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Abstract Recent population studies have significantly advanced our understanding of how age

shapes the gut microbiota. However, the actual role of age could be inevitably confounded due

to the complex and variable environmental factors in human populations. A well-controlled envi-

ronment is thus necessary to reduce undesirable confounding effects, and recapitulate age-dependent

changes in the gut microbiota of healthy primates. Herein we performed 16S rRNA gene sequenc-

ing, characterized the age-associated gut microbial profiles from infant to elderly crab-eating maca-

ques reared in captivity, and systemically revealed the lifelong dynamic changes of the primate gut

microbiota. While the most significant age-associated taxa were mainly found as commensals such

as Faecalibacterium, the abundance of a group of suspicious pathogens such as Helicobacter was

exclusively increased in infants, underlining their potential role in host development. Importantly,

topology analysis indicated that the network connectivity of gut microbiota was even more age-

dependent than taxonomic diversity, and its tremendous decline with age could probably be linked

to healthy aging. Moreover, we identified key driver microbes responsible for such age-dependent

network changes, which were further linked to altered metabolic functions of lipids, carbohydrates,
tion and

ciences /
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and amino acids, as well as phenotypes in the microbial community. The current study thus demon-

strates the lifelong age-dependent changes and their driver microbes in the primate gut microbiota,

and provides new insights into their roles in the development and healthy aging of their hosts.
Introduction

The human gut microbiota is composed of trillions of micro-
bial cells that inhabit the gastrointestinal tract [1]. These

microbes altogether encode an extremely large and dynamic
genetic diversity, enabling the host to access additional energy
and metabolites [2]. The gut microbiota thus plays a substan-
tial role in human physiology and health [3]. In particular,

commensal microbes in the gastrointestinal tract interplay with
the host immune system, protect the host from pathogens, and
modulate the host’s physiological functions with commensal-

derived metabolites [4–6].
The development of human gut microbiota, with dynamic

changes after birth, has been implicated to play an active role

concomitantly with the host’s development and aging [7]. After
first colonization at birth, the postnatal gut microbiota devel-
ops rapidly in the first few months of life [8,9]. By oneweek of

age, the infant gut microbiota has already become very similar
to that at one month old [10]. Breastfeeding is one of the key
factors that greatly shapes the infant gut microbiota, and is
linked to the increase of Bifidobacterium species [11]. Analysis

of fecal bacteria in human populations shows that changes
may occur in the gut microbiota as age increases, which could
be associated with increased risk of diseases, especially age-

related diseases such as type II diabetes and hypertension in
elderly people [7,12–14].

Nevertheless, the actual effects of age on human gut micro-

biota remain to be further elucidated. The human gut micro-
bial community is known to be extremely dynamic. Existing
population-based studies are inevitably influenced by a num-
ber of confounding factors in the populations. The individual

human microbiota pattern is vastly variable. And varying envi-
ronmental factors, such as diets [15] and antibiotic use [16],
could dramatically influence the bacterial community [17]. In

addition, people of different generations in the same popula-
tion may have distinct growth experiences and lifestyles due
to the rapid urbanization of most human societies, which also

shapes the human gut microbiota [18]. These confounding fac-
tors emphasize the difficulties and importance of studying
healthy core native gut microbiota. A well-controlled model

system that faithfully recapitulates age-dependent changes in
the gut microbiota is thus needed, and would provide a better
understanding of the roles played by the gut microbiota in the
host’s healthy development and aging. In addition, humans

have a much longer life span and dramatically different gut
microbiota compared to rodents, the laboratory animals most
widely used in existing gut microbiome studies [19]. In con-

trast, non-human primates (NHPs) are used as distinctive and
indispensable model organisms in various areas of biomedical
research and disease studies, given their high similarities to

humans in terms of genetics, anatomy, reproduction, develop-
ment, cognition, and social complexity [20]. For example, gen-
ome sequencing has shown that humans are 96% similar to the

great ape species [21]. As for the gut microbiota, Li et al.
reported that 39.49% of the non-redundant gut bacterial genes
of crab-eating macaques (Macaca fascicularis) were found in
the human gut bacterial genes. In contrast, only 0.6% of them

were found in the mouse gut bacterial genes [22]. Such similar-
ities in gut microbiota between humans and NHPs could be
even increased by adopting human diets or living environ-

ments. Captivity allows the life and environment of animals
to be more unified, and has been shown to humanize NHP
gut microbiota [23]. Therefore, captive NHPs reared with a
formula diet in a stable environment provide a feasible model

to study age-dependent changes in the gut microbiota of
humans and NHPs.

Various microbes in the gut microbiota interact to form a

complex biological network. Therefore, not only taxonomic
compositions, but also microbial interactions are essential to
infer changes in microbial communities. In the current study,

we conducted high-throughput sequencing of the 16S rRNA
genes to analyze the fecal samples from captive infant,
young-adult, middle-aged, and elderly crab-eating macaques,

which are the widely used NHP animals sharing a high per-
centage of gut bacterial genes with humans [22]. Our results
revealed the compositional, functional, and network topology
changes of the gut microbiota associated with its maturation

and development. Such findings could provide a baseline
for a better understanding of gut microbiota changes in
diseases.

Results

Age-dependent changes in gut microbiota diversity

To study the gut microbiota during healthy aging of crab-

eating macaques, we used the 16S rRNA gene data to evaluate
age-dependent changes of microbiota diversity, identify the top
abundant and increased taxa as well as key driver microbes in

different age groups, and explore age-associated microbial
phenotypes and functions.

The metadata of 16S rRNA gene sequencing of fecal DNA

are summarized in Table S1. Rarefaction analysis of observed
operational taxonomic units (OTUs) indicated that the
sequencing efficiently captured the potential total OTUs in

the fecal samples (Figure S1). The top five phyla observed in
the fecal samples were Firmicutes (44.5%–61.1%), Bacteroide-
tes (26.4%–39.8%), Epsilonbacteraeota (2.3%–8.0%), Pro-
teobacteria (1.9%–3.8%), and Spirochaetes (1.0%–2.7%)

(Figure 1A), with Firmicutes and Bacteroidetes as the two
dominant phyla. Furthermore, compared to infants, adults
had a significantly increased Firmicutes/Bacteroidetes (F/B)

ratio (all P < 0.05), especially in the middle-aged and elderly
groups (infant, median = 1.09; young-adult, median = 1.28;
middle-aged, median = 2.74; elderly, median = 2.06;

Figure 1B).
Comparison of metrics including Shannon index (Fig-

ure 1C, Figure S2), Pielou’s evenness, observed OTUs, phylo-
genetic diversity, and Simpson index (Figure S2) showed no

significant change in alpha diversity among the four age
groups. In line with this, the Venn diagram in Figure 1D
showed that 275 (94.18%) genera detected in no less than



Figure 1 Firmicutes/Bacteroidetes ratio and alpha/beta diversity in different age groups of macaques

A. Composition of gut microbiota at the phylum level in the four age groups. B. Bar chart showing the Firmicutes/Bacteroidetes (F/B)

ratio for each age group. C. Shannon index in the four age groups. D. Venn plot illustrating the overlap of gut microbial genera among

different age groups. Genera detected in more than six fecal samples are included. E. PCoA based on the Bray-Curtis distance matrix of all

fecal samples. F. Unweighted Unifrac distance of gut microbiota between the three adult groups and the infant group. Pairwise P values

are calculated using the nonparametric Kruskal-Wallis test with Tukey’s post-hoc test. IF, infant; YA, young-adult; MA, middle-aged;

EL, elderly; PCoA, principal coordinate analysis; PERMANOVA, permutational multivariate analysis of variance. *, P < 0.05; **,

P < 0.01; ***, P < 0.001.
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ten fecal samples were shared across different ages (Table S2).
As for beta diversity, infants mainly clustered separately from
adults in the principal coordinate analysis (PCoA) based on

the Bray-Curtis distance matrix, while the middle-aged and
elderly groups clustered together with the young-adult samples
falling in-between (Figure 1E). Furthermore, the permuta-

tional multivariate analysis of variance (PERMANOVA)
results based on unweighted UniFrac distance indicated signif-
icant differences among the four age groups (Figure 1F). The

inter-group unweighted UniFrac distance between adults and
infants showed a trend similar to the F/B ratio (young-adult,
median = 0.42; middle-aged, median = 0.47; elderly, med-
ian = 0.46), compared to the intra-group distance in infants

(median = 0.38). These results thus pointed to remarkable
microbial community changes associated with age.

The top abundant genera in gut microbiota during aging

We then focused on the most abundant genera during aging.
Our results showed a trend of age-dependent changes in top

abundant genera, similar to that of the beta diversity. The heat-
map in Figure 2A showed the top 20 abundant genera from
each of the four age groups, which were mainly commensals

(Figure 2B). Half of these genera were shared by all age groups
(Figure 2C), including four genera (Ruminococcus 1,Ruminococ-
caceaeUCG–005,RuminococcaceaeUCG–014, andSubdoligran-
ulum) from the Ruminococcaceae family, three genera

(Prevotella 9, Prevotella 2, and Prevotellaceae UCG–003) from
the Prevotellaceae family, Lactobacillus, Blautia, and Dialister.

We also looked into Bacteroides, which has been reported

to be abundant in the gut microbiota of humans living in
developed countries [24]. However, this genus showed a low
median abundance of less than 0.1% in our captive macaques

(data not shown).

Correlation between differentially abundant gut microbes and

age

To further characterize the dynamic gut microbiota changes
during aging, we analyzed the correlation of OTUs with age
as a continuous variable. OTUs with significantly different

abundance among age groups were firstly identified using
STAMP (Figures S3 and S4). The alluvial plots in Fig-

ure 3A–E illustrated age-dependent shifts of these taxa at dif-

ferent taxonomic levels. The correlation of their abundances
with age was then analyzed using Spearman correlation. At
the phylum level (Figure 3F, Figure S5), Epsilonbacteraeota,

Deferribacteres, Fusobacteria, Bacteroidetes, Patescibacteria,
and Cyanobacteria were negatively associated with age, while
Actinobacteria, Kiritimatiellaeota, Lentisphaerae, Firmicutes,

WPS–2, Spirochaetes, Planctomycetes, Euryarchaeota, and
Tenericutes were positively associated with age. At the genus
level, in total, 112 genera were significantly associated with
age, among which 29 were from the Lachnospiraceae family,

and 18 were from the Ruminococcaceae family (Figure S6).
A large proportion of the genera negatively associated with
age were from the Lachnospiraceae family. The top 40 genera

with the strongest correlations with age were shown in Fig-
ure 3G. Among these microbes, 23 genera were negatively
associated with age, most of which were potential commensals.

