/10.1073/pnas.2203663119 1 of 10

RESEARCH ARTICLE | ECOLOGY

https://orcid.org/0000-0001-5298-8071
https://orcid.org/0000-0001-6640-9042
https://orcid.org/0000-0001-7094-1752
https://orcid.org/0000-0002-4004-4257
https://orcid.org/0000-0002-5733-6715
https://orcid.org/0000-0002-9524-7115
https://orcid.org/0000-0002-4670-6469
https://orcid.org/0000-0002-0706-3974
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:roeleke@uni-potsdam.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203663119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203663119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2203663119&domain=pdf&date_stamp=2022-08-03


or by the fact that foraging individuals encountered conspecifics
more often than expected (5, 8, 16). Indeed, feeding buzzes
indicate that bats are actively attacking prey, and therefore con-
vey information on prey availability that can induce local
enhancement in food searching bats (17). Yet, these previous
studies cannot explain the formation of mobile sensory net-
works as they missed the dynamic nature of the interactions
of bats during food search. Direct evidence of interactive
movement responses of free-ranging animals that lead to the
formation of mobile sensory networks during prey search is still
lacking. Observing the formation of mobile sensory networks
in natural systems requires simultaneous monitoring of many
individuals at high resolution, a feat that has been challenging
to achieve in empirical studies thus far. Recent technological
advances in tracking systems, which provide high-throughput
data collection, now make it possible to shed light on the
fine-scale patterns emerging from interactive movements in the
wild (18).
Here, we used a fully automated radio tracking system based

on trilateration (ATLAS) (19), to simultaneously record the
movements of dozens of common noctule bats (Nyctalus
noctula) at higher spatiotemporal resolutions than so far
achieved for aerial insectivores. Aerial-hawking insectivorous
bats are particularly suited for studying social aspects of forag-
ing ecology since they face the dilemma of finding ephemeral
patches of insects while being severely constrained in the dis-
tance at which they can detect prey. Distances at which echolo-
cating bats may detect large insects or insect patches are usually
below 10 to 15 m, due to the rapid attenuation of ultrasound

in air (20, 21). In contrast, the distance at which bats can
eavesdrop on echolocating conspecifics is more than 10-fold
larger, reaching up to 160 m under optimal conditions
(22–24). This notable difference between prey detection dis-
tance and conspecific detection distance may promote the evo-
lution of group-foraging strategies. For bats, group foraging
via eavesdropping on the foraging calls of hunting conspecifics
leading to local enhancement is indeed well documented
(15, 17), but the formation of mobile sensory networks during
prey search still lacks solid evidence from dynamic movement
interactions of bats (5, 8). Assuming that aerial-insectivorous
bats depending on ephemeral prey apply a mobile sensory net-
work search strategy as proposed by Egert-Berg et al. (5) and
Cvikel et al. (8), we hypothesize that food-searching common
noctule bats adjust their movements to food-searching neigh-
bors, and that such behavior will lead to the formation of
mobile sensory networks that increase the efficiency of prey
search. Specifically, we predict that bats align at the maximum
eavesdropping distance of approximately 160 m by flying in
parallel (Fig. 1), and that they decrease or increase distance to
conspecifics when farther apart from or closer to conspecifics,
respectively. We further present an agent-based simulation
model and predict that modeled bats form chains of intercon-
nected individuals. We also predict that, under realistic condi-
tions of colony size and prey distribution, bats that apply a
mobile sensory network search strategy will find food patches
faster than bats searching for food solitarily.

Here, we combined empirical tracking data and simulations
to explain the formation of mobile sensory networks in bats
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Fig. 1. Concept of a mobile sensory network, illustrated for insect-feeding bats. Three insectivorous bats align their flight paths (simplified as two-
dimensional trajectories) while flying from left to right. Bats can detect insect patches using echolocation at distances of up to 15 m, but can eavesdrop on
conspecifics as far away as 160 m. When a bat finds a food patch and starts hunting for single prey items (red bat), it uses specific hunting calls, so-called
feeding buzzes (25), which alert its direct neighbor (yellow bat) to the patch location. The yellow bat would then abruptly change its flight direction to
approach the patch, leading its other neighbor (blue bat) to reorient as well, and so on, until all bats in the network get close enough to the food patch to
eavesdrop on the feeding buzzes of conspecifics that indicate active insect pursuit and therefore the presence of food. Thus, the information can slowly
propagate across the network through changes in flight and echolocation behavior of chains of neighboring individuals. Searching for food in a network is
most effective when interindividual distance and patch diameter match, and therefore, all food patches that lie in the flight direction of the network will
be found, even though individual bats actively scan only a small portion of the total area. In this example, every additional bat may increase the zone
scanned by the network by 160 m, while only actively sampling a zone of 30 m. Thus, a mobile sensory network consisting of only six bats may create a
moving scanning zone of more than 1 km in width.

