
Upregulation of MiR-155 in Nasopharyngeal Carcinoma
is Partly Driven by LMP1 and LMP2A and Downregulates
a Negative Prognostic Marker JMJD1A
Zi-Ming Du1,2, Li-Fu Hu2, Hai-Yun Wang1, Li-Xu Yan1, Yi-Xin Zeng1, Jian-Yong Shao1,2*, Ingemar

Ernberg2*

1 State Key Laboratory of Oncology in South China, and Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China, 2 Department of

Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

Abstract

The role of microRNA-155 (miR-155) has been associated with oncogenesis of several human tumors. However the
expression pattern of miR-155 has not been investigated in nasopharyngeal carcinoma (NPC). The present study was to
assess miR-155 expression pattern and its possible function in NPC, to identify its targets and evaluate their clinical
applications in NPC. MiR-155 was found to be upregulated in two Epstein-Barr virus (EBV) negative NPC derived cell lines
CNE1 and TW03, as well as in NPC clinical samples by quantitative Real-time PCR and in situ hybridization detection. EBV
encoded LMP1 and LMP2A could further enhance the expression of miR-155 in NPC CNE1 and TW03 cells. JMJD1A and
BACH1 were identified as putative targets of miR-155 in a bioinformatics screen. Overexpression of miR-155 downregulated
a luciferase transcript fused to the 39UTR of JMJD1A and BACH1. MiR-155 mimic could downregulate the expression of
JMJD1A and BACH1, while miR-155 inhibitor could upregulate JMJD1A expression in NPC cell lines. Moreover,
downregulation of JMJD1A was significantly correlated with N stage in TNM classification (p = 0.023), a lower five-year
survival rate (p = 0.021), and a lower five-year disease-free survival rate (p = 0.049) of NPC patients. Taken together, up-
regulation of miR-155 in NPC is partly driven by LMP1 and LMP2A, and results in downregulation of JMJD1A, which is
associated with N stage and poor prognosis of NPC patients. The potential of miR-155 and JMJD1A as therapeutic targets in
NPC should be further investigated.
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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common

malignancies in certain areas of South-China, Southeast-Asia and

North Africa [1]. Epstein-Barr virus (EBV) infection, genetic

alterations and other environmental factors have been reported to

be associated with risk for NPC [2,3]. NPC has a dominant

clinicopathological behavior of loco-regional recurrence and

metastasis, which differs from other types of head and neck

cancers [4]. Although NPC tumors are sensitive to radiotherapy

and chemotherapy, treatment failure is high due to regional lymph

node metastasis, distant metastasis and local recurrence [5].

However, the pathogenesis of NPC is still unclear.

MicroRNAs are an abundant class of non-coding RNAs,

typically 20–23 nucleotides in length, which often are evolution-

arily conserved in metazoans and expressed in a cell and tissue

specific manner. MicroRNAs exert their gene regulatory activity

primarily by imperfect base pairing to the 39 UTR of their target

mRNAs, leading to mRNA degradation or translational inhibition.

They are involved in numerous cellular processes including

proliferation, differentiation, apoptosis and metabolism [6].

MicroRNA-155 (MiR-155) is a microRNA involved in different

biological processes including haematopoiesis, inflammation and

immunity. Deregulation of miR-155 has been found to be

associated with different kinds of cancer, cardiovascular diseases

and viral infections [7]. EBV can induce miR-155 expression in B

cells resulting in modulation of EBV-regulated gene expression,

including attenuation of NF-kappaB signaling [8,9,10].

Jumonji Domain 1A (JMJD1A), which is also known as

KDM3A (lysine (K)-specific demethylase 3A) plays a role in stem

cell differentiation and spermatogenesis and as a cofactor of the

androgen receptor and is upregulated by HIF-1 (Hypoxia-

inducible factor 1) in hypoxia [11,12,13]. BTB and CNC

homology 1 (BACH1) is a transcription factor that belongs to

the cap’n’collar type of basic region leucine zipper factor family

(CNC-bZip) [14]. BACH1 is a recognized hypoxic regulator and

functions as an inducible repressor for the HO-1 (Heme

oxygenase 1) gene in several human cell types [15]. In addition,

BACH1 has been identified as miR-155’s direct target in many

studies [8,16,17].

Due to its proposed role in cancer and its dependence on EBV,

we assessed miR-155 expression pattern in NPC, identified its
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direct targets and evaluated their clinical application in NPC.

Here we provide evidence that miR155 is upregulated in NPC,

further enhanced by EBV encoded latent membrane protein 1

(LMP1) and latent membrane protein 2A (LMP2A). This results in

downregulation of JMJD1A, which is associated with N stage and

poor prognosis of NPC patients.