These microbes included 11 genera from the Lachnospiraceae
family (Lachnospiraceae UCG–001, Lachnospiraceae UCG–
003, Lachnospiraceae UCG–004, Lachnospiraceae UCG–008,
[Eubacterium] ventriosum group, Fusicatenibacter, GCA–

900066575, [Ruminococcus] torques group, Coprococcus 1,
Coprococcus 2, and Roseburia), two genera from the Prevotel-
laceae familly (Alloprevotella and Prevotella 2), two genera

from the Ruminococcaceae family (Faecalibacterium and Four-
nierella), Actinobacillus, Campylobacter, Helicobacter,
Mucispirillum, Veillonella, Cetobacterium, Brachyspira, and

Gemella. These top age-associated genera also included 17 gen-
era positively associated with age, including six from the
Ruminococcaceae family (Ruminococcaceae UCG–002,
Ruminococcaceae UCG–010, Ruminococcaceae UCG–013,

Ruminococcaceae NK4A214 group, CAG–352, and [Candida-
tus] Soleaferrea group), CAG–873, Treponema 2, Methanobre-
vibacter, Rikenellaceae RC9 gut group, Christensenellaceae R-7

group, [Eubacterium] coprostanoligenes group, Lach-
nospiraceae UCG–007, Libanicoccus, Oscillibacter, Mogibac-
terium, and Stenotrophomonas.

In addition, we also found a significant correlation between
age and the abundance of lactic acid-producing bacteria, a
group of probiotics in humans (Figure S6). Both Bifidobac-

terium and Lactobacillus increased with age (r = 0.34, P =
4.2 � 10�4 and r = 0.29, P = 0.0025, respectively).

Differential taxa of gut microbiota in the four age groups

We then utilized linear discriminant analysis effect size (LEfSe)
to identify differential taxa that showed the highest abundance
in each of the four age groups. At the phylum level, Epsilon-

bacteraeota and Cyanobacteria showed the highest abundance
in the infant group; Firmicutes, Actinobacteria, and Kiriti-
matiellaeota were the most abundant in the middle-aged

group; and Proteobacteria and Euryarchaeota showed the
highest abundance in the elderly group (Figure 4A). No phy-
lum showed a significantly higher abundance in the young-

adult group.
Infant macaques showed the largest numbers of differentially

abundant families and genera (average abundance > 0.1%)
across the four age groups (Figure 4B and C). Nineteen genera

showed the highest abundance in the infant group: seven genera
from the Lachnospiraceae family (Anaerostipes, Blautia, Dorea,
Fusicatenibacter, Lachnospiraceae UCG–001, Lachnospiraceae

UCG–004, and Roseburia), five genera from the Ruminococ-
caceae family (Butyricicoccus, Faecalibacterium, Fournierella,
Ruminococcaceae UCG–008, and Subdoligranulum), three genera

from the Prevotellaceae family (Alloprevotella, Prevotella 2,
and Prevotellaceae UCG–001), Helicobacter from the
Helicobacteraceae family, Holdemanella from the Erysipelotri-
chaceae family, Phascolarctobacterium from the Acidaminococ-

caceae family, and Sutterella from the Burkholderiaceae family.
As for the young-adult group, family Lactobacillaceae and
genus Lactobacillus showed the highest abundance. It was

noticed that Bifidobacteriaceae, another group of important lac-
tic acid-producing bacteria, and four other families showed the
highest abundance in the middle-aged group. Seven genera

showed the highest abundance in the middle-aged group, includ-
ing three from the Ruminococcaceae family (Ruminococcaceae
NK4A214 group, Ruminococcaceae UCG–002, and Ruminococ-

caceae UCG–010), Treponema 2 from the Spirochaetaceae
family, Rikenellaceae RC9 gut group, Christensenellaceae



Figure 2 The most abundant genera of gut microbiota in different age groups

A. Heatmap showing the most abundant genera in the gut microbiota of the four age groups. B. Box plots showing the ranking of top 20

abundant genera in each of the four age groups. The ten genera shared by all four age groups are labeled in red. C. Venn plot illustrating

the overlap of top 20 abundant genera among different age groups. The prefix before each genus name indicates the phylum which the

genus belongs to. B, Bacteroidetes; F, Firmicutes; E, Epsilonbacteraeota; P, Proteobacteria; S, Spirochaetes.
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Figure 3 Correlation between differentially abundant gut microbes and age

A.–E. Alluvial plots illustrating age-dependent phylogenetic shifts of the top 10 differentially abundant taxa at the phylum (A), class (B),

order (C), family (D), and genus (E) levels. Differentially abundant taxa are ranked by their median of abundance. F. and G. Heatmaps

showing significant age correlations for differentially abundant phyla (F) and genera (G) with FDR < 0.05. P values are calculated by the

Spearman correlation test. For genera, only the top 40 genera ranked by |r| are shown. FDR, false discovery rate.
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Figure 4 Differentially abundant taxa increased in the four age groups

A. Phylogenetic cladogram showing differentially abundant taxa from kingdom to family levels. Microbial classes are indicated with

letters. B. and C. Bar charts showing differentially abundant taxa in four age groups at the family (B) and genus (C) levels with average

abundance > 0.1%. LDA, linear discriminant analysis.

356 Genomics Proteomics Bioinformatics 20 (2022) 350–365
R-7 group, and Lachnospiraceae FCS020 group. In the elderly
group, the most abundant family was Succinivibrionaceae,

and six genera showed the highest abundance, including
Prevotellaceae UCG–003, Ruminococcaceae UCG–013,
Megasphaera from the Veillonellaceae family, Coprococcus 3
from the Lachnospiraceae family, Desulfovibrio from the

Desulfovibrionaceae family, and [Eubacterium] coprostanoli-
genes group.



Wei ZY et al / Gut Microbiota During Healthy Aging 357
Age-dependent gut microbiota networks and their key driver

genera

We then further performed the sparse compositional correla-
tion (SparCC) analysis and weighted correlation network anal-

ysis (WGCNA) to explore the interactions among gut
microbes in the four age groups (Figure 5, Figure S7). All gen-
era with relative abundance > 0.1% were included in the net-
works. Surprisingly, although not preferentially selected, the

age-associated genera were found to be the major components
of these networks. The gut microbiota network in the infant
group had the lowest connectivity, as indicated by its small
Figure 5 The interactive networks of gut microbiota

The interactive networks of gut microbiota in the infant (A), young-a

fecal samples (E), are constructed from the SparCC results, and visua

correlation |r| > 0.2, and P< 0.05 are included in the networks. Node

the weighted node connectivity. Edge color and thickness represent c
maximal clique centrality (MCC) score (total MCC score= 52)
(Figure 5A, Figure 6A). The network developed into a more
mature stage in the young-adult group (total MCC

score = 274) (Figure 5B, Figure 6A), and had the highest con-
nectivity in the middle-aged group (total MCC score = 3688)
(Figure 5C, Figure 6A). Unexpectedly, although similar gut

microbiota diversities were found between the elderly and
middle-aged groups, the network connectivity dramatically
decreased in the elderly group (total MCC score = 86) (Fig-

ure 5D, Figure 6A). The WGCNA results identified clusters
(modules) in the gut microbiota of different age groups (Fig-
ure S7; Table S3).
dult (B), middle-aged (C), and elderly (D) groups, as well as in all

lized using Cytoscape. Genera with average abundance > 0.1%,

color denotes the phylum of a certain genus. Node size represents

orrelation r. SparCC, sparse compositional correlation.



Figure 6 Topological analysis identifies hub and driver genera in microbiota networks

A. MCC scores from the whole network and top 10 hub genera in the SparCC networks for the four age groups and all samples. B. Venn

plot showing the overlap of hub genera among the four age groups. Genera are colored blue if negatively associated with age, and red if

positively associated with age. C. NetShift common sub-networks based on the SparCC networks with highlighted driver genera. Node

sizes are in proportion to their NESH scores, and the nodes representing the potential drivers are highlighted in red. Edges are colored

in red if present only in case, in green if present only in control, and in blue if present in both. Node names without underlines denote age-

associated genera. MCC, maximal clique centrality; NESH, neighbor shift.
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We then utilized cytoHubba to analyze the hub genera,
which were supposed to be identified by ranking their MCC

and EcCentricity (EC) scores. Among the hub genera shown
in Figure 6A, Prevotella 9 was the only one shared by all four
age groups as well as the network constructed using all samples

(Figure 6A and B). The inter-genera interactions mediated by
Prevotella 9 could be of potential importance. The strongest
positive interactions in the microbial communities were found
between Prevotella 2 and Prevotella 9 and between Allopre-

votella and Prevotella 9 in the infant group. In addition to Pre-
votella 9, Helicobacter and Prevotella 2 were another two
important hub genera in the infant group. The role of such

interactions mediated by these genera, particularly Prevotella 9,
gradually diminished with age, and were in part replaced by
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interactions mediated by the hub genera negatively associated
with age, such as Ruminococcaceae UCG–002 and Rikenel-
laceae RC9 gut group.

Moreover, we performed the NetShift analysis to detect
rewiring among the microbiota SparCC networks, and identi-
fied key driver microbes responsible for the changes (Figure 6C;

Table S4). Prevotella 9 was found to be the only driver genus
responsible for the microbial changes between the infant and
young-adult groups. Novel interactions with Prevotella 9 were

established in the gut microbiota of the young-adult group
compared to that of the infant group. As for adults, multiple
potential drivers were identified. Among these drivers, Rikenel-
laceae RC9 gut group and Megasphaera were the two key dri-

ver genera that contributed to the long-term development of
gut microbiota in adults. Another five genera, including Dial-
ister, Christensenellaceae R-7 group, [Eubacterium]

coprostanoligenes group, Ruminococcaceae UCG–005, and
Ruminococcaceae UCG–002 group, were involved in the change
of gut microbiota between the young-adult and middle-aged

groups. Another six genera, including Ruminococcaceae
UCG–014, Holdemanella, Succinivibrio, Alloprevotella, Lach-
nospiraceae UCG–007, and Prevotella 2, were involved in the

change of gut microbiota between the middle-aged and elderly
groups.

