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ABSTRACT: Data-independent acquisition-mass spectrometry (DIA-MS) is the method of
choice for deep, consistent, and accurate single-shot profiling in bottom-up proteomics.
While classic workflows for targeted quantification from DIA-MS data require auxiliary data-
dependent acquisition (DDA) MS analysis of subject samples to derive prior-knowledge
spectral libraries, library-free approaches based on in silico prediction promise deep DIA-MS
profiling with reduced experimental effort and cost. Coverage and sensitivity in such
analyses are however limited, in part, by the large library size and persistent deviations from
the experimental data. We present MSLibrarian, a new workflow and tool to obtain
optimized predicted spectral libraries by the integrated usage of spectrum-centric DIA data
interpretation via the DIA-Umpire approach to inform and calibrate the in silico predicted
library and analysis approach. Predicted-vs-observed comparisons enabled optimization of
intensity prediction parameters, calibration of retention time prediction for deviating
chromatographic setups, and optimization of the library scope and sample representative-
ness. Benchmarking via a dedicated ground-truth-embedded experiment of species-mixed
proteins and quantitative ratio-validation confirmed gains of up to 13% on peptide and 8% on protein level at equivalent FDR
control and validation criteria. MSