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Hereditary breast cancer constitutes only 5–10% of all breast cancer cases and is characterized by strong family
history of breast and/or other associated cancer types. Only ~25% of hereditary breast cancer cases carry a
mutation in BRCA1 or BRCA2 gene, while mutations in other rare high and moderate-risk genes and common
low penetrance variants may account for additional 20% of the cases. Thus the majority of cases are still
unaccounted for and designated as BRCAX tumors. MicroRNAs are small non-coding RNAs that play important
roles as regulators of gene expression and are deregulated in cancer. To characterize hereditary breast tumors
based on their miRNA expression profiles we performed global microarray miRNA expression profiling on a
retrospective cohort of 80 FFPE breast tissues, including 66 hereditary breast tumors (13 BRCA1, 10 BRCA2 and
43 BRCAX), 10 sporadic breast carcinomas and 4 normal breast tissues, using Exiqon miRCURY LNA™microRNA
Array v.11.0. Here we describe in detail the miRNA microarray expression data and tumor samples used for the
study of BRCAX tumor heterogeneity (Tanic et al., 2013) and biomarkers associated with positive BRCA1/2
mutation status (Tanic et al., 2014). Additionally, we provide the R code for data preprocessing and quality
control.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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The data is deposited in the GEO database under the accession
number GSE44899: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE44899.
Experimental design, materials and methods

Study population

Breast tumor samples were ascertained from patients diagnosed
with breast cancer between 1988 and 2011 through Spanish hospitals:
Gregorio Marañon, Hospital San City, Pablo, Fundacion Jimenez Dıaz,
Hospital La Paz, H Santa Caterina (Girona), P. de Hierro, H. Severo
Ochoa and H. Ramon y Cajal. Sporadic breast tumor samples were
collected from breast cancer patients without suggestive family history
of breast or ovarian cancer. Normal breast tissue samples were acquired
from patients undergoing cosmetic breast reduction surgery with no
personal or family history of breast cancer. All patients signed informed
consent for genetic testing and use of exceeding material in research,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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and the research project has the approval of the ethics committee of the
Spanish National Cancer Research Centre (CNIO), named Comité de
ética de la investigación y de bienestar animal del Instituto de Salud
Carlos III.

Patients belonging to high-risk breast cancer families were selected
according to the Spanish Medical Oncology Society (http://www.
seom.org/) inclusion criteria for hereditary breast cancer: breast cancer
diagnosed in b40-year-old female; both breast and ovarian cancer
diagnosed in same patient; families with at least three female first-
degree relatives affected with breast cancer; at least two females
affected with breast cancer (at least one of them diagnosed before
50) or at least one case of female breast cancer and at least one case
of ovarian, female bilateral breast or male breast cancer. All patients
belonging to high-risk breast cancer families have undergone full
BRCA1/2 gene testing for mutations (dHPLC and Sanger sequencing)
and large rearrangements (MLPA). Patients fulfilling the criteria for
hereditary breast cancer with no identifiable mutations in either
BRCA1 or BRCA2 genes were designated as BRCAX cases. Hereditary
breast tumor characteristics are shown in Table 1.
Sample processing

For each sample tumoral area was marked by pathologist, FFPE
blocks were cut in 3–5 10 μm-sections, mounted on slides and tumor
tissue was scraped into 1.5 ml tubes by needle macrodissection for
subsequent RNA extraction. Total RNA was extracted using miRNeasy
FFPE kit (QIAGEN) according to the manufacturer's instructions,
with modified tissue digestion step using 20 mg/μl Proteinase K
(Roche, Basel, Switzerland) for overnight incubation at 55 °C. RNA
quantity was assessed using NanoDrop Spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA).
Table 1
Clinico-pathological data for hereditary breast tumors.