Age-associated phenotypes and functions of gut microbiota

To understand the potential functional impact of age-
dependent taxonomic changes in the gut microbiota, the
microbial phenotypes were predicted using BugBase and com-

pared among different age groups. The relative abundances of
microbes with the anaerobic and Gram-negative phenotypes
were significantly down-regulated, whereas the relative abun-

dences of microbes with the facultative anaerobic and Gram-
positive phenotypes were up-regulated in the middle-aged
and elderly groups compared to the infant group (all

P < 0.01) (Figure 7A). In line with these findings, Spearman
correlation analysis showed that, the relative abundances of
microbes with the anaerobic and Gram-negative phenotypes
significantly decreased with age (r = �0.37, P = 1.2 � 10�4

for anaerobic; r = �0.34, P = 4.3 � 10�4 for Gram-
negative), whereas the relative abundances of microbes with
the facultative anaerobic and Gram-positive phenotypes signif-

icantly increased with age (r = 0.42, P = 8.7 � 10�6 for fac-
ultative anaerobic; r = 0.34, P = 4.3 � 10�4 for Gram-
positive) (Figure S8).

We also determined the age-dependent changes in gut
microbial functions using the Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States
(PICRUSt) software, and identified 152 Kyoto Encyclopedia

of Genes and Genomes (KEGG) modules to be significantly
associated with age (Table S5). The principal component anal-
ysis (PCA) plot derived from the abundance of KEGG mod-

ules revealed remarkable differences in microbial functions
among different age groups, showing a similar pattern with
beta diversity (Figure 7B). We observed a significant correla-

tion between these microbial functions and age. As shown in
the heatmap in Figure 7C, metabolic pathways that were most
positively associated with age were mainly involved in the

biosynthesis and metabolism of lipids, carbohydrates, and
amino acids. And metabolic pathways that were most
negatively associated with age were mainly involved in host
immune response and biosynthesis of the immunomodulating
metabolite lipopolysaccharides (LPSs), which are endotoxin

derived from the outer membrane of Gram-negative bacteria.
LEfSe analysis further showed that the pathways related to
porphyrin and chlorophyll metabolism, oxidative phosphory-

lation, and biosynthesis of LPSs were up-regulated in
the infant group (Figure 7D). In contrast, biosynthesis of pep-
tidoglycan, another important immunomodulating metabolite

mainly derived from Gram-positive bacteria, was increased in
the young-adult group. Metabolism of carbohydrates was
most up-regulated in the middle-aged and elderly groups.
Noteworthy, strong correlations were found between these

age-associated microbial functions and gut microbes, particu-
larly for the hub and driver genera (Figure S9), with the largest
number of positive correlations found in Prevotella 9.

Discussion

By using the NHP model of captive crab-eating macaques, we
revealed remarkable lifelong age-dependent changes in gut
microbial compositions and functions. Moreover, our study
identified hub and driver microbes that hold a potential signif-

icance in the age-dependent microbial interplay. Given the
similarities between captive crab-eating macaques and
humans, these findings could provide a better understanding

of age-dependent changes in the human gut microbiota.
The gut microbiota of captive macaques in this study showed

similarities to that of humans, especially those in developing

countries [12,23,25,26]. In line with those of humans and other
NHPs [1,27], the gut microbiota of our captive crab-eating
macaques was dominated by Firmicutes and Bacteroidetes

across all ages (Figure 1A). Most of the common genera with
high abundances across all ages are potentially commensals
from the Ruminococcaceae and Prevotellaceae families (Fig-
ure 2B). In contrast, the abundance of Bacteroides was very

low. Gut microbial communities of individuals from developing
countries were reported to be dominated by Prevotella [26],
while those from developed countries were highly abundant in

Bacteroides [12]. Plant-based diets with low fat could be involved
in the higher similarities between the gut microbiota of captive
macaques and humans living in developing countries [24].

The lack of significant changes in alpha diversity might
indicate the importance of microbiota studies in captive NHPs
(Figure 1C). Yatsunenko et al. [12] reported that observed

OTUs increased with age in the gut microbiota of all three
populations. In a recent gut microbiota study of non-captive
rhesus monkeys, Chen et al. [28] reported that male adults
had significantly higher Shannon index than male juveniles.

However, under a well-controlled environment provided by
captivity, alpha diversity changes are probably smoothed
out. By the age of 1–2 years old, infant gut microbiota had

gained more than 94% of genera observed in adults (Fig-
ure 1D). Age-related factors, such as diets and lifestyles, rather
than age itself, might actually contribute to the age-associated

increase of alpha diversity in human populations.
Nevertheless, the remarkable age-dependent changes,

including the F/B ratio and beta diversity as well as network
topology, emphasized the actual effects of age on the gut

microbiota in captive macaques (Figure 1B). The F/B ratio is
considered as an indicator of the maturation and development



Figure 7 Age-associated gut microbial phenotypes and functional profiles

A. Comparison of gut microbes with different phenotypes predicted by BugBase among the four age groups. P values for group

comparisons are calculated by the nonparametric Kruskal-Wallis test with Tukey’s post-hoc test. *, P < 0.05; **, P < 0.01;

***, P < 0.001; NS., not significant. B. PCA plot based on microbial function profiles predicted by the PICRUSt software. C. Heatmap

illustrating the median abundance and age correlation of gut microbial functions related to the metabolism of carbohydrates, lipids, and

proteins as well as host immune response. P values are calculated by the Spearman correlation test. Pathways with FDR < 0.05 are

shown. D. LEfSe results of gut microbial functions enhanced in each of the four age groups. PCA, principal component analysis;

PICRUSt, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States.
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of gut microbiota [29], and has been reported to be involved in
health-related conditions or diseases such as obesity [30]. In the

current study, the F/B ratio increased in adult macaques, and
decreased in elderly macaques, resembling the observation in
humans [29,31]. It could be due to increased Firmicutes and
decreased Bacteroidetes with age (Figure 3F). Interestingly,
although middle-aged and elderly macaques had similar beta

diversity, evident reduction of connectivity in elderly macaques
indicated a decline of microbial interactions. Such findings
suggest that network connectivity could be more sensitive than
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the F/B ratio and biological diversity to detect age-dependent
changes in the gut microbiota.

Moreover, the age-associated microbes identified in captive

macaques could be involved in the host’s development and
aging in good health (Figures 3 and 4). These microbes could
play distinct roles depending on their direction of age correla-

tion. A large proportion of these age-associated genera
decreased with age, including those increased in infants. The
compositions and activities in the infant gut microbiota have

been engaged in the host’s early development and a variety
of diseases, such as allergy and autism [5,32,33]. These genera
negatively associated with age in fact consisted of at least two
distinct groups. First, these genera contained potential com-

mensals, which were active players in the early development
of gut microbiota. The interplay between these commensals
and the host intestinal barriers is important for the postnatal

development of host metabolism, immunity, and mucosal bar-
rier [34–36]. Commensals could benefit the host by producing
metabolites such as short-chain fatty acids [37]. A number of

the age-associated commensals in the current study are
butyrate-producing bacteria in the host colon, including Fae-
calibacterium, Roseburia, Anaerostipes, and Butyricicoccus

[38]. These commensals include anti-inflammatory bacteria,
and outcompete pathogens to protect the host, and abnormal
alteration of them have been reported in various human dis-
eases [39–43]. For example, Faecalibacterium prausnitzii, one

of the most abundant anti-inflammatory commensal bacteria
in the colon, was reduced in Crohn’s disease patients [41]. Sec-
ond, these bacteria negatively associated with age also con-

tained a number of suspicious pathogens, especially
enteropathogens. Campylobacter and Actinobacillus are causes
of infectious diseases in humans [44]. Species from the

Brachyspira genus are known pathogens causing diarrhea in
animals and humans [45]. Bacteria from the Gemella genus
are involved in endocarditis [46]. Anaerobiospirillum suc-

ciniciproducens from the Anaerobiospirillum genus has been
found to be associated with diarrhea and bacteremia [47]. In
this study, Helicobacter, a group of Gram-negative bacteria,
was identified as a hub genus with a high abundance in infant

gut microbiota, but its role remained largely unclear. Heli-
cobacter macacae from this genus has been reported to be fre-
quently detected in rhesus monkeys without a diarrheal history

[48]. Rhoades et al. [9] reported that Helicobacter macacae was
increased in 8-month infants that remained asymptomatic for
diarrhea. In line with these findings, the biosynthesis of LPSs

was also up-regulated in our infant macaques (Figure 7), fur-
ther supporting a potential role of these age-associated
microbes in the modulation of the host’s immunity. It should
be taken into account that all macaques in the current study

were in good health. Therefore, the gradual decrease of these
suspicious pathogens with age might be associated with the
maturation of the gut mucosal barrier. In addition, recent

studies have reported possible effects of pathogens protecting
the host against allergic sensitization [49,50]. In our captive
macaques, the suspicious pathogens with their abundances

under control might allow ‘‘good” exposure for the proper
training of the host’s immune system.