Results

MiR-155 is upregulated in NPC
In situ hybridization was performed to evaluate miR-155

expression in NPC tumor cells and normal nasopharyngeal

epithelium. Strong expression of miR-155 was observed in NPC

tumor cells, while weak expression was observed in normal

adjacent nasopharyngeal epithelium (Fig. 1A). MiR-155 expres-

sion was also significantly upregulated in two EBV negative NPC-

derived cell lines CNE1 and TW03, compared to NP69 cells from

normal nasopharyngeal epithelium (Fig. 1B).

EBV LMP1 and LMP2A further enhance miR-155
expression in NPC

In order to investigate whether EBV encoded LMP1 and

LMP2A could influence miRNAs expression in NPC, miRNAs

microarray was employed to analyze the differential miRNAs

induced by LMP1 and LMP2A in NPC TW03 cells. We found

that LMP1 could induce the expression of several miRNAs such as

miR-155, miR-188, miR-181b while other cellular miRNAs such

as miR-103, miR-107 were downregulated. LMP2A also induced

the expression of a variety of cellular miRNAs such as miR-155,

miR-188, miR-181b while some other cellular miRNAs such as

miR-125b were downregulated (Table 1).

The miRNA microarray was next validated by qPCR.

According to our miRNA microarray data, we chose miR-155,

which was upregulated by LMP1 and LMP2A in TW03 cells;

miR-200c, which was downregulated by LMP1 and LMP2A in

TW03 cells, and miR-146a, which was unaffected by LMP1 and

LMP2A transfection of TW03 cells. The miRNA array data and

qPCR results correlated well (Fig S1).

Moreover, two CNE1LMP1 stable transfected clones

(CNE1LMP1-12 and CNE1LMP1-18), one TW03LMP1 stable

transfected clone (TW03LMP1), two CNE1LMP2A stable trans-

fected clones (CNE1LMP2A-14 and CNE1LMP2A-3) and one

TW03LMP2A stable transfected clone (TW03LMP2A) were used

to validate the role of LMP1 and LMP2A on miR-155 (Fig. 1C
and 1D). Compared with vector control, miR-155 expression was

increased in two CNE1LMP1 clones and in one TW03LMP1

clone (Fig. 1E). LMP2A induced miR-155 expression in two

CNE1LMP2A clones and in one TW03LMP2A clone (Fig. 1F).

The prediction of putative targets of miR-155
Four algorithms, miRanda (http://www.microrna.org// miranda.

html) [18], TargetScan (http://genes.mit.edu/targetscan) [19],

PicTar (http://pictar.bio.nyu.edu) [20] and miRBase (http://micro-

rna.sanger.ac.uk/targets/v2) [21] were used to predict putative

targets of miR-155 respectively. Forty-seven common targets which

were predicted by at least 3 algorithms were indentified (Table S1).

Of these, BACH1 (Fig. 2A) and JMJD1A (Fig. 2B), which have

several miR-155 target sites in their 39UTR region, were selected for

further validation.

JMJD1A and BACH1 are direct target genes of miR-155
To test whether JMJD1A and BACH1 responds to miR-155

through direct 39UTR interactions, we cloned the 39UTR of

JMJD1A and BACH1 into a reporter plasmid downstream of

luciferase. The luciferase reporter assays were performed by

transiently transfecting HEK 293T cells respectively, with pMIR-

report-JMJD1A 39UTR, or pMIR-report-BACH1 39UTR, or

pMIR-report-vector (control), together with miR155 mimic (Am-

bion, USA) or mimic control and pCMV-Renilla (internal control).

After 48 hr transfection, a dual-luciferase reporter assay system

(Promega, USA) was used to detect luciferase expression. We found

that upregulation of miR-155 resulted in downregulation of

luciferase fused to the JMJD1A and BACH1 39UTR in HEK

293T cells. This shows that miR-155 directly targets the JMJD1A

and BACH1 39UTR leading to decreased expression (Fig. 2C).

To determine whether miR-155 could repress endogenous

JMJD1A and BACH1, NP69 cells was transfected with miR155

mimic (100 nM) or with a negative control (100 nM) respectively

(Fig. 3A). After 48 hr transfection, cells were collected for Western

blot assay of JMJD1A and BACH1. Densitometry analysis showed

that both JMJD1A and BACH1 expression were decreased by

miR155 mimic in NP69 cells (Fig. 3B).

For further validation, CNE1 and TW03 cells were transfected

with miR155 mimic (100 nM), miR155 inhibitor (100 nM) or a

negative control (100 nM) respectively (Fig. 3C). After 48 hr

transfection, cells were collected for Western blot assay of

JMJD1A. Densitometry analysis showed that JMJD1A expression

was decreased by miR155 overexpression in CNE1 and TW03

cells, while JMJD1A expression was increased by inhibition of

miR155 (Fig. 3D).