2 of 10 https://doi.org/10.1073/pnas.2203663119 pnas.org



hunting insects in open airspace and to investigate the benefits
and constraints of mobile sensory networking. We recorded the
movements of 81 common noctule bats during 359 foraging
flights at 1/8 Hz resolution in five recording sessions (three
spring sessions and two summer sessions over 3 consecutive
years) (SI Appendix, Table S1). We defined flights as move-
ments of a bat in a particular night, with data recordings for at
least 15 min and no pauses longer than 5 min between data-
points (SI Appendix, Data Filtering Protocol). We analyzed the
fine-scale movements of individuals in relation to tagged con-
specifics and identified mechanisms by which they form and
maintain mobile sensory networks. We subsequently built a
theoretical model that was based on the empirically identified
movement patterns to confirm the emergence of mobile sensory
network in bats. Using the simulation, we predicted how bene-
fits and stability of mobile sensory networks depend on group
size and prey distribution.

Results

Flight Behavior Close to Conspecifics. In each of the five record-
ing sessions, we simultaneously fitted between 14 and 19 bats
with radio-transmitters and received movement data from 9 to
15 nights. We recorded up to 15 simultaneous flights per night
(4 ± 3; median absolute deviation [MAD]), yet this number
fluctuated due to varying bat activity, and decreased toward the
end of the recording session, as animals left the tracking area or
radio-transmitters ran out of battery (SI Appendix, Table S2).
We estimate that ∼160 common noctule bats inhabited the
area [80 from the investigated colony that used a set of about
20 bat boxes located in a small forest (SI Appendix, Fig. S1),
and another 80 from smaller colonies scattered in the tracking
area]. We therefore designed our analysis to mitigate the effect
of untracked bats on our models (see Discussion and Methods
and Materials for details).
To study interactive movements, we only analyzed flights

during which the focal bat flew closer than 240 m from other
tagged conspecifics for at least 3 min of the entire flight
(235 flights or 65% of recorded flights, stemming from 76
individuals: 13 males, 63 females, 94% of all tagged individu-
als) (SI Appendix, Table S1). The distance of 240 m is 1.5 times
the maximum theoretical conspecific detection distance of
160 m for common noctule bats. This relatively short range is
due to the fast dampening of ultrasounds (geometric and atmo-
spheric attenuation), calculated for standard environmental
conditions and assuming bat calls at a frequency of 20 kHz, a
sound pressure of 120 dB at 1-m distance from the calling
bat, and a hearing threshold of the listening bat of 0 dB
(22–24, 26). During the analyzed flights, bats were near
another tagged conspecific for 30 ± 22% (median ± MAD) of
the entire flight, while individual continuous contacts had
durations of 64 ± 72 s (median ± MAD).
To test whether bats reacted to conspecifics in terms of

adjusting their distance, we applied an integrated step-selection
analysis (iSSA) (27) with 10 random steps and logistic regres-
sion modeling to individual flights. The iSSA revealed that in
97 of the 235 analyzed flights (stemming from 54 different
bats) tagged bats responded to other tagged conspecifics (iSSA
estimates significant on an α-level of 0.1, relatively high signifi-
cance threshold chosen to inform subsequent analysis on fine-
scale reactions of potentially networking bats). Most flights
with significant iSSA estimates could be grouped into two cate-
gories (Fig. 2, highlighted quadrants). First, in 53% of cases,
bats flew toward conspecifics and decreased their directional

persistence near them (Fig. 2, Lower Right quadrant), which
indicates that bats aggregated for hunting (torturous move-
ments during insect pursuit). Second, in 23% of cases, bats
flew away from conspecifics but still remained within eaves-
dropping range, and directional persistence decreased with
intraspecific distance (Fig. 2, Upper Left quadrant). Potential,
nonexclusive reasons might be that bats kept a certain mini-
mum distance to each other, either to avoid interference during
hunting, or to space out while searching, as expected in a
mobile sensory network.

Influence of Conspecifics on Fine-Scale Movements. Our iSSA
model indicated that focal bats responded to tagged conspe-
cifics in 41% of the analyzed flights. In these cases, bats spent
23 ± 17% (median ± MAD) of the time closer than 240 m
from other tagged conspecifics. However, this analysis reveals
general reactions toward conspecifics on the level of entire
flights, whereas individual bats may still show contrasting
behaviors throughout their flights. To identify conditions
under which bats adjusted their flight trajectories to those of
other tagged bats on finer temporal scale, we ran two linear
mixed models for flights with a significant iSSA selection coeffi-
cient. For that, we only used locations during which focal bats
were presumably searching for food (i.e., not actively hunting,
high directional persistence, and comparably fast speeds of
5.6 ± 2.7 m/s [median ± MAD]), as classified by a two-state
hidden Markov model. Following the previous results (Fig. 2)
and knowledge of bat foraging patterns in landscapes with
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Fig. 2. Flight behavior of bats close to conspecifics. Relative selection
strength of a focal bat (black bat) for distance to its nearest conspecific
(white bat) and distance-dependent angle persistence of complete flights,
as calculated from the iSSA. Deviation from random behavior concerning
selection for the distance to conspecifics is indicated by symbol and color.
During 53% of the flights yielding significant selection coefficients, bats flew
closer to conspecifics than expected and decreased their directional persis-
tence as they got closer (Lower Right quadrant). In an additional 23% of the
flights yielding significant selection coefficients, bats flew away from con-
specifics and decreased their directional persistence (Upper Left quadrant).
For graphical reasons, coefficients for seven flights that fell outside the
plotted range are not shown (four in Upper Left quadrant, two in Upper
Right quadrant, one in Lower Right quadrant, six of them being significant
on the 0.1 level).
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patchy food distribution (16), we defined comparably straight
and fast movements as food-searching behavior, and slow, tor-
tuous movements (so-called area-restricted search) as hunting
behavior. We compared the data from food-searching bat dyads
to a null model using pseudodyads (28). Pseudodyads consisted
of the respective focal bat and a tagged conspecific that used
the same area but on a different day of the same experimental
session. Our models for 96 flights stemming from 54 different
focal bats revealed that bats adjusted their flight vectors, and
their distance relative to conspecifics (Fig. 3), depending on the
movement behavior of and the initial distance to the nearest
conspecific (modeled as a third-order polynomial to allow for
local maxima and leveling-off effects at large distances).
We observed that food-searching bats flew away from other

searching conspecifics (diverging directions) when closer than
about 150 m to each other, but tended to fly toward (converg-
ing directions) or align with conspecifics (no difference in bear-
ing) at larger distances (Fig. 3A). When nearby conspecifics
were hunting, focal bats also flew in diverging directions. How-
ever, there was no difference to the null model at interindivid-
ual distances larger than about 120 m (Fig. 3B). We also found
that bats increased the distance to either searching or hunting
conspecifics, but much less than expected from the null model
(Fig. 3 C and D). These results further support the existence of
mobile sensory networks, as searching bats tended to adjust
flight direction according to their neighbors and to fly relatively
close to each other (compared to pseudodyads).
As expected, focal bats increased distance to searching bats at

small interindividual distances, and reduced their tendency to
move away from conspecifics as interindividual distance
increased (Fig. 3C). However, contrary to our expectations, a
slight increase in distance to searching conspecifics remained
even at comparably large interindividual distances, which were
beyond the assumed eavesdropping range. A reason for this
might be different flight speeds of bats. Nonetheless, at large
interindividual distances, bat dyads stayed closer together than

assumed from independent movements in the null model.
When conspecifics were hunting, bats exhibited only slight
increases in interindividual distance and only for bats flying
closer than 120 m from each other, while the null model pre-
dicted much stronger increases in distance across the entire
range (Fig. 3D). We assume that bats investigated potential
prey patches close to conspecifics, but maintained a minimum
distance to avoid collision and sensory interference.

Overall, these results support expectations from mobile sen-
sory networks, and suggest that simple movement metrics can
be used to describe their formation and maintenance. Specifi-
cally, our data suggest that bats aligned their movements at dis-
tances of about 120 to 180 m while sampling the landscape for
insects. The optimal distance to actively hunting bats was
120 m or more, probably to avoid collision and acoustic inter-
ference from other echolocating bats. The optimal distances
during search and hunting, however, likely also depends on the
investigated system, especially on its spatial resource distribu-
tion, the presence of competition or interference, and the
sensory modalities of species involved in the mobile sensory
network.

Simulation of Mobile Sensory Networks. We built an agent-
based simulation model to evaluate whether the empirically
demonstrated movement patterns (i.e., adjustment of flight
direction to conspecifics) leads to the formation of mobile sen-
sory networks (Fig. 4), and whether such movement behavior
impacts individual foraging efficiency (Fig. 5). We simulated
different scenarios (500 model runs each) with increasing num-
bers of bats (5, 10, 20, 40, 80, 160, whereas we deem 80 bats
to be the most realistic scenario estimated from bat colony
size), and increasing number of food patches (1, 2, 4, 8, 16,
32, 64, 128, 213, where the number of cells containing food
was estimated from empirical data and kept constant at 213).
From each model run, we randomly picked one bat and
recorded its network size for all timesteps from the model run.
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Network size was calculated as the number of interconnected
bats (including the focal individual): that is, the number of bats
linked in a chain of nearest neighbors. While bats only occa-
sionally formed networks when few conspecifics were modeled,
the number of networking bats as well as the mean network
size increased with increasing number of conspecifics in the
model (Fig. 4). For the most realistic scenario with 80 bats
and 4 food patches, the mean (over 500 model runs) of
the mean network sizes (of one focal bat per model run) was
2.9 ± 0.7 bats (mean ± SD), and the maximum network size
was 7.4 ± 1.4 bats (mean ± SD). The largest number of inter-
connected bats was 11 in the realistic model scenario.
To quantify differences in foraging efficiency between bats