In the current study, while the roles of the microbes posi-

tively associated with age remained largely unclear, they could
be related to the host’s healthy aging. A subset of these
microbes has been implicated in the metabolism of nutrients,
including lipids and carbohydrates, which is in line with the
predicted gut microbial functions up-regulated with age in
our macaques. Importantly, members of the Lactobacil-
lus genus, highly abundant in our adult macaques (Figure 2),

are widely used probiotics with potential effects on lipid meta-
bolism [51]. We also noticed that Bifidobacterium, whose mem-
bers are the key probiotics for the metabolism of

oligosaccharides in breast milk [52], also increased with age.
The increase of these lactic acid-producing probiotics might
indicate a potential role of these bacteria in healthy aging. In

addition, Eubacterium coprostanoligenes has been identified as
a cholesterol-reducing anaerobe [53]. Genera Christensenel-
laceae R-7 group, Ruminococcaceae UCG–002, Ruminococ-
caceae UCG–010, and Lachnospiraceae FCS020 group were

linked to circulating lipid-related metabolites in a recent
population-based study [54]. Candidatus soleaferrea was
increased in a randomized controlled trial of hypocaloric diet

with Hass avocado [55]. In line with these findings, changes
in microbial functions related to metabolisms of lipids and car-
bohydrates increased with age (Figure 7). In addition, these

microbes positively associated with age have also been impli-
cated in diseases. Treponema 2, Rikenellaceae RC9 gut group,
and Prevotellaceae UCG–003 were increased in rats with

isoproterenol-induced acute myocardial ischemia [56], whereas
in a meta-analysis Christensenellaceae R-7 group was found to
be reduced in patients affected by intestinal diseases [57].
Intriguingly, although the reported role of archaea in the host’s

health remained unclear, our results showed that the archaeal
family Methanobacteriaceae significantly increased in elderly
macaques, and the genus Methanobrevibacter increased with

age in the macaque gut microbiota. Such findings thus indicate
a positive association of these methanogens with host aging.

This study further highlights the pivotal role of driver

microbes in age-dependent changes of the gut microbiota (Fig-
ures 5 and 6). Genus Prevotella 9, with a high abundance in
our captive macaques, was identified as the most important

hub mediating a large proportion of microbial interactions in
the gut microbiota across all ages. And it acted as the key dri-
ver responsible for the gut microbiota maturation from infants
to young adults. The exact biological significance of Prevotella

9 in the context of integrative bacterial community and micro-
biota development has yet to be further elucidated. A recent
reanalysis of existing gut metagenomes from NHPs and

humans reported that Prevotella was prevalent in the primate
gut microbiota of different host species [20]. In line with such
findings, the Prevotella 9 genus was highly abundant across all

ages with the gradual age-dependent decrease in our captive
macaques. The high abundance of Prevotella in both humans
and NHPs could be strongly associated with plant-based,
low-fat diets [24], and implicated host–microbiota coevolution

[58]. Nevertheless, the abundance of Prevotella 9 in adult
macaques decreased with age, along with a rise in the abun-
dance of other microbes such as the Rikenellaceae RC9 gut

group andMegasphaera, pointing to age-dependent microbiota
development. Such shifts of driver microbes could in turn
impact the phenotypes and functions of gut microbiota.

Compared to rodent animals widely used in experiments,
NHPs have a much longer life span. Crab-eating macaques usu-
ally live longer than 20 years in captivity. Therefore, we used a

relatively feasible cross-sectional study design in the current
study, although prospective studies could provide more confi-
dent evidence in the future. Due to such a long life span, by
far, it remains a big challenge to objectively and accurately
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assess such chronic and long-term age effects in an NHP model
through experiments. Moreover, the sample size of NHP model
studies is usually limited by animal ethics and the higher costs

compared to conventional rodent studies. Our findings thus
warrant further studies of the gut microbiota in captive NHPs.

Conclusion

In summary, by using captive crab-eating macaques to control

confounding factors, the current study demonstrates evident
age-dependent structural and functional changes in the healthy
gut microbiota during the host’s development and aging. Our
key findings of age-associated microbes, composed of both

commensals and suspicious pathogens, indicate the potential
importance of appropriate bacterial exposure for the early
development of the host. Moreover, the hub and driver

microbes identified by network topology analysis probably
play a pivotal role as core microbes in microbial communities,
and are responsible for the maturation and development of the

primate gut microbiota. By characterizing the age-dependent
changes in the healthy gut microbiota, the current study also
provides a baseline for comparison and understanding of
disease-related changes in the primate gut microbiota.
Materials and methods

Animals used in the study

A total of 104 male crab-eating macaques from Guangdong
Xiangguan Biotechnology Co. Ltd. (Guangzhou, China) were
included in the current study. All the animals were kept in a

well-controlled environment with moderate room temperature
(16 �C–28 �C) and relative humidity of 40%–70%, as well as a
12-h light/12-h dark cycle. Individual animals were kept in sep-
arate cages, and animals at different ages were never mixed for

co-housing. The animals were confirmed to be in good health by
records and veterinary examination prior to the study. These
animals were fed a normal formula chow diet, and regularly

examined by veterinarians. In addition, to ensure no infection,
their fur, skin, rectal swab, and blood samples were regularly
tested by the government agency and a third-party laboratory

to ensure that these animals were negative for specific pathogens
(Salmonella, Shigella, and germatogenic fungi), viruses (simian
T-lymphotropic virus 1, simian retrovirus, simian immunodefi-
ciency virus, and simian herpesviruses), and parasites (ectopar-

asites and Toxoplasma gondii) as shown in Figures S10 and
S11. To avoid possible effects of pregnancy in females, only male
crab-eating monkeys were included in this study.

