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Abstract

Human leukocyte antigen (HLA) can encode the human major histocompatibility complex (MHC) proteins and play a key
role in adaptive and innate immunity. Emerging clinical evidences suggest that the presentation of tumor neoantigens and
neoantigen-specific T cell response associated with MHC class I molecules are of key importance to activate the adaptive
immune systemin cancer immunotherapy. Therefore, accurate HLA typing is very essential for the clinical application of
immunotherapy. In this study, we conducted performance evaluations of 4 widely used HLA typing tools (OptiType, Phlat,
Polysolver and seq2hla) for predicting HLA class Ia genes from WES and RNA-seq data of 28 cancer patients. HLA genotyping
data using PCR-SBT method was firstly obtained as the golden standard and was subsequently compared with HLA typing
data by using NGS techniques. For both WES data and RNA-seq data, OptiType showed the highest accuracy for HLA-Ia
typing than the other 3 programs at 2-digit and 4-digit resolution. Additionally, HLA typing accuracy from WES data was
higher than from RNA-seq data (99.11% for WES data versus 96.42% for RNA-seq data). The accuracy of HLA-Ia typing by
OptiType can reach 100% with the average depth of HLA gene regions >20x. Besides, the accuracy of 2-digit and 4-digit
HLA-Ia typing based on control samples was higher than tumor tissues. In conclusion, OptiType by using WES data from
control samples with the high average depth (>20x) of HLA gene regions can present a probably superior performance for
HLA-Ia typing, enabling its application in cancer immunotherapy.
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Introduction
The human leukocyte antigen (HLA) complex, which is located
within a 3.6-Mbp stretch on the short arm of chromosome 6
(6q21.31), can encode the human major histocompatibility com-
plex (MHC) proteins and play a key role in adaptive and innate
immunity [1, 2]. It can be divided into two categories: HLA-I (HLA-
Ia, Ib) genes encode MHC-I proteins presenting in all nucleated
cells and can bind to intracellular antigens for cell destruction
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through CD8+ cytotoxic T cells [3];HLA-II (HLA-DP, −DQ,-DR)
genes encode MHC-II proteins existing in the antigen-presenting
cells and can recognize intracellular and extracellular antigens
for antibody production via CD4+ helper T cells. As is known,
the HLA system includes the most polymorphic genes with
marked differences in allele frequency between and within eth-
nic groups. The nomenclature of HLA allele at full resolution, like
HLA-A33:03:01:02 L, orderly consists of allele groups (HLA-A33,
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2-digit resolution), specific alleles (HLA-A33:03, 4-digit resolu-
tion), exon variants(HLA-A∗33:03:01, 6-digit resolution), intronic
variants (HLA-A∗33:03:01:02, 8-digit resolution) and a tag to flag
the allele expression (L, a low expression; N, a null expression)
[4, 5].

In recent years, cancer immunotherapy has made signifi-
cant breakthroughs and becomes one of the most widely used
treatment in pan-cancer patients [6]. Emerging clinical evidence
suggests that the presentation of tumor-specific intracellular
antigens (neoantigens) and neoantigen-specific T cell responses
associated with MHC class I molecules are of key importance to
activate the adaptive immune system in cancer immunotherapy
[6]. Remarkably, downregulation of HLA genes due to loss of
HLA haplotype loss, downward transcriptional expressions of
specific antigen presentation machinery genes and variations
in tumor microenvironments, may reduce the ability to present
neoantigens and promote immune evasion in many cancer types
[7]. Besides, it has also demonstrated that HLA-Ia genotypes
such as HLA-B44 and HLA-B62 and loss of heterozygosity (LOH)
status have been shown associated with the patient prognosis
and immunotherapy efficacy [8]. Moreover, a previous study
found that HLA somatic mutations were detected in 8.1% and
3.3% of colorectal cancer and melanoma patients respectively,
which might affect prediction accuracy [9]. Therefore, accu-
rate HLA typing is very essential for the clinical application of
immunotherapy.