BRCA1 BRCA2 BRCAX

Total no. n = 13 n = 10 n = 43

n (%) n (%) n (%)

Age at diagnosis 9 6 40
Mean 40.33 42.5 47.75
Range 28–55 35–56 25–95

Grade 12 10 43
1 0 (0%) 2 (20%) 4 (9.3%)
2 1 (8.3%) 3 (30%) 20 (48.8%)
3 11 (91.7%) 5 (50%) 17 (41.5%)

Estrogen receptor 13 10 37
Positive 2 (15.4%) 7 (70%) 18 (48.6%)
Negative 11 (84.6%) 3 (30%) 19 (51.4%)

Progesteron receptor 12 10 38
Positive 2 (15.4%) 7 (70%) 14 (36.8%)
Negative 11 (84.6%) 3 (30%) 24 (63.2%)

HER2 13 10 38
Positive 0 (0%) 2 (20%) 9 (23.7%)
Negative 13 (100%) 8 (80%) 29 (76.3%)

Ki-67 13 7 31
1 (0–5%) 4 (30.8%) 3 (42.9%) 15 (48.3%)
2 (6–25%) 5 (23.1%) 2 (28.6%) 11 (35.5%)
3 (N25%) 4 (30.8%) 2 (28.6%) 5 (21.6%)

Subtype 13 10 35
Luminal A 2 (15.4%) 6 (60%) 13 (37.1%)
Luminal B 0 (0%) 2 (20%) 6 (17.1%)
HER2 0 (0%) 0 (0%) 3 (8.6%)
Triple negative 11 (84.6%) 2 (20%) 13 (37.1%)

Lymph node 13 10 37
Positive 5 (50%) 4 (57.1%) 18 (48.6%)
Negative 5 (50%) 3 (42.9%) 17 (51.4%)

Breast cancer cases were classified into four subtypes based on IHC-model [15]. In bold is
the number of samples per category (BRCA1, BRCA2 and BRCAX) for which there was
available information on clinico-pathological feature in question.
Experimental design and array description

Microarray expression profiling of microRNAs was performed on a
retrospective cohort of 80 FFPE breast tissues, including 66 hereditary
breast tumors (13 BRCA1, 10 BRCA2 and 43 BRCAX), 10 sporadic breast
carcinomas and 4 normal breast tissues, using miRCURY LNA™
microRNA Array v.11.0 — hsa, mmu & rno (Exiqon A/S, Vedbaek,
Denmark), in a single-color experiment. Experimental design included
pairwise comparisons between BRCA1 tumors, BRCA2 tumors, BRCAX
tumors, sporadic breast tumors and normal breast tissue; pairwise
comparisons of BRCA-mutation carriers (BRCA1 and BRCA2 tumors),
non-carriers (BRCAX and sporadic tumors), and normal breast tissue;
and finally, pairwise comparisons of hereditary breast tumors (BRCA1,
BRCA2 and BRCAX tumors), sporadic breast tumors and normal breast
tissue.

The miRCURY LNA™ microRNA Array v.11.0 — hsa, mmu & rno
contains capture probes for over 1700 microRNAs in human, mouse,
rat and their related viruses as annotated in miRBase Release v.11.0
including 1940 capture probes, in 4 replicates, representing 829
human miRNAs annotated in miRBasev.11 database and 434 hsa-
miRPlus™ probes (Exiqon proprietary). Forty three control capture
probeswere included in the probe set including10 syntheticmicroRNAs
spike-in control probes in 48 replicates to evaluate labeling and
hybridization, and seven negative control capture probes and twenty
six capture probes complementary to small nuclear RNAs in 4
replicates.

Microarray hybridization

Labeling and hybridization procedure was performed as recom-
mended by the manufacturer, using miRCURY LNA™ microRNA Power
Labeling Kit (Exiqon, Denmark). First, 300 ng of total RNA was treated
with Calf Intestinal Alkaline Phosphatase (CIP) to remove the 5′-
phosphates from the microRNA termini prior to labeling with Hy3
green fluorescent dye. A set of 10 synthetic spike-in RNAs (Spike-in
miRNA kit, Exiqon) was added to the RNA sample before the labeling
reaction and later used for quality control for RNA labeling reaction
and inter-array reproducibility. Labeling reaction was performed using
2 μl of CIP treated total RNA, 1.5 μl of Hy3 fluorescent dye, 2 μl DMSO
and 2 μl of labeling enzyme, reaction was incubated at 16 °C for 1 h
and heat inactivated by incubation at 65 °C for 15 min and left at 4 °C
until hybridization step. Labeled samples were subsequently loaded
onto a miRNA microarray slide and hybridized over 16 h at 56 °C.
Washing of the slides was performed according to the manufacturer's
instruction. Washed slides were dried by centrifuging at 1200 rpm
for 5 min. Processed slides were scanned with Agilent G2565AA
Microarray Scanner System (Agilent Technologies, Santa Clara,
CA, USA), with the laser set to 635 nm, at Power 80 and PMT 70
setting, and a scan resolution of 10 μm. To avoid ozone bleaching,micro-
arrays were scanned in an ozone-free environment (less than 2 ppb
ozone). Fluorescence intensities on scanned images were quantified
using Agilent Feature Extraction software version 9.5.3 (Agilent
Technologies) using the modified Exiqon protocol and corresponding
GAL files.

Quality control

Reliability of each microarray was assessed using FE Quality Control
report data. No values were flagged indicating that salt/hair/dust and
other anomalies did not affect the results. Additionally, expression
values and distribution of spike-in RNAs were inspected for each of
the arrays to perform quality control of labeling and hybridization
(Supporting Fig. 1), to estimate the variance of replicated measure-
ments within arrays and to assess the technical variability between
different parts of the array. Spike-in CV values calculated between the
different slides in the experiment did not exceed 12%, with median CV
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of 1.9% between arrays, and the Pearson correlation of N0.974 indicating
very high inter-array reproducibility. Further between array quality
control was performed using ArrayDataMetrics R/Bioconductor package
[6]. Fig. 1 shows boxplots of the array intensities before and after
quantile normalization. Outlier detection was performed by computing
the Kolmogorov–Smirnov statistic Ka between each array's distribution
and the distribution of the pooled data. Two arrays weremarked as out-
liers by an asterisk (*) for having the distribution of an array different
from the others.

Patterns in the plot Fig. 2 indicate clustering of the arrays either
because of intended biological or unintended experimental factors
(batch effects). There was no indication of batch effect given that
there was no correlation of the date of hybridization (array order) and
clustering pattern. Outlier detection was performed by looking for
arrays for which the sum of the distances to all other arrays, Sa =
Σb dab was exceptionally large. Three such arrays were detected, and
they are marked by an asterisk, *. (See Fig. 2)

Finally, we inspected the MA plots of each array compared to
median-intensity “pseudo-array” (See Fig. 3). Outlier detection was
performed by computing Hoeffding's statistic Da on the joint distribu-
tion of A and M for each array. Shown are first the 4 arrays with the
highest values of Da, then the 4 arrays with the lowest values. There
were no outlier arrays with Da N 0.15. Given that no single array was
highlighted as an outlier by more than one method, and that there
was no evidence of batch effect we used all arrays for downstream
data analysis.
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Fig. 1. Shows boxplots representing summaries of the signal intensity distributions of the arrays A
Data preprocessing and probe annotation

Raw data values were background subtracted using Normexp
background correction method and normalized applying quantile
method in limma R/Bioconductor package [4,5]. Normalized intensity
data were log2 transformed and subjected to further analysis. Data pre-
processing was performed using GEPAS 4.0 [13], however since January
2013 GEPAS has migrated to Babelomics 4.0 (http://babelomics.bioinfo.
cipf.es/) [8]. Gene patterns containing more than 70% missing values
were discarded, while other missing values were imputed using 3-k
nearest neighbors. Prior to hierarchical clustering miRNA data was
preprocessed to eliminate miRNAs with uniformly low expression
and/or with low expression variation (var b 0.1) across the experi-
ments, retaining 444 features (276 hsa-miR, 168 hsa-miRPlus). In the
original publications probes were annotated according to miRBase
v.11. Due to subsequent changes in miRNA nomenclature here we pro-
vide the up-dated probe annotation file for miRBase v.21 (Supporting
file 1).

Data analysis

Differential expression analysis was performed with linear
models (limma) moderated t-test implemented in the POMELO II
tool, available in Asterias package (http://asterias.bioinfo.cnio.es) [9].
The estimated significance level (unadjusted p-values) was corrected
for multiple hypotheses testing using Benjamini and Hochberg
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) before normalization, B) after quantile normalization. Each box corresponds to one array.
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Fig. 2. Shows a pseudocolor heatmap of the distances between arrays. The color scale is chosen to cover the range of distances encountered in the dataset. The distance dab between two
arrays a and b is computed as the mean absolute difference (L1-distance) between the data of the arrays (using the data from all probes without filtering). Identified outliers are marked
with an asterisk (*).
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method to control the False Discovery Rate (FDR) [1]. Those miRNAs
with q-value b0.05 were selected as significantly differentially
expressed.

Average linkage hierarchical cluster analysis using Pearson
correlation with uncentered metrics was performed using Gene
Cluster and data were visualized by Treeview v.1.6 [3]. Consensus
Clustering module available in the Gene Pattern suite [10] was
used for the discovery of biologically meaningful clusters among
the BRCAX tumors [11] by assessing the stability of the discovered
clusters by applying a KNN means resampling algorithm, with
2, 3, 4, and 5 centroids using 500 re-sampling iterations. The
consensus among the multiple runs was assessed and summarized in
a consensus matrix and ΔG plot to estimate the composition and
number of clusters, and the change in free energy with every additional
group added.

For the building of predictive miRNA classifier described in Tanic
et al. [12], we used the Prophet [7] tool implemented in GEPAS 4.0
and a split sample approach. Genes discriminating between BRCA1/2
mutated tumors in the training set were ranked by their F-ratio based
on the between to within sum of squares, and predictors were built
using the best 2, 5, 10, 20, 35, 50 and 100 genes and several methods
for classification [2,14]: support vector machines (SVM), k-nearest
neighbor (KNN), diagonal linear discriminant analysis (DLDA),
self-organizing maps (SOM) and shrunken centroids (PAMR). Classifier
performance was evaluated by the leave-one-out cross-validation
procedure. The final miRNA- classifier yielding theminimummisclassi-
fication error after cross-validation in the training set and optimal
sensitivity and specificity was selected. The performance of the selected
classifier was validated by applying the specified model to the
corresponding test set which has never been used for the training
of the classifier or for feature selection, and estimating sensitivity,
specificity, positive and negative predictive values based on the
confusion matrix.
Conclusion

In summary, here we have described, to our knowledge, the largest
dataset on miRNA expression profiling in hereditary breast tumors
used recently in studies published in specialty journals. We have
shown that the data are of high quality and described in detail the
microRNA data set including an updated miRNA nomenclature to
match miRBase v21 to enable future studies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.11.008.
Disclosures

The authors declare no conflicts of interest.
Acknowledgments

This work was supported by the Asociación Española Contra el
Cancer (AECC) and the Spanish Fondo de Investigaciones Sanitarias
(grant numbers FIS-PI081298 and FIS-PI081120), by grants from
INNPRONTA from the Ministry of Science and Innovation PI11/
01059, from the Fundación Mutua Madrileña 2011 (PI BMD), and
from the Fundación Sandra Ibarra 2011 (PI BMD). The CIBER de
Enfermedades Raras is an initiative of the Instituto de Salud Carlos
III (ISCIII). MT had financial support from the Fundación La Caixa
call 2008.

http://dx.doi.org/10.1016/j.gdata.2014.11.008
http://dx.doi.org/10.1016/j.gdata.2014.11.008


A

M

−0.5

0.0

0.5

2.6 3.0 3.4 3.8 2.6 3.0 3.4 3.8

2.6 3.0 3.4 3.8 2.6 3.0 3.4 3.8

−0.5

0.0

0.5

0.00 0.05 0.10 0.15

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

B) Outlier detection for MA plots.A) MA plots

array 26 (D=0.09)array 74 (D=0.07)array 42 (D=0.06)array 51 (D=0.06)

array 19 (D=0.02)array 1 (D=0.02)array 55 (D=0.02)array 24 (D=0.01)

Fig. 3. A) shows representativeMA plots for arrays with lowest (top 4) and highest (bottom 4) Hoeffing's D-statistic. M and A are defined as: M= log2(I1)− log2(I2), A= 1/2 (log2(I1) +
log2(I2)), where I1 is the intensity of the array studied, and I2 is the intensity of a “pseudo”-array that consists of the median across arrays. The value of Da is shown in the panel headings.
B) Shows a bar chart of the Da, the outlier detection criterion from the previous figure. The bars are shown in the original order of the arrays. A threshold of 0.15 was used, which is
indicated by the vertical line. None of the arrays exceeded the threshold and was considered an outlier.

79M. Tanić et al. / Genomics Data 3 (2015) 75–79
References

[1] Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, I. Golani, Controlling the false discovery
rate in behavior genetics research. Behav. Brain Res. 125 (1–2) (2001) 279–284.

[2] S. Dudoit, J. Fridlyand, A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biol. 3 (7) (2002) (RESEARCH0036).

[3] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95 (25) (1998)
14863–14868.

[4] R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L.
Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F.
Leisch, C. Li, M. Maechler, A.J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney,
J.Y. Yang, J. Zhang, Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5 (10) (2004) R80.

[5] G.K. Smyth, Limma: linear models for microarray data. in: R. Gentleman, CV, S.
Dudoit, R. Irizarry, W. Huber (Eds.), Bioinformatics and Computational Biology Solu-
tions Using R and Bioconductor, Springer, New York, 2005, pp. 397–420.

[6] A. Kauffmann, R. Gentleman, W. Huber, arrayQualityMetrics—a bioconductor
package for quality assessment of microarray data. Bioinformatics 25 (3) (2009)
415–416.

[7] I. Medina, D. Montaner, J. Tarraga, J. Dopazo, Prophet, a web-based tool for class
prediction using microarray data. Bioinformatics 23 (3) (2007) 390–391.

[8] I. Medina, J. Carbonell, L. Pulido, S.C. Madeira, S. Goetz, A. Conesa, J. Tarraga, A.
Pascual-Montano, R. Nogales-Cadenas, J. Santoyo, F. Garcia, M. Marba, D.
Montaner, J. Dopazo, Babelomics: an integrative platform for the analysis of
transcriptomics, proteomics and genomic data with advanced functional profiling.
Nucleic Acids Res. 38 (Web Server issue) (2010) W210–W213.

[9] E.R. Morrissey, R. Diaz-Uriarte, Pomelo II: finding differentially expressed genes.
Nucleic Acids Res. 37 (Web Server issue) (2009) W581–W586.

[10] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J.P. Mesirov, GenePattern 2.0. Nat.
Genet. 38 (5) (2006) 500–501.

[11] M. Tanic, E. Andres, S.M. Rodriguez-Pinilla, I. Marquez-Rodas, M. Cebollero-
Presmanes, V. Fernandez, A. Osorio, J. Benitez, B. Martinez-Delgado, MicroRNA-
based molecular classification of non-BRCA1/2 hereditary breast tumours. Br. J.
Cancer 109 (10) (2013) 2724–2734.

[12] M. Tanic, K. Yanowski, G. Gomez-Lopez, M. Socorro Rodriguez-Pinilla, I. Marquez-
Rodas, A. Osorio, D.G. Pisano, B. Martinez-Delgado, J. Benitez, MicroRNA expression
signatures for the prediction of BRCA1/2 mutation-associated hereditary breast
cancer in paraffin-embedded formalin-fixed breast tumors. Int. J. Cancer 136 (3)
(2015) 593–602.

[13] J.M. Vaquerizas, L. Conde, P. Yankilevich, A. Cabezon, P. Minguez, R. Diaz-Uriarte, F.
Al-Shahrour, J. Herrero, J. Dopazo, GEPAS, an experiment-oriented pipeline for the
analysis of microarray gene expression data. Nucleic Acids Res. 33 (Web Server
issue) (2005) W616–W620.

[14] L.F. Wessels, M.J. Reinders, A.A. Hart, C.J. Veenman, H. Dai, Y.D. He, L.J. van't Veer, A
protocol for building and evaluating predictors of disease state based on microarray
data. Bioinformatics 21 (19) (2005) 3755–3762.

[15] P. Tang, K.A. Skinner, D.G. Hicks, Molecular classification of breast carcinomas by
immunohistochemical analysis: are we ready? Diagn. Mol. Pathol. 18 (3) (2009)
125–132.

http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0005
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0005
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0045
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0045
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0010
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0010
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0010
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0015
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0015
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0015
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0015
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0015
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0050
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0050
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0050
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0020
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0020
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0020
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0025
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0025
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0055
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0055
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0055
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0055
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0055
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0060
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0060
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0030
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0030
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0035
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0035
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0035
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0035
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0065
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0065
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0065
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0065
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0065
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0070
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0070
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0070
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0070
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0040
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0040
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf0040
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf9000
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf9000
http://refhub.elsevier.com/S2213-5960(14)00121-4/rf9000

	miRNA expression profiling of formalin-�fixed paraffin-�embedded (FFPE) hereditary breast tumors
	Direct link to deposited data
	Experimental design, materials and methods
	Study population
	Sample processing
	Experimental design and array description
	Microarray hybridization
	Quality control
	Data preprocessing and probe annotation
	Data analysis

	Conclusion
	Disclosures
	Acknowledgments
	References