The 104 male macaques included in the current study were
composed of four different age groups, including the infant (1–
2 years old, n = 26), young-adult (4–6 years old, n = 26),

middle-aged (7–10 years old, n = 26), and elderly (� 13 years
old, n = 26) groups. For the infant group, post-weaning infant
macaques were selected to reduce the possible effects of

breastfeeding.

Stool sample collection and DNA extraction

Rectal swab samples were freshly collected from each monkey,

and stored at �80 �C immediately until DNA extraction in
August, 2018. Microbial DNA was extracted using the TIA-
Namp Stool DNA Kit (Catalog No. DP328, Tiangen, Beijing,
China) according to the manufacturer’s instructions, and its

concentration and quality were assessed using a Nanodrop
One Microvolume UV Spectrophotometer (ThermoFisher
Scientific, Waltham, MA).

16S rRNA gene sequencing

The hypervariable V4 regions of bacterial/archaeal 16S rRNA

genes were amplified using PCR and V4-specific primers
(515F: 50-GTGCCAGCMGCCGCGGTAA-30 and 806R:
50-GGACTACHVGGGTWTCTAAT-30). PCR products were

checked using the 2% agarose gel, purified using the GeneJET
Gel Extraction Kit (Catalog No. K0691, ThermoFisher Scien-
tific), and sequenced on an Ion S5XL sequencer (Thermo-
Fisher Scientific) with a single-end 400-bp read length

configuration.

Processing of 16S rRNA gene sequencing data

Bioinformatic analysis of the 16S rRNA gene sequencing data
was performed using the QIIME2 (version 2018.6.0) analysis
pipeline [59]. Briefly, sequencing data were processed by the

dada2 program to filter low-quality and chimeric sequences,
and generate unique feature tables equivalent to OTU tables
at exact match or 100% sequence similarity. Taxonomy was
then assigned to these features using the q2-feature-classifier

against the full-length SILVA database (release r132) at a
99% similarity cutoff [60]. Analysis of microbiota diversities
was conducted in QIIME2: alpha diversity metrics included

Pielou’s evenness, phylogenetic diversity, observed OTUs,
Shannon index, and Simpson index, and beta diversity metrics
included weighted/unweighted UniFrac distances and Bray-

Curtis dissimilarity. Comparison of beta diversity was per-
formed using the nonparametric method PERMANOVA.
Abundances of OTUs were compared among groups by using

STAMP (version v2.1.3) [61]. The LEfSe algorithm was used
with a log10 LDA score cutoff of 2 to identify taxa specifically
increased or exhibiting the highest abundance in particular age
groups compared to other groups [62]. Phylogenetic clado-

grams of LEfSe results were visualized using the GraPhlAn
tool (version 1.1.3; https://bitbucket.org/nsegata/graphlan).

Microbial interactive network construction and analysis

The SparCC algorithm (https://bitbucket.org/yonatanf/sparcc)
[63] and the WGCNA [64] were used to estimate the correla-

tions among gut microbes. 100 bootstrap replicates were used
to calculate the pseudo P values in the SparCC analysis, and
correlations with |correlation coefficient (r)| > 0.2 and

P < 0.01 were considered significant. For each OTU with sig-
nificant SparCC correlation, a weighted node connectivity
score was calculated as an indicator of its weight in the net-
work by summing up its |r| with all of its first neighbors [65].

WGCNA was conducted using a merging module threshold
of 0.8, at least 8 species per module, and a related network
weight of 0.7. The constructed SparCC network was further

visualized using Cytoscape (version 3.7.0) [66]. The cytoHubba
plugin (version 0.1) was used to identify hub genera in the
networks [67]. Two node ranking methods, including a

https://bitbucket.org/nsegata/graphlan
https://bitbucket.org/yonatanf/sparcc
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local-based method MCC and a global-based method EC,
were used to evaluate the importance of genera. In addition,
NetShift (https://web.rniapps.net/netshift/) was used to evalu-

ate potential driver microbes using a case-control strategy to
compare a pair of networks as described [68]. Neighbor shift
(NESH) scores were calculated to quantify increased interac-

tions in the case over the control.

Prediction of microbial phenotypes and function profiles

The BugBase (https://bugbase.cs.umn.edu/) analysis tool was
utilized to predict high-level phenotypes in fecal microbiome
samples. PICRUSt (version 1.1.4) was used to predict micro-

bial functions from the 16S rRNA gene sequencing data,
which were further categorized using the BRITE hierarchy of
the KEGG database [69]. PCA based on KEGG module abun-
dances was conducted using STAMP.

Statistical analysis

Statistical analysis was performed using GraphPad Prism (ver-

sion 7.0a; GraphPad software) and the R statistical language
(version 3.6.0). The abundances of OTUs and KEGG modules
among groups were compared using the non-parametric

Kruskal-Wallis test, and evaluated for pairwise inter-group
differences with the Tukey’s post-hoc test if overall significance
was found. The Benjamini-Hochberg false discovery rate
(FDR) correction was applied for multiple testing. Correla-

tions of OTUs, microbial phenotypes, and KEGG functions
with age as continuous variables were determined using Spear-
man correlation analysis. Differences in the taxa were analyzed

by LEfSe with default settings.
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