JMJD1A and BACH1 are downregulated in NPC
To check the expression level of JMJD1A and BACH1 in NPC,

qPCR was carried out to detect the expression of JMJD1A and

BACH1 mRNA in CNE1, TW03 and NP69 cells. Compared with

NP69 cells, the mRNA level of JMJD1A and BACH1 in CNE1,

TW03 was significantly lower (Fig. 4A). Western blot showed that

the protein level of JMJD1A and BACH1 in CNE1, TW03 was

also significantly lower, compared to NP69 cells (Fig. 4B).

Immunostaining was performed to evaluate the expression of

JMJD1A and BACH1 in NPC tumor cells and adjacent normal

nasopharyngeal epithelium. Weak expression of JMJD1A and

BACH1 were observed in nuclear of NPC tumor cells, while

strong expression of JMJD1A and BACH1 were observed in

normal adjacent nasopharyngeal epithelium (Fig. 4C and 4D).

Downregulation of JMJD1A predicts poor survival in NPC
The expression of JMJD1A and BACH1 was detected by

immunostaining in 185 NPC cases. Low expression of JMJD1A

was observed in 113 (61.08%), and was associated significantly

with N-stage (p = 0.023). No significant association was seen

between JMJD1A expression and age, gender, T stage, TNM

stage, recurrence or metastasis. In addition, no significant

association was seen between BACH1 expression and age, gender,

T stage, N stage, TNM stage, recurrence or metastasis (Table 2).

Overall survival analysis and disease-free survival analysis was

then performed (Fig. 5A and 5D). The five-year overall survival

rate was 61.3% for patients with low JMJD1A expression (n = 113),

and 77.2% for patients with high JMJD1A expression (n = 72),

which was a significant difference (p = 0.021, Fig. 5B). The five-year

overall survival rate was 66.8% for patients with low BACH1

expression (n = 94), and 68.2% for patients with high BACH1

expression (n = 91), which was no significant difference (p = 0.759,

Fig. 5C). Furthermore, the five-year disease-free survival rate was

57.0% for NPC patients with low levels of JMJD1A expression

(n = 113), and 68.7% for those with high levels of JMJD1A

expression (n = 72), and this difference in the disease-free survival

rate was significant (p = 0.049, Fig. 5E). No significant difference

MiR-155 Downregulated JMJD1A and BACH1 in NPC
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was seen in the disease-free survival rate of NPC patients, with or

without BACH1 overexpression (p = 0.895, Fig. 5F).

Discussion

MiR-155 is upregulated in several human tumors, such as

chronic lymphocytic leukemia [22], melanoma [23], head and

neck squamous cell carcinoma [24], clear-cell kidney cancer [25],

hepatocellular carcinoma [26], lymphoma [27,28,29,30,31],

thyroid carcinoma [32], breast cancer [33,34,35,36], colon cancer

[33], cervical cancer [37], pancreatic cancer [38,39,40], and lung

cancer [41,42]. Furthermore, elevated expression of miR-155 was

associated with poor prognosis of pancreatic cancer [38] and lung

cancer [41,42]. Recently, Chen et al used a stem-loop real-time-

Figure 1. miR-155 was upregulated in NPC and further enhanced by LMP1 and LMP2A. (A) Upregulation of miR-155 in NPC tumor cells,
compared with the adjacent epithelial cells. (B) miR-155 was overexpressed in two EBV negative NPC derived cell lines CNE1 (298.5670.8-fold) and
TW03 (222.3680.6-fold), compared with NP69 cells. (C). The expression level of LMP1 checked by PCR and Western Blot Assay in LMP1 stable
transfected CNE1 and TW03 cells respectively. (D). The expression level of LMP2A checked by PCR and Western Blot Assay in LMP2A stable transfected
CNE1 and TW03 cells respectively. Then qPCR was performed to detect miR-155 expression. Overexpression of miR-155 was found in LMP1 (E) and
LMP2A (F) stable transfected CNE1 and TW03 cells respectively.
doi:10.1371/journal.pone.0019137.g001

MiR-155 Downregulated JMJD1A and BACH1 in NPC
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PCR method to quantify the expression levels of 270 human

miRNAs in 13 NPC samples and 9 adjacent normal tissues. They

identified 35 miRNAs whose expression levels were significantly

altered in NPC samples, including upregulation of miR-155 [43].

In the present study, we report that miR-155 is overexpressed in

NPC. Hence, our results were consistent with previous studies of

miR-155 often being upregulated in other malignancies.