using different foraging strategies we ran simulations with vary-
ing food distributions (number of food patches) and group sizes
(number of simulated bats). We used a paired design to calcu-
late the difference in time bats took to find unoccupied food
cells in the exact same landscapes when interactions with con-
specifics were enabled or disabled. Each of these paired runs
was repeated 500 times per scenario. The investigated foraging
strategies were: 1) solitary foraging (bats ignore conspecifics),
2) local enhancement (bats fly toward conspecifics that are
hunting within a range of 240 m), 3) flight alignment (bats
align with conspecifics that are searching for food but do not
use local enhancement), and 4) mobile sensory networking
(bats use both flight alignment and local enhancement).
The mean distance of a randomly chosen bat to its nearest

neighbor decreased with increasing numbers of simulated bats,
but the foraging strategy influenced the distance between bats

irrespective of the modeled scenario. Specifically, the distance
was largest when bats ignored conspecifics, decreased when
local enhancement or flight alignment were enabled, and was
lowest when empirical found movement interactions (i.e.,
mobile sensory networking) were enabled (SI Appendix, Fig.
S2A). Under a realistic scenario with 4 food patches and 80
bats, neighboring bats were most often close to each other
when mobile sensory networking was enabled (72% of the time
within 240-m distance), and least often when bats were forag-
ing solitarily (54% of the time within 240-m distance) (SI
Appendix, Fig. S2B).

The simulations further revealed a benefit of mobile sensory
networking under certain prey distributions and network config-
urations (Fig. 5). Bats were most efficient in finding food as a
mobile sensory network when food was spatially aggregated
(landscape with few patches), and hence difficult to find without
prior information. This matches with suggestions from theoreti-
cal and empirical studies (2–5, 16). Under such scenarios, bats
also profited from local enhancement only, and even more when
they aligned their flights, probably because the latter leads to a
more systematic search of the area. However, the simulations
clearly show that mobile sensory networks (i.e., coordinated
search plus local enhancement) increase hunting efficiency fur-
ther than only local enhancement as previously known from
studying eavesdropping behavior of bats (e.g., ref. 15). Under
conditions typical for our study system (i.e., four food patches in
an area of ∼22 km2 and 80 bats), networking bats located food
within 9 ± 4 min (median ± MAD). This represented 60% of
the time required by solitarily foraging bats, and 74% of the
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time required by bats either aligning during search or using local
enhancement. However, foraging in a mobile sensory network
became disadvantageous for large groups when food was homo-
genously distributed (many small patches), likely because bats
aggregated at small food patches that did not contain enough
food cells to support all bats in the network. The benefit of
mobile sensory networking in aggregated landscapes grew with
increasing number of bats, signifying that the advantages of
social foraging can outweigh the disadvantages of intraspecific
competition (Fig. 5). Moreover, this result indicates that there
might be a critical minimum local population density of social
foragers required to maintain foraging benefits when food is
patchily distributed and ephemeral.

Discussion

High-resolution simultaneous tracking of common noctule bats
revealed that nearby conspecifics coordinated their movements
such that flight paths of neighboring individuals were separated
but aligned (SI Appendix, Fig. S1), which is consistent with the
formation of mobile sensory networks. Specifically, food-
searching individuals aligned their movements at distances of
about 120 to 180 m, matching an independent estimate of
160 m as maximum distance at which common noctule bats
can eavesdrop on each other to detect searching or hunting
activity through search calls or feeding buzzes. The alignment
of individuals within eavesdropping distance during prey search
supports the formation of mobile sensory networks. Searching
for prey as part of a mobile sensory network can increase the

fitness of individual bats by improving the rate at which prey is
found and captured, as well as the reliability of finding prey on
a given day (29, 30).