HLA alleles can be typed by serological phenotype analysis
or by DNA molecular analysis. Although HLA typing by serology
can give a rough result in a short time, it cannot identify rare
or new HLA alleles [10]. Currently, polymerase chain reaction
(PCR) is the most widely used HLA typing method [11], and it
can be further divided into polymerase chain reaction sequence-
specific primer (PCR-SSP), polymerase chain reaction sequence-
specific oligonucleotide probes (PCR-SSO) and polymerase chain
reaction sequenced based typing (PCR-SBT). Among them, PCR-
SBT with the highest typing accuracy is the only technique that
can directly detect the nucleotide sequence of each allele. In
this study, we used the SBT method based on single-molecule
real-time sequencing (SMRT) technology as the gold standard.

Taking the advantages of next-generation sequencing (NGS)
technologies, NGS-based HLA typing methods can detect het-
erozygous alleles and polymorphisms outside of traditionally
amplified PCR regions, which may result in higher resolution
compared to PCR-based methods [12]. However, these methods
still have a lot of challenges, such as the polymorphic character-
istics of HLA sequences, the limitations of NGS detection length
and the high accuracy requirements for clinical application.

To overcome these challenges, those methods with alignment-
or assembly-computational programs based on bioinformatic
algorithms have arisen to be a potential solution. Alignment-
based automatic methods compare sequencing reads with
reference HLA sequences from WGS, WES or RNA-seq and
forecast true alleles by using probabilistic models.

Seq2hla [13] was the first alignment method specifically for
HLA typing from RNA-seq data, based on Python and R program-
ming language. This method mapped reads to HLA nucleotide
sequences from international IPD-IMGT/HLA [14] database and
extracting sequences of exons 1, 2, 3 and 4 of HLA class I
and II genes, by using Shannon’s entropy and binary logarithm
formulation to describe HLA genotypes. Thereafter, Phlat [15]
and OptiType [5] by using Python programming language were
developed for DNA or RNA data. Phlat can predict HLA class I and
II type from WES or RNA-seq data and was built on an alignment-
filter-coverage program. The whole human genome database
together with HLA alleles genomic sequences were used as the

mapping reference for Phlat, and the Bayesian likelihood model
was employed to predict HLA alleles [16]. OptiType based on
integer linear programming was validated for WGS, WES and
RNA-seq data at a full resolution for HLA class I genes. Reads
were mapped against a carefully constructed reference database
by extracting exons 2 and 3 sequences from each known HLA-
I allele [17]. The most recent alignment method Polysolver [9]
assumed Bayesian classification approach for HLA genotyping
from WES data, by mapping to the reference database generated
from all known HLA-I alleles in the IPD-IMGT/HLA [18]. Limited
to only HLA-Ia typing, Bauer et al. showed superior performances
of OptiType with 4-digit accuracy at 99% for 373 RNA-seq data
from lymphoblastoid cell lines and 4-digit accuracy at 98% for
992 WES data from a phase 3 clinical study [19].

Here, we conducted performance evaluations of 4 widely
used HLA typing tools (OptiType, Phlat, Polysolver and seq2hla)
for predicting HLA class Ia genes from WES and RNA-seq data of
28 cancer patients. HLA genotyping data using PCR-SBT method
based on SMRT technology was firstly obtained as the golden
standard and was subsequently compared with HLA typing data
by using NGS techniques. Besides, the impacts of depth and
sample type on the tools’ accuracy were also investigated in this
study. After in silico simulation, we finally identified the probably
optimal method for HLA Ia typing.

Results
HLA typing performance

To evaluate the prediction performance of the 4 computational
tools, raw data of WES and RNA-seq in fastq format were initially
prepared for analysis. OptiType, Phlat and Polysolver were used
to execute HLA typing from WES data, while OptiType, Phlat and
seq2hla were utilized for RNA-seq data.

As shown in Figure 1, the accuracy of OptiType, Polysolver and
Phlat for 4-digit HLA typing of WES data was 99.11%, 95.83% and
93.75%, respectively. Accuracy of OptiType, Phlat and seq2hla
from RNA-seq data at 4-digit resolution was 96.42%, 84.52%
and 91.07%, separately. Among the other 3 tools, OptiType
had the highest accuracy of HLA-Ia typing for both WES and
RNA-seq data. These results suggested that OptiType might be
the potential optimal choice for HLA-Ia typing, and the WES
data was more accurate for HLA-Ia typing than RNA-seq data.
The typing results and validation results of all WES and RNA-
seq data were presented in Supplement Table S2 & S3. After
removing these two samples with very low HLA gene expression
(Supplementary Table S4), the accuracy of OptiType for 4-digit
HLA typing from RNA-seq data was 98.72% (Table 1), indicating
that low expressions of HLA genes might reduce the accuracy of
HLA typing.