Several studies have demonstrated that EBV could induce miR-

155 expression in B cells and cell lines which in turn modulates

EBV-regulated pathways [8,9,10]. LMP1 [8,9,44,45] and EBNA2

[9] were responsible for the upregulation of miR-155 after EBV

infection of B-lymphocytes, while LMP2A did not influence miR-

155 expression [8,45]. Furthermore LMP1 was demonstrated to

trans-activate miR-155 transcription through the NF-kappaB and

AP1 pathways [8,45]. In contrast, EBV did not induce the

expression of miR155 in HEK 293 and Hela cells [9]. We found

that both LMP1 and LMP2A could induce the miR-155

expression in NPC CNE1 and TW03 cells. To our knowledge,

this is the first report that LMP2A could induce miR-155

expression in NPC. Guasparri et al reported that EBV LMP2A

protein could affect LMP1-mediated NF-kB signaling and survival

of lymphoma cells [46], hence LMP2A might increase miR-155

expression through the NF- kappaB pathway.

In addition, LMP1 was reported to induce the expression of

miR-146a in B-lymphocytes [44]. However, in our study, we

found that neither LMP1 nor LMP2A could induce the miR-146a

expression in NPC cells (Fig S1). These differences might be due

to different tumor types.

Table 1. The differential miRNAs induced by LMP1 and
LMP2A in NPC TW03 cells with miRNAs microarray screening.

TWO3-LMP1 vs TW03 TWO3-LMP2A vs TW03

Gene Name F.C. Score Reg. Gene Name F.C. Score Reg.

hsa-miR-155 8.36 15.61 Up hsa-miR-155 5.02 10.47 Up

hsa-miR-188 10.28 7.79 Up hsa-miR-188 7.25 6.40 Up

hsa-miR-181b 4.88 10.04 Up hsa-miR-181b 3.66 4.74 Up

hsa-miR-361 3.08 7.99 Up hsa-miR-361 2.34 5.10 Up

hsa-miR-134 100.98 9.66 Up hsa-miR-93 2.41 7.50 Up

hsa-miR-516-3p 22.80 12.34 Up hsa-miR-18a 2.10 4.78 Up

hsa-miR-520b 29.77 6.13 Up hsa-miR-200c 0.47 26.30 Down

hsa-miR-520e 42.07 14.35 Up hsa-miR-125b 0.23 25.23 Down

hsa-miR-202 6.36 11.81 Up

hsa-miR-365 3.83 12.99 Up

hsa-miR-28 2.03 7.82 Up

hsa-miR-200a 0.40 25.37 Down

hsa-miR-107 0.27 212.20 Down

hsa-miR-103 0.18 211.21 Down

hsa-miR-15b 0.35 211.30 Down

SAM was used for data analysis. F.C.: Fold Change; Reg.: Regulation.
doi:10.1371/journal.pone.0019137.t001

Figure 2. Both JMJD1A and BACH1 were the direct targets of miR-155. (A). Pairing of miR-155 with BACH1 39UTR region. (B). Pairing of miR-
155 with JMJD1A 39UTR region. (C). Overexpression of miR-155 by the miR-155 mimic resulted in a significant decrease in luciferase signals of pMIR-
report-JMJD1A 39UTR (JMJD1A) and pMIR-report-BACH1 39UTR (BACH1) transfected HEK 293 cells, but not in pMIR-report-vector (vector) transfected
HEK 293 cells.
doi:10.1371/journal.pone.0019137.g002
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LMP1 and LMP2A were expressed in approximately 65% and

45.7% NPC patients, repectively [47,48], and miR-155 was also

found to be upregulated in many human tumors, which were not

related to EBV [32,33,34,37,38,42]. Furthermore, in our study,

both CNE1 and TW03 were EBV negative NPC derived cell lines,

and the expression of miR-155 in these two cell lines was still higher

than that of the immortalized nasopharyngeal epithelial cell line

NP69. Hence there should be some other unknown factors which

could also upregulate miR-155 expression in NPC. TGF-beta

(Transforming Growth Factor – beta) was verified to induce miR-

155 expression and promoter activity through SMAD4 (SMAD

family member 5) [49], and elevated serum levels of TGF-beta1 was

also found in NPC patients [50]. Hence TGF-beta and SMAD4

pathway might also contribute to miR-155 overexpression in NPC.

At presently, many direct targets of miR-155 have been

identified to show oncogenic features of miR-155. MiR-155

promoted the proliferation of breast cancer cells through down-

regulation of SOCS1 (Suppressor of cytokine signaling 1) [35] and

FOXO3a (Forkhead box O3) [36]. MiR-155 has also been

reported to be involved in the development of lymphoma by

targeting SMAD5 (SMAD family member 5) [30] and SHIP1

(inositol polyphosphate-5-phosphatase) [51]. MiR-155 could

promote pancreatic tumor development through downregulation

of TP53INP1 (Tumor protein p53 induced nuclear protein 1) [52].

