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Whole-Genome Sequence of the Cheese
Isolate Lactobacillus rennini ACA-DC 565
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ABSTRACT In this study, we present the first complete genome sequence of Lac-
tobacillus rennini ACA-DC 565, a strain isolated from a traditional Greek overripened
Kopanisti cheese called Mana. Although the species has been associated with cheese
spoilage, the strain ACA-DC 565 may contribute to the intense organoleptic charac-
teristics of Mana cheese.

actobacillus rennini is a Gram-positive homofermentative lactic acid bacterium

belonging to the Lactobacillus coryniformis clade (1). L. rennini was originally found
in spoiled rennet that, when used, produced a cheese with defects (2, 3). Strain ACA-DC
565 was isolated from a 2-year-old traditional Greek Kopanisti cheese (4). This overma-
ture type of Kopanisti cheese, referred to as Mana, is used as an inoculum for the
back-slopping production of Kopanisti cheese (5). L. rennini was the sole isolated
microbial species in Mana producing alcohols and carbonyl compounds as major
volatile compounds, most probably via the secondary catabolism of amino acids (4, 6).
Mana cheese has an intense salty and a distinct piquant flavor (5), and strain ACA-DC
565 may contribute to the strong organoleptic characteristics of this cheese.

The ACA-DC 565 genome was sequenced on the lllumina HiSeq 2000 platform at the
Beijing Genomics Institute (BGI Co. Ltd., Hong Kong) using three paired-end libraries
with insert sizes of 500 bp, 2,000 bp, and 6,000 bp. Genome size was estimated by
k-mer analysis. SOAPdenovo version 2.04 was employed to assemble the reads after
filtering, and the resulting contigs were placed into superscaffolds (7, 8). The reads
located in gaps were closed using local assembly and PCR gap closure. The final step
of error correction was performed with the SOAPaligner/soap2 software. The assembly
resulted in one circular chromosome of 2,350,601 bp, with a G+C content of 40.7% and
one incomplete plasmid, which is still under sequencing (data not shown). Whole-
genome optical mapping of strain ACA-DC 565 was used to validate the hybrid
assembly (9). The map was generated at Microbion SRL (Verona, Italy), and the
alignment between the assembled genome and an Aflll optical map was created with
the Argus Optical mapping system (OpGen Technologies, Inc.,, Madison, WI, USA).

Genome annotation was performed with RAST version 2.0 (10). Genes were pre-
dicted combining the results of Prodigal (11), MetaGeneAnnotator (12), and FGENESB
(13), while putative pseudogenes were identified with GenePRIMP (14). Finally, the
Artemis tool (15) and the BLAST suite (16) were used for the manual curation of the
genes. Concerning the functional annotation of the genome, proteins of strain ACA-DC
565 were searched against the Pfam database (17) and the Phobius Web server (18).

The ACA-DC 565 chromosome consists of 2,348 genes, including 2,166 protein-
coding genes, 106 potential pseudogenes, 15 rRNAs, and 61 tRNA genes. The existence
of potential pseudogenes may suggest genome decay to an extent, which is not
unusual for food-related lactic acid bacteria. Furthermore, the chromosome of strain
ACA-DC 565 contains 1,875 protein-coding genes with Pfam domains, 180 protein-
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coding genes with signal peptides, and 495 protein-coding genes with transmembrane

helices.

Although L. rennini has been associated with cheese spoilage (2, 3), additional

analysis of strain ACA-DC 565 may reveal technological properties that render it as a
suitable starter or adjunct in Kopanisti cheese production.

Accession number(s). The chromosomal sequence of L. rennini ACA-DC 565 is

deposited at the European Nucleotide Archive (ENA) under the accession number
LT634362.
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