Impact of depth

According to Figure 2, the accuracy of HLA typing for WES by
OptiType remained at about 98.9% under all average depths.
The accuracy of HLA typing for WES by Phlat increased
approximately from 95.56% under >100x to 98.04% under >200x
and > 300x. The accuracy of Polysolver increased from 93.7%
under >100x to 94.62% under >200x, and decreased to 92.16%
under >300x. Although the capture regions were similar, these
changes may due to the nonuniform coverages of the HLA gene
regions caused by the randomness in sequencing procedures
such as DNA fragmentation and amplification.

Then, we evaluated the average depth of HLA gene regions
on the accuracy of HLA typing (figure 2). The HLA typing accu-
racy reaches 100% from 20x for OptiType, from 100x for Poly-
solver, and from 200x for Phlat. Besides, the typing accuracy of
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Figure 1. Accuracy of four computational tools on WES and RNA-seq data at 2-digit and 4-digit resolution.

Table 1. Accuracy table of RNA-seq data for HLA-Ia genes

Data set Tools 2-digit accuracy 4-digit accuracy

Total group (n = 28) OptiType 97.0% 96.4%
Phlat 88.1% 84.5%
seq2hla 92.3% 91.1%

Selected group∗ (n = 26) OptiType 99.4% 98.7%
Phlat 94.9% 91.0%
seq2hla 98.1% 96.8%

∗Two samples with very low HLA gene expression were removed from the total group (Supplementary Table S4).

Figure 2. The HLA-Ia 4-digit typing accuracy rate of four computational tools on different sequence depth.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa143#supplementary-data
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Figure 3. Performance comparisons in different sample types and after in silico simulation. (a) Four computational tools on WES data from control samples and tumor

tissues at 2-digit and 4-digit resolution. (b). HLA typing accuracy of OptiType on WES data from control samples and tumor tissues at 2-digit and 4-digit resolution after

in silico simulation.

Phlat and Polysolver fluctuated a lot. As a result, the average
depth of HLA gene regions >20x might be regarded as a quality
control index for OptiType HLA typing. The average depth of
the whole exon and HLA-Ia gene regions were shown in the
Supplement Table S2.

Comparison of sample types

HLA typing accuracy of WES data from tumor tissues and control
PBMC samples were displayed in Figure 3a, showing the accuracy
results from normal PBMC samples were mostly higher than
tumor tissues. For HLA typing with OptiType, the accuracy by
using normal sample and tumor tissue were all about 100% at
2-digit resolution prediction, and the accuracy were 100% for
normal sample and 98.21% for tumor tissue at 4-digit resolution
prediction. For Phlat, the accuracy was 100% for normal sample
and 97.62% for tumor tissue at 2-digit resolution prediction, and
the accuracy were 97.02% for normal sample and 94.64% for
tumor tissue at 4-digit resolution prediction. For Polysolver, the
accuracy was 98.21% for normal sample and 92.86% for tumor
tissue at 2-digit resolution prediction, and the accuracy were
96.43% for normal sample and 91.07% for tumor tissue at 4-digit
resolution prediction. These findings may recommend that it
should be better to use normal samples for HLA typing.

In silico simulation

Since there are fewer randomly selected reads, HLA typing errors
appeared in simulated tumor samples and control samples
(Figure 3b & Supplementary Table S4) and the accuracy of HLA
typing by OptiType decreased from reads ratio of 1/10 to reads

ratio of 1/15 at 2-digit and 4-digit resolution prediction. This
might be owing to the missing signals of the undetected HLA
alleles and interfering noises with the signals of detected
HLA alleles. Although typing errors occurred, the accuracies of
HLA typing from normal samples were still higher than tumor
tissues.