Moreover, some other genes implicated in differentiation,

inflammation and transcriptional regulation, were direct targets

of miR-155, including HIF-1 (Hypoxia-inducible factor 1) [16,53],

BACH1 (BTB and CNC homology 1, basic leucine zipper

Figure 3. Both JMJD1A and BACH1 expression were regulated by miR-155. (A). The relative miR-155 expression in NP69 cells transfected
with miR155 mimic (100 nM) to NP69 cells transfected with a negative control (100 nM) by qPCR detection. (B). Immunoblot analysis of JMJD1A and
BACH1 expression in cells were analyzed at 48 hr post-transfection, and GAPDH was used as a loading control. MiR-155 mimic could downregulate
the expression of JMJD1A and BACH1 in NP69 cells. (C). The relative miR-155 expression in CNE1 and TW03 cells transfected with miR155 mimic
(100 nM) or miR155 inhibitor (100 nM) to CNE1 and TW03 cells transfected with a negative control (100 nM) by qPCR detection. (D).Immunoblot
analysis of JMJD1A expression in cells was analyzed at 48 hrs post-transfection, and GAPDH was used as a loading control. MiR-155 mimic could
downregulate the expression of JMJD1A, while miR-155 inhibitor could upregulate JMJD1A expression in CNE1 and TW03 cells.
doi:10.1371/journal.pone.0019137.g003
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transcription factor1) [8,16], HIVEP2 (Human immunodeficiency

virus type I enhancer binding protein 2) [8], IKKe (Inhibitor of

kappa light polypeptide gene enhancer in B cells, kinase) [54], and

so on. In our study, we found that miR-155 could repress

endogenous JMJD1A and BACH1 protein expression in NP69

cells. Luciferase reporter assay was performed to identify both

JMJD1A and BACH1 as direct targets of miR-155 in NPC cells.

This is the first report that JMJD1A is a direct target of miR-155.

Furthermore, JMJD1A and BACH1 are downregulated in NPC

cell lines and NPC tumor tissues.

Hypoxia is a common feature characteristic of many malignan-

cies and promotes biological processes involved in tumor

progression. In hypoxia, several genes are involved in erythropoi-

esis, angiogenesis and cellular energy metabolism, and are

activated by a common transcription factor termed hypoxia

inducible factor-1 (HIF-1) [55]. The expression of JMJD1A [11]

and BACH1 [15] have been reported to be induced by hypoxia.

Interestingly, miR-155 could directly downregulate HIF-1 expres-

sion [16,53], BACH1 expression [8,16] and JMJD1A expression.

We therefore suggest that miR-155 is a negative feedback

regulator of HIF1a. The effect of hypoxia on miR-155 itself

should be considered in future studies. In this study, downregu-

lation of JMJD1A was found to be significantly correlated with N

stage, a lower five-year survival rate, and a lower five-year disease-

free survival rate of NPC patients. Adam et al. [56] demonstrated

that loss of JMJD1A is sufficient to reduce tumor growth of renal

cell carcinoma and colon carcinoma in vivo, suggesting that the

function of JMJD1A in different cells and tissues depend on cell

microenvironment. Hence, the function of JMJD1A and BACH1

in NPC deserve for further study.

In conclusion, upregulation of miR155 in NPC is partly driven

by LMP1 and LMP2A. This results in downregaultion of

JMJD1A, which is associated with N stage and poor prognosis of

NPC patients. The potential of miR-155 and JMJD1A as

therapeutic targets for NPC should be further investigated.

Materials and Methods

Cell lines, plasmids and tissue samples
Human NPC cell lines CNE1 (EBV negative, from Cancer

Center, Sun Yat-sen University, China), TW03 (EBV negative, the

generous gift of Prof. Chin-Tarng Lin, National Taiwan

University Hospital) [57] and Human Embryonic Kidney 293T

cells (from American Tissue Culture Collection, ATCC, Mana-

ssas, VA) were cultured in IMEM (Gibco USA) containing 10%

fetal calf serum (FCS). The immortalized nasopharyngeal

Figure 4. JMJD1A and BACH1 were downregulated in NPC. (A) Q-PCR was performed to detect JMJD1A and BACH1 mRNA expression in NPC
CNE1 and TW03 cells, compared to NP69 cells respectively. JMJD1A (CNE1: 0.0260.002-fold; TW03: 0.0260.001-fold) and BACH1 (CNE1: 0.0360.001-
fold; TW03: 0.0660.001-fold) were down-regulated in NPC cells. (B) Western blot demonstrating downregulation of JMJD1A and BACH1 in NPC cells.
Downregulation of JMJD1A (C) and BACH1 (D) were found in NPC tumor cells, compared with the adjacent epithelial cells.
doi:10.1371/journal.pone.0019137.g004
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epithelial cell line NP69 (EBV negative, from the University of

Hong Kong, China) [58] was cultured in keratinocyte serum-free

medium (Invitrogen, Carlsbad, CA) supplemented with 25 mg/ml

bovine pituitary extract, and 0.2 ng/ml recombinant epidermal

growth factor, as suggested by the manufacturer.

LMP1 expressing vector (pJ124-A8-CAO-LMP1) [59] and

LMP2A expressing vector (pLNPOX/HPH6-LMP2A) [60] were

used for stable transfection. CNE1 and TW03 cells that stably

expressed LMP1 were generated by Mycophenolic acid, Xanthine

and Hypoxanthine selection. CNE1 and TW03 cells that stably

expressed LMP2A were generated by retrovirus infection and

G418 selection. All the cell lines were grown in a humidified

incubator at 37uC with 5% CO2.

The NPC biopsies with clinical information were obtained from

Sun Yat-Sen University Cancer Center (Guangzhou, China). For

this retrospective study, archival formalin-fixed, paraffin-embed-

ded (FFPE) tissue specimens from 185 primary NPC patients (144

males and 41 females; aged from 16 to 73 years; median, 47 years)

who underwent radical radiotherapy from 1999–2003 were

obtained from the Sun Yat-sen University Cancer Center

(Guangzhou, China). The study was approved by the Research

Ethics Committee of Sun Yat-Sen University Cancer Center,

Guangzhou, China (Reference number: YP-2009175) and Kar-

olinska Institutet, Stockholm, Sweden (Reference number: 00-

302). All NPC samples in our study were obtained before

treatment with standard curative radiotherapy, with or without

chemotherapy. The disease stages of all patients were classified or

reclassified according to the China 1992 NPC staging system (see

File S1) [61]. Of the 185 primary NPC patients, 3 were classified

as stage I, 44 as stage II, 88 as stage III, and 50 as stage IV.

MiRNA microarray analyses
Total RNA samples were analyzed by CapitalBio (CapitalBio

Corp. Beijing, China) for miRNA microarray. Procedures were

performed as described in detail on the website of CapitalBio

(http://www.capitalbio.com). Briefly, miRNA was separated from

30–50 mg total RNA using the Ambion miRNA Isolation Kit.

Fluorescein-labeled miRNA [62] were used for hybridization on

each miRNA microarray chip containing 509 probes in triplicate,

corresponding to 435 human (including 122 predicted miRNAs),

261 mouse, and 196 rat miRNAs found in the miRNA Registry

(http://microrna.sanger.ac.uk/sequences/; accessed October 2005).

Image intensities were measured as a function of the median of

foreground minus the background, as previously described [63].

Raw data were normalized and analyzed in GenePix Pro 4.0

software (Axon Instruments). Expression data were median-

centered using the global median normalization function of the

Bioconductor package (http://www.bioconductor.org). Statistical

comparisons were performed with the SAM software (SAM version

2.1, http://www. stat.stanford. edu/ztibs/SAM/index.html) [64].

All microarray data, which were Minimum Information About a

Microarray Experiment (MIAME) compliant, have been deposited

Table 2. Correlation between JMJD1A and BACH1 expression and clinicopathological parameters of NPC.

Parameters Cases (n = 185) JMJD1A expression P value BACH1 expression P value

L.E. (n = 113) H.E. (n = 72) L.E. (n = 94) H.E. (n = 91)

Age

,47 85 47 38 0.137 37 48 0.068

$47 100 66 34 57 43

Gender

Male 144 88 56 0.987 71 73 0.443

Female 41 25 16 23 18

WHO classification

II 160 98 62 0.905 77 83 0.065

III 25 15 10 17 8

T stage

T1+T2 73 44 29 0.865 41 32 0.240

T3+T4 112 69 43 53 59

N stage

N0 36 16 20 0.023* 19 17 0.793

N1+N2+N3 149 97 52 75 74

TNM stage

I+II 47 25 22 0.199 26 21 0.474

III+IV 138 88 50 68 70

Recurrence

Yes 11 6 5 0.674 4 7 0.323

No 174 107 67 90 84

Metastasis

Yes 19 12 7 0.845 9 10 0.751

No 166 101 65 85 81

L.E.: Low expression; H.E.: High expression.
doi:10.1371/journal.pone.0019137.t002
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to the Gene Expression Omnibus public database with accession

number GSE26596.

Prediction miRNAs target analysis
We analyzed the putative targets of miRNAs as follows [65]:

Firstly, the analysis was done by using four algorithms, miRanda

(http://www.microrna.org// miranda.html) [18], TargetScan

(http://genes.mit.edu/targetscan); [19], PicTar (http://pictar.

bio.nyu.edu) [20] and miRBase (http://microrna.sanger.ac.uk/

targets/v2) [21] respectively. Because any of the four approaches

generates an unpredictable number of false positives, results were

intersected to identify the genes commonly predicted by at least

three of the methods.