Our simulation, developed using empirically identified
movement behavior, showed that simple rules like distance-
dependent attraction, alignment, and avoidance were sufficient
to form and maintain mobile sensory networks (31) that out-
performed solitary foragers when resources were patchily dis-
tributed. While there is extensive research on coordinated
movements of flocking or schooling visual-oriented animals
(32), our study is one of the few examples to evaluate the bene-
fit of coordinated foraging behavior and investigate potential
Allee effects (33, 34). Based on a realistic landscape scenario
with about five different prey patches within a potential forag-
ing area of ∼36 km2, groups of 40 or more bats outperformed
smaller groups during prey search, indicating that the advantage
of searching as a mobile sensory network outweighs competi-
tion effects. Our simulations also showed that foraging in a
mobile sensory network is more efficient than relying on local
enhancement to find food patches. This is due to the fact that
while local enhancement allows animals to home in on nearby
food that has already been located by conspecifics, flight align-
ment helps animals to indirectly widen their scanning area
during food search, increasing their chance of encountering
hunting conspecifics or finding prey that has not yet been
located. Furthermore, the variation in time until food was
found was shorter in sensory network scenarios than in corre-
sponding solitary foraging scenarios, which signifies that indi-
viduals find food patches more consistently and reduce their
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Fig. 5. Time until simulated bats found unoccupied food cells (median per model run), depending on whether bats used empirically derived movement
strategies: that is, mobile sensory networking behavior, aligned their flights during prey search, used local enhancement or foraged solitarily. The modeled
scenarios included different numbers of bats (whereas a number of 80 bats is the estimated colony size from the empirical study) and levels of spatial
resource aggregation, as reflected by the number of food patches. The number of food cells in the model was fixed at 213 cells measuring 75 × 75 m, which
represented the median area used for hunting per night by tracked bats in our study (based on kernel density estimates from localizations recorded during
hunting). Tracked bats used ∼5 ± 3 (mean ± SD) distinct patches for hunting per day, for which all scenarios showed an advantage of the mobile sensory
network strategy over the other foraging strategies.
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risk of starvation when participating in group foraging (35).
On the other hand, these findings suggest that a minimum
group size is required for successful foraging in mobile sensory
networks. Allee effects may lead to collapses of groups when
population and resource densities decrease (36).
We further observed that foraging in a mobile sensory net-

work did not offer advantages over solitary foraging when
resources were homogeneously distributed in many small
patches. Indeed, mobile sensory networks might become disad-
vantageous at high bat densities under this scenario, likely due
to competition arising from single patches being too small to
support several members of the mobile sensory network. Since
prey capture rate of bats is most likely limited by time to cap-
ture and handle prey (maximum of two insect catching
attempts per second) when bats hunt for swarming insects, it is
unlikely that bats compete for single prey items (37). However,
the production of echolocation calls from several individuals
can lead to sensory interference when bats are too close to each
other, and bats may need to pay attention to conspecifics to
avoid collisions when densities are high (38, 39). We therefore
expect the existence of an optimal density of hunting bats.
From the empirical data, we infer that bats kept a distance of at
least 120 m to hunting conspecifics, which might set the limit
for the spatial scale of sensory interference (8, 38, 40). Yet, the
increase of distance to hunting conspecifics was comparably
small, which suggests that bats aggregated at prey patches suffi-
ciently large to support several individuals. In contrast, during
search for prey, networking bats spaced out as far as eavesdrop-
ping range allowed, which optimizes search efficiency through
maximizing the detection zone of the mobile sensory network.
As we tracked only a subset of all bats that were active in the

study area, we were unable to observe interactions occurring
with bats that were not tagged. We therefore designed our anal-
ysis to minimize sensitivity to untagged bats. To mitigate the
unknown effect of untagged individuals in our empirical mod-
els, we weighed the observations at commonly used areas lower
than observations at lesser used areas (SI Appendix, Fig. S1),
since tracked bats in these areas were more likely to encounter
untagged conspecifics. However, we expect that we would find
even stronger intraspecific interactions if all bats in the area
were tagged. Additionally, our movement data allow no direct
inference on the searching or hunting behavior of the tagged
bats, but only indirect inference via their movement behavior.
However, tracking studies including acoustic records of insectiv-
orous bats have shown that hunting behavior can be inferred
from area-restricted movement behavior of species like the com-
mon noctule bat (i.e., bats hunting for ephemeral prey in open
landscapes) (5, 16). Furthermore, observations were recorded as
two-dimensional locations. Since neighboring bats can surely
use different altitudes, distances between bats were likely under-
estimated. However, our assumption that bats which were close
to each other in two-dimensional space generally used similar
flight altitudes is supported by three-dimensional GPS data of
simultaneously tracked bats from previous studies (16, 41).
Indeed, our model results remained robust when simulating
three-dimensional localizations (SI Appendix, Fig. S4).
In addition, we acknowledge that our study is based on a sin-

gle species, and we do not expect that all insectivorous bat spe-
cies form mobile sensory networks. As the results of our model
scenarios indicate, mobile sensory networks are probably only
beneficial when resources are aggregated in ephemeral and
unpredictable patches (5). We believe that the common noctule
bat investigated here serves as a model for several bat species
that depend on ephemeral and unpredictable prey. We suppose