Discussion and conclusion
In this study, we have chosen four tools with good performance
for HLA typing [19], and identified the potentially optimal HLA
typing method tools and the probably suitable sequencing data
for HLA typing methods.

For both WES data and RNA-seq data, OptiType showed the
highest accuracy for HLA-Ia typing than Phlat and Polysolver
with 2-digit and 4-digit resolution. In addition, HLA typing accu-
racy from WES data was higher than from RNA-seq data (99.11%
for WES data versus 96.42% for RNA-seq data). Our results were
not very consistent with Bauer’s study [19], showing 99% accu-
racy of HLA typing with OptiType from RNA-seq data at 4-
digit resolution. This might because Bauer’s study used RNA-
seq data from lymphoblastoid cell lines RNA-seq data for HLA
typing, instead of tumor tissue or blood samples. Furthermore,
we removed two samples with very low HLA gene expressions of
HLA genes, which may reduce the accuracy of HLA typing. Then,
the accuracy of OptiType for 4-digit HLA typing from RNA-seq
data increased from 96.42% to 98.72%.

The average coverage of whole exome did not affect OptiType
HLA typing performance. However, OptiType shows the best
performance for high coverages in the HLA gene regions but
that the findings were otherwise similar to Bauer’s study [19]

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa143#supplementary-data
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regardless of HLA gene regions coverages. Besides, the accu-
racy of 2-digit and 4-digit HLA-Ia typing from control samples
was higher than from tumor tissues. This may be explained by
somatic mutations of the HLA genes in the tumor sample [9].
Through in silico simulation, we also discovered that with the
reduction of reads in the HLA gene regions may be associated
with increasing OptiType typing errors. This might be owing to
the missing signals of the undetected HLA alleles and interfering
noises with the signals of detected HLA alleles.

This study involved with several limitations. Firstly, there
were still a few patients had distinct HLA-Ia typing results in
tumor or control samples by OptiType in our other studies. We
utilized Polysolver as a secondary analysis for these inconsistent
samples and developed a scoring algorithm to integrate the
results by OptiType and Polysolver to obtain the most reliable
HLA typing. We will verify the efficacy of the integrated scoring
program in the future. The code and manual are available on
this website (https://github.com/YCBIO/hla_typing_integration_
tools). Secondly, this study only discussed the 4-digit resolu-
tion prediction for HLA-Ia genes. As high-resolution HLA typing
are necessary for describing neoantigens to differentiate the
patients who can benefit from immunotherapy, we will con-
tinue with the further development of higher resolution typing
tools such as 6-digit and 8-digit resolution. Additionally, HLA-
II genes have been shown to be involved with the efficacy of
immunotherapy strategies [7]. But current tools for type II HLA
typing were of low accuracy [6]. We plan to work on HLA-II typing
tools by evaluating the performance of existing HLA-II typing
tools or develop new HLA-II typing tools in the future.

In conclusion, OptiType by using WES techniques from con-
trol samples can give probably superior performance for HLA-
Ia typing. We expect that more accurate and fast prediction
methods for both HLA-I and HLA-II genes at higher resolution
in the future.

Materials and Methods
Whole exome sequencing and RNA sequencing

Whole exome sequencing for the FFPE tumor tissue and
matched normal samples and RNA sequencing for tumor
samples were carried out from 28 colorectal cancer or melanoma
patients. PBMC from peripheral blood was served as normal
sample. Genomic DNAs were from tumor tissue and blood
was respectively extracted using the Qiagen DNA FFPE and
Qiagen DNA blood mini kit (Qiagen). RNA-seq was extracted
from FFPE tumor tissue slides using RNeasy FFPE Kit (Qiagen)
(Supplementary Table S1).

WES sequencing libraries were constructed using Illumina
Nextera Rapid Capture Exome kit (Illumina Genetic Ltd., USA)
and procedures were performed on an Illumina HiSeq4000 plat-
form with 150 bp paired-end reads at the average depth of 150X
coverage. Total RNA sequencing libraries were constructed using
Illumina TruSeq RNA Access kit (Illumina, USA) and sequencing
procedures were performed on an Illumina HiSeq4000 platform
with 150 bp paired-end reads at the average depth of 75 million
reads.

Gold standard

To compare performances of the 4 selected HLA typing computa-
tional programs, HLA genotyping data at 4-digit resolution using
PCR-SBT method with SMRT technology was obtained from each

patient and was used as the golden standard. Class Ia (HLA-
A, B, C) genes were amplified by Polymerase Chain Reaction
(PCR) with specific primers using genomic DNA as a template.
QIAamp 96 DNA Blood Kit (QIAGEN) is used according to the
manufacturer’s protocol to purify high-molecular-weight DNA.
All steps of DNA extraction are processed using JANUS or other
liquid handlers. Sequencing templates (DNA libraries) for PacBio
are prepared according to the manufacturer’s protocols.

Quality Control and Reads Mapping

Quality control was performed on the raw sequencing data using
Fastp [20] with default parameters. Fastp will automatically trim
adapter sequences which detected by finding the overlap of each
pair. Low-quality bases were trimmed when the average is less
than 20. PolyG in the read tails were detected and trimmed. The
WES trimmed reads were aligned to a reference genome (NCBI
human genome assembly hg19 and HLA reference) using the
Burrows-Wheeler Aligner (BWA) program [21]. Each alignment
was assigned with a mapping quality score by BWA which gen-
erated a Phred-scaled probability that the alignment is correct.

Patch optimization

When running OptiType with too many reads, a memory error
saying”/home/osboxes/seqan/include/seqan/basic/basic_excep-
tion.h:363 FAILED!” frequently occurred and was mentioned on
GitHub (https://github.com/FRED-2/OptiType/issues/71).

To tackle this problem, we designed a patch for OptiType
program. After initially extract the reads that can be aligned to
the HLA sequence, OptiType with our patch can perform HLA
typing successfully. The source code and User manual were
shown online (https://github.com/YCBIO/optitype_patch).

Performance assessment

In this study, all 4 tools were running at default settings.
Gene regions of HLA-A (chr6:29910246-29,913,661), HLA-B
(chr6:31321648-31,324,989), HLA-C (chr6:31236525-31,239,913)
were used to calculate the average depth. The average depth
of total exon and HLA gene regions was count using locally
developed Python program.

According to a previous study [19], accuracy is calculated over
all the samples an all the alleles as the following formula:

Accuracy = #RightAlleles
#RightAlleles + #WrongAlleles + #NAAlleles

‘Right Allele’ related to those HLA alleles called by computa-
tional tools consistent with PCR-SBT determined allele. ‘Wrong
Allele’ means those HLA alleles called by computational tools
inconsistent with PCR-SBT determined allele. ‘NA Allele’ referred
to those HLA alleles which cannot be detected by NGS with
computational tools.

Gradient data simulation

We selected the WES data of tumor tissues and paired normal
samples (P27-T, P27-N) from one patient to do in silico simulation
to perform HLA typing by using OptiType. The sequencing depth
of HLA gene regions of both tumor tissues and paired normal
samples were similar of >100x (Supplementary Table S2). Reads
aligned to the HLA gene regions were randomly chosen at gra-
dient ratios of 1/3, 1/5, 1/10, 1/13 and 1/15 with 10 replicates for
each ratio.

https://github.com/YCBIO/hla_typing_integration_tools
https://github.com/YCBIO/hla_typing_integration_tools
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa143#supplementary-data
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Key Points
• This article conducted the performance evaluations

of four widely used HLA typing tools (OptiType, Phlat,
Polysolver and seq2hla) by predicting HLA class Ia
genes from WES and RNA-seq data of 28 cancer
patients.

• For both WES data and RNA-seq data, OptiType
showed the highest accuracy for HLA-Ia typing than
the other three computational tools with 2- and 4-digit
resolution.

• HLA typing accuracy from WES data higher than from
RNA-seq data (99.11% for WES data versus 96.42%
for RNA-seq data). The accuracy of HLA-Ia typing by
OptiType can reach 100% with the average sequencing
depth of HLA gene regions >20×. Besides, the accu-
racy of 2- and 4-digit HLA-Ia typing based on control
samples was higher than tumor tissues.

• After in silico simulation, the accuracy of HLA typing
decreased along with the reduction in reads number
in HLA-Ia gene regions at 2- and 4-digit resolution
prediction.

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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