PCR assays
For miRNAs quantitive realtime PCR (qPCR) assay, total RNA

from cell lines was isolated using Trizol reagent (Invitrogen)

according to the manufacturer’s instructions, then was treated with

RNase free DNase I (Cat#: 04716728001, Roche). The miR-155

quantitive realtime PCR assay was performed by TaqManH
MicroRNA Assays (Cat#: 4373124, Applied Biosystems, USA)

and RNU6B (Cat#: 4373381, Applied Biosystems, USA) was used

as internal control. The relative expression level was determined as

22DDCt. Data are presented as the expression level relative to the

calibrator (control sample), with the standard error of the mean of

triplicate measures for each test sample.

For mRNA quantitive realtime PCR assay, total RNA was

extracted from cell lines using TRIzol reagent (Invitrogen). After

reverse transcription of the total RNA, the first-strand cDNA was

then used as template for detection of JMJD1A, BACH1,

expression by quantitative real time PCR (qPCR) with the SYBR

Green I chemistry (Power SYBR Green PCR Master Mix,

CAT#: 4367659, ABI Inc., USA). GAPDH was used as internal

control. The primers were JMJD1A (Forward: GTC AAC TGT

GAG GAG ATT CCA GC and Reverse: AAC TTC AAC ATG

AAT CAG TGA CGG); BACH1 (Forward: ATT CAT GCT

TCT GTT CAG CCA A and Reverse: GGC ACT GAG AAG

CAG GAT CTT T); GAPDH (Forward: AGC CAC ATC GCT

CAG ACA C and Reverse: GCC CAA TAC GAC CAA ATC C).

The relative expression level was determined as 22DDCt. Data are

presented as the expression level relative to the calibrator (control

sample), with the standard error of the mean of triplicate measures

for each test sample.

For normal PCR assay, total RNA was extracted from cell lines

using TRIzol reagent (Invitrogen). After reverse transcription of

the total RNA, the first-strand cDNA was then used as templates

for detection of LMP1 and LMP2A expression. GAPDH was used

as internal control. The primers were LMP1 (131 bp, 55uC)

(Forward: AGG TTG AAA ACA AAG GAG GTG ACC A and

Reverse: GGA ACC AGA AGA ACC CAA AAG CA); LMP2A

(106 bp, 60uC) (Forward: TCC CTA GAA ATG GTG CCA

ATG and Reverse: GAA GAG CCA GAA GCA GAT GGA T);

GAPDH (286 bp, 56uC) (Forward: CCA CCA TGG AGA AGG

CTG GGG CTC A and Reverse: ATC ACG CCA CAG TTT

CCC GGA GGG G).

Western blot assays
Cells were harvested and lysed with RIPA buffer (Upstate,

USA). Equal amounts of denatured protein sample were

separated by SDS-PAGE and were then transferred electropho-

Figure 5. Kaplan-Meier curves for overall survival and disease-free survival of the 185 NPC patients. A, Kaplan-Meier curves for overall
survival (OS) of the 185 NPC patients; and B, Kaplan-Meier curves for OS in NPC patients with low level and high level JMJD1A expression; C, Kaplan-
Meier curves for OS in NPC patients with low level and high level BACH1 expression;; D, Kaplan-Meier curves for disease-free survival (DFS) of the 185
NPC patients; E, Kaplan-Meier curves for DFS in NPC patients with low level and high level JMJD1A expression; F, Kaplan-Meier curves for DFS in NPC
patients with low level and high level BACH1 expression.
doi:10.1371/journal.pone.0019137.g005
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retically to PVDF membranes (Pall, USA) for immunoblot

analysis. Antibodies used for immunoblot analysis were against

JMJD1A (1:100 dilution, 12835-1-AP, Proteintech Group, Inc,

USA), BACH1 (1:200 dilution, sc-14700, Santa Cruz, USA);

LMP1 (1:500 dilution, S12) [66], LMP2A (1:1,000 dilution, 14B7,

ITN GmbH, Neuherberg, Germany) and an anti-GAPDH

antibody (1:3,000 dilution, sc-32233, Santa Cruz, USA) was

used as loading control. All protein bands were detected using an

enhanced chemiluminescent (ECL) Western blot Kit (Cell

Signaling Technology, USA).