that bat species that forage in unstructured habitat, like insec-
tivorous bats hunting in the open airspace (e.g., many Molos-
sids, Taphozous, Rhinopoma, and some Vespertilionidae with
slender wings) or piscivorous bats that need to locate ephemeral
fish swarms (5, 42, 43) may also form mobile sensory networks
to optimize prey localization. The properties of the resulting
mobile sensory networks (such as intraspecific distance and
overall size of networks) will, however, depend on intraspecific
communication distance, the size of the local population, and
the size, yield, and density of resource patches. In contrast to
species depending on ephemeral and unpredictable prey, we
assume that bats which feed on predictably occurring resources
(e.g., insects occurring in or close to vegetation or temporarily
stable resources such as fruits or nectar) do not form mobile
sensory networks.

Here we presented movement data of several simultaneously
tracked insectivorous bats at high spatial and temporal resolu-
tion. While social hunting strategies have been described for
many taxa that hunt for ephemeral and patchily distributed
prey (2), this study provides strong evidence that some verte-
brates may sample the landscape for food together by forming a
mobile sensory network. We assume that individual bats delib-
erately aligned their flight paths with neighboring bats to indi-
rectly increase their own detection range, and that this behavior
led to the formation of a mobile sensory network that increases
the fitness of the local population. Our simulation substanti-
ated that the observed movement mechanisms can lead to the
formation of mobile sensory networks, and identified under
which circumstances networking is beneficial. Combining the
analysis of fine-scale individual interactions based on high-
throughput movement data with an agent-based theoretical
model revealed that the formation of mobile sensory networks
may influence individual fitness and enable species to efficiently
exploit environments with varying resource distributions.

Methods and Materials

Study Area. The study took place in the Uckermark region (N 53.373945°, E
13.771231°), near the city of Prenzlau, northeastern Germany. The land is mainly
used for agriculture (about 68% of land area), with wheat and corn being the
main crops. Natural structures like forests or waterbodies are rare, making up
about 5% and 6% of the landscape, respectively (44).

Bat Tracking. Over 3 consecutive years, we equipped a total of 81 (13 males
and 68 females) common noctule bats (N. noctula) with radio transmitters to
obtain their spatial positions during foraging flights. Experiments were con-
ducted under the permits of the corresponding animal care and welfare commit-
tee (LAGV 2347-34-2017, 2347-23-19, 2347-6-2020) and the local conservation
agency (LfU_N1-4743/128+ 7#56800/2018, LfU_N1-4743/130+ 1#19596/
2019) and followed all national and institutional guidelines. Animals were
tagged during five sessions: three sessions in spring (May 2018, May 2019, and
May 2020), and two sessions in midsummer (August 2019 and July 2020). Dur-
ing each session, we tagged between 14 and 20 individual bats simultaneously
(SI Appendix, Tables S1 and S2). All studied bats came from the same colony
roosting in a set of about 20 artificial bat boxes within a small isolated forest
patch. The colony consisted roughly of 80 bats distributed over a few of the avail-
able bat boxes (i.e., we tracked about 20% of the individuals in the colony in
each session). However, it is likely that about the same number of conspecifics
from other comparably small colonies were active in the same area. Models
developed from the tracking data were therefore designed to be less sensitive to
untagged bats (see below).

Bats were retrieved from a bat box during morning hours for tagging. We
used surgical skin glue (Sauer Hautkleber, Manfred Sauer) to temporarily attach
custom-made radio transmitters (type ATLAS, mass 0.9 to 1.35 g, which trans-
lates to 2.7 to 5.1%, median 4.4 ± 0.4% of individual bat body masses) (SI
Appendix, Table S1) onto the dorsal fur of the bats. For each individual, the
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tagging procedure took ∼15 min, after which the bat was placed back into its
roosting box. The radio transmitters had a ping rate of 0.125 Hz and a runtime
of about 10 d. The automated radio telemetry system ATLAS was based on sta-
tionary radio antennas on 15-m poles that received the transmitter signals and
synchronized computers to calculate the radio tags’ positions using the time dif-
ference of signal arrival at the known antenna positions (so-called reverse GPS
technology using trilateration; for more details on the ATLAS tracking system,
see refs. 19 and 45). Based on prior knowledge of the bat colony’s space use
(16), we set up eight to nine antennas around the roosting forest and expected
hunting grounds, resulting in a total trackable area of ∼80 km2, which bats left
only occasionally.

Data Processing and Statistics.
Data filtering. Our system recorded ∼3 million two-dimensional spatial posi-
tions of bats that had to be cleaned and filtered to obtain flight paths. During
the cleaning procedure, we deleted spatial positions with low accuracy estimates.
Additionally, we deleted localizations where bats were inactive in their roosts.
We further deleted positions that suggested unlikely travel speeds between
two positions, and then used a Kalman filter for data smoothing (details in SI
Appendix, Data Filtering Protocol). To ensure that we only analyzed flights with
foraging being the main motivation of animals, we only considered flights
recorded during the first half of the night (i.e., we did not use occasionally
recorded short drinking flights during the morning). Since we were interested in
bat interactions, for subsequent analyses we used only flights during which at
least two tagged bats were recorded closer than 240-m apart from each other for
at least 3 min. Data filtering resulted in ∼120,000 spatial positions in 186
flights from 66 individual bats for use in subsequent analyses. The threshold of
240-m distance from conspecifics was chosen as this is ∼1.5 times the distance
over which common noctule bats are able to hear echolocation calls of conspe-
cifics under local ambient conditions, considering atmospheric and geometric
attenuation (23, 24) and assuming a hearing threshold of 0 dB, a sound pres-
sure level of 120 dB at 1-m distance (26), and a call frequency of 20 kHz, which
is the typical frequency used by common noctule bats for insect search and
orientation (46).
Movement classification. We classified bouts of area-restricted movements as
foraging behavior following a two-step procedure. First, we built a two-state
hidden Markov model [R package moveHMM (47)] with nearby conspecific
presence (distance ≤ 240 m) as covariate. Whenever 75% of spatial positions
within a 3-min sequence were classified with >80% likelihood as area-
restricted movement (small step lengths and low concentration of turning
angles) (SI Appendix, Fig. S3), this sequence qualified for the following step.
Second, when the first criterion was met and the median first passage time of
these localizations on a 200-m radius was larger than 200 s (i.e., clustered spa-
tial positions), we classified these sequences as hunting behavior.
Selection for conspecific distance. To assess whether or not tagged bats were
generally attracted to or repelled by tagged conspecifics, we used an iSSA (27)
with 10 random steps per recorded step and the interaction between the dynam-
ically calculated distance to conspecifics and the turning angle as an explanatory
variable (48, 49). Significant deviation from indifferent behavior was estimate by
a logistic regression model, with random or real step being the response, and
the interaction between the dynamically calculated distance to conspecifics and
the turning angle as explanatory variable (48, 49). The analysis was applied to
entire flights of single bats during a given night.
Statistical models on flight behavior depending on conspecifics. For the
insect search-flight sequences (i.e., no area-restricted movement behavior; see
Movement classification, above) where we found coefficients from the iSSA to be
significant on the 0.1 level, we performed two linear mixed models [R package
lme4 (50)] to evaluate how bats changed their flight behavior (i.e., relative head-
ing) and intraspecific distance in response to conspecifics that were within a
maximum distance of 240 m. We chose the relatively moderate significance
threshold of 0.1 since the iSSA was applied to entire flights and we did not want
to be too restrictive for the subsequent fine-scale analysis.

For the first model, we used the difference of the flight vectors of the focal
bat and its closest tagged conspecific on a 32-s interval as the response, and the
interaction of prior distance between the two bats (modeled as third order poly-
nomials) and the movement behavior of the conspecific (hunting or searching)
as explanatory variables.

For the second model, we used the change of distance between the focal bat
and its closest tagged conspecific within 32 s as response, and the interaction of
prior distance between the two bats (modeled as third-order polynomials) and
the movement behavior of the conspecific as explanatory variables.

We used individual bat identifiers nested within the recording session as ran-
dom factors in both models. To account for potentially present untagged conspe-
cifics and commonly known hunting grounds, which might have influenced
movement decisions, we weighed model observations by the negative scaled
density of hunting bats within a certain tracking session, calculated as kernel
density estimates of the hunting points of all bats within one session (SI
Appendix, Fig. S1). Thus, reactions of the focal bats near heavily frequented and
thus potentially commonly used hunting spots were weighed less in the models,
which should reduce the effects of untagged conspecifics and a priori knowledge
of common hunting grounds in the models.

To account for the effect of flight behavior independent from conspecifics,
we compared both models to null models. These null models were based on
distance and relative bearings of pseudodyads of bats (28), where dyads were
built using the actual modeled flights and the flight of another bat that came
closest but was recorded during another day of the same recording session.

To account for potential errors due to inaccuracy of the distances between
tagged bats stemming from unknown altitudes in our two-dimensional data, we
reran the two models 1,000 times with randomly assigned altitudes sampled
from GPS data collected in previous studies on N. noctula (16, 41) in the same
study area. Estimates and goodness of fit between the used two-dimensional
models and the three-dimensional models with randomly assigned altitudes dif-
fered only marginally (SI Appendix, Fig. S3). All analytic steps were performed
with the software R v4.0.2 (51).