MiRNA transfections
Before transfection, 26105 cells per well were plated into 6-well

plates and grown for one day in antibiotic-free medium containing

10% FCS. When the cell confluent was reached to 40% to 60%,

cells were transfected with miR-155 Pre-miRTM miRNA Precur-

sor Molecules (Cat#: PM12601, Ambion, USA), or Pre-miRTM

miRNA Precursor Molecules-Negative Control #1 (Cat#:

AM17110, Ambion, USA) or miR-155 Anti-miRTM miRNA

Inhibitor (Cat#: AM12601, Ambion, USA), or Anti-miRTM

miRNA Inhibitors-Negative Control #1 (Cat#: AM17010,

Ambion, USA) using Lipofectamine 2000 (Invitrogen, USA)

according to the manufacturer’s instructions. Transfected cells

were grown at 37uC for 6 hr, followed by incubation with

complete medium. For miR-155 assay and Western blot analysis,

cells were harvested for RNA and protein respectively after 48 hr.

Luciferase reporter assays
39 UTR sequences of JMJD1A and BACH1 containing the

putative miR-155 target sites were isolated from TW03 cDNA by

PCR and cloned immediately downstream from the luciferase

reading frame in the plasmid pMIR-report-Vector (Cat#:

AM5795, Ambion, USA). Primers used for PCR were as follows:

JMJD1A (Forward: CAG ACT AGT TAA AAG CAA AAC CTC

GTA TC and Reverse: CAG AAG CTT TAA TGC AAA ATG

CTT AAC AC); BACH1 (Forward: CAG ACT AGT AAG CCA

ATG GAA CCC TTG ATT and Revese: CAG AAG CTT GCC

TTG AAA CAT TTT CTT AGA A). All inserts were sequenced

in their entirety to verify polymerase fidelity.

Luciferase reporter assays were performed by transiently

transfecting HEK 293T cells respectively with 200 ng of pMIR-

report-JMJD1A 39UTR, pMIR-report-BACH1 39UTR, pMIR-

report-vector (control), together with 30 nM miR-155 Pre-miRTM

miRNA Precursor Molecules (Cat#: PM12601, Ambion, USA),

or Pre-miRTM miRNA Precursor Molecules-Negative Control #1

(Cat#: AM17110, Ambion, USA) and 200 ng of pCMV-Renilla

(internal control) using Lipofectamine 2000 (Invitrogen) respec-

tively. Firefly and Renilla luciferase activities were measured

consecutively by using Dual Luciferase Assay (Cat#: E1910,

Promega, USA) 48 hr after transfection. Firefly luciferase values

have been normalized to Renilla, and the ratio of firefly/renilla

was presented.

In situ hybridization (ISH)
In situ detection of miR-155 was performed on 5 mm FFP tissue

sections of NPC. Sections were prehybridized in hybridization

solution (50% formamide, 56 SSC, 0.5 mg/mL yeast tRNA, 16
Denhardt’s solution) for 30 minutes before hybridization. MiR-

155 miRCURY LNATM Detection probe (Cat#: 38537-05,

Exiqon, Denmark) was hybridized to the sections for 1 hr at

25uC lower than predicted Tm of the probe. After posthybridiza-

tion washes, in situ hybridization signals were detected using the

tyramide signal amplification system (Perkin-Elmer) according to

the manufacturer’s instructions. Slides were mounted in ProLong

Gold containing 49,6-diamidino-2-phenylindole (DAPI; Invitro-

gen) and analyzed with an Olympus MVX10 microscope

equipped with a charge-coupled device camera and Olympus

CellP software.

Immunohistochemistry
Primary antibodies against JMJD1A (1: 100 dilution, Ab75620,

Abcam, USA) and BACH1 (1: 800 dilution, Ab54814, Abcam,

USA) were used in this study. Briefly, tissue sections were de-

waxed, incubated with hydrogen peroxide for 10 minutes,

incubated in retrieval buffer solution for antigen recovery, blocked

with normal serum for 10 minutes and incubated with a primary

antibody for 60 minutes, followed by detection using a Catalyzed

Signal Amplification Kit (DAKO, USA); signal was visualized

using diaminobenzidine. Non-immune goat or rabbit serum was

substituted for the primary antibody as a negative control. The

immunohistochemistry results were evaluated and scored by a

senior pathologist without knowledge of the clinicopathological

outcomes of the patients.

A semiquantitative estimation was made by using a composite

score obtained by adding the values of the staining intensity and

the relative abundance of positive cells. The intensity was graded

as 0 (no staining), 1 (weak staining), 2 (moderate staining) and 3

(strong staining). The abundance of the positive cells was graded

from 0 to 3 (0, ,5% positive cells; 1, 5–25%; 2, 26–50%; 3,

.50%). A composite score greater than the median value was

considered as high expression, and composite scores less than or

equal to the median value were considered as low expression.

Statistical analysis
Data was analyzed using SPSS12.0 software. The association

between JMJD1A and BACH1 expression and clinicopathological

parameters were assessed using a Chi-Square test. Kaplan-Meier

analysis and log-rank tests were used to assess the survival rate and

to compare the difference in survival curves. It was considered as

significant differences when p,0.05.
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