Agent-Based Model Description. As a test of the potential benefits of sensory
network foraging in insectivorous bats on the group-level, we developed an
agent-based theoretical model in Netlogo (v6.2.0) using interaction-based move-
ments. The model was parameterized using the tracking data findings. We used
the model to assess if and under which conditions sensory networking can lead
to observed differences in foraging efficiency, measured as the amount of time
it took bats to locate food in varying environments. In the following we present
a summary description of the model. A complete, detailed model description,
following the ODD (Overview, Design concepts, Details) protocol (52, 53) can be
found in SI Appendix, ODD Protocol for a Bat Sensory Network Model.

We simulated a colony of bats foraging in a landscape containing food
resources over a period of approximately several minutes to a few hours
(depending on simulation specifications). The model landscape is based on a
simplified version of the empirical study site and covers an area of 6 × 6 km.
A total of 213 food cells of 75 × 75 m are randomly distributed in the landscape
in aggregations consistent with the specified number of food cell aggregations,
called patches. Each food cell represents the necessary amount of food for a sin-
gle bat agent, and can only be occupied by a maximum of one bat. Bats are
characterized by their movement behavior, interactions with other bats, and
whether they have located a food cell. Mobile sensory networks emerge from
interacting movements inspired by vector-based Boids movement dynamics
(54), where bats keep track of their nearest neighbor (hereafter “conspecific”)
and determine their movement direction using three distance-dependent vec-
tors: attraction (bats turn toward conspecifics), alignment (bats maintain distance
from conspecifics), and avoidance (bats turn away from conspecifics). Addition-
ally, a random walk vector is executed, which entirely drives the movement
direction of bats that have no conspecific or of all bats when the null model is
run. The direction and strength of each of the four vectors are taken together to
determine the final heading of the bat in each time step. The time it takes indi-
vidual bats to locate a food cell then emerges from the movement behavior of
and interactions between bats and the landscape configuration.

The model proceeds in 8-s time steps (sampling interval of empirical data)
and continues until all bats have located an unoccupied food cell. Bats begin the
simulation at a central roost and then leave to sample the landscape for food. In
each time step, bats that have not located food check for neighboring bats. They
then calculate their step length (i.e., flying speed) using values from the tracking
data for food-searching bats. All bats that have a conspecific determine their
attraction, alignment, and avoidance vectors, then all bats calculate their random
walk behavior. Bats determine their resulting direction using the vector
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directions and strengths and move. When moving, bats sample the cells within
15 m to check for food. Once food has been located by a bat, it continues to fly
in the food cell area until the simulation run is complete.

While model processes are highly general and could be applied to many sys-
tems, we parameterized and evaluated the model using pattern-oriented model-
ing (55) to ensure that simulated bat movement behavior and interactions
reflected the movement patterns revealed in the empirical portion of the study.
The movement vector strengths were calibrated using two patterns: 1) the rela-
tionship between initial distance and changes in distance between focal bats
and their nearest conspecific (Fig. 3 C and D), and 2) the overall shape of the
density curve fit to distance changes. After calibration, the model was evaluated
against three independent movement patterns: 1) Euclidean distance between
the bat starting point and its final point at a food cell (beeline), 2) beeline
divided by the sum of Euclidean distances between each 8-s time step (straight-
ness index), and 3) time difference between the bat leaving the roost and find-
ing a food cell.

To examine whether empirically informed movement patterns resulted in
the formation of mobile sensory networks, for one focal bat per model run we
calculated the distance to its nearest neighbor and the number of directly and
indirectly connected neighbors (network size). To assess whether movements
consistent with mobile sensory networking resulted in detectable differences in
the time it took bats to locate prey resources, we ran simulations using the
parameterized and evaluated model. We simulated landscapes with differing
numbers of bats (5, 10, 20, 40, 80, 160 bats) and spatial food aggregation lev-
els (1, 2, 4, 8, 16, 32, 64, 128, 213 patches). For each combination of these con-
ditions, the median time it took the bats of each model run to locate food was
collected and outputs were compared based on four different foraging models:
1) solitary foraging (bats ignore conspecifics), 2) local enhancement (bats fly
toward conspecifics that are hunting within a range of 240 m), 3) flight align-
ment (bats align with conspecifics that are searching for food but do not use
local enhancement), and 4) mobile sensory networking (bats use both flight

alignment and local enhancement). Pairs of runs were simulated where the exact
same randomly generated landscape was run using the four different foraging
models. Each of these paired runs was repeated 500 times per tested number of
bats and spatial food aggregation level.

Data Availability. The spatial positions from radiotracking data have been
deposited in Movebank, https://www.movebank.org, Study ID: 1285310497
(56). The code simulation model has been deposited in GitHub, https://github.
com/CaraAGallagher/RoelekeEtAl (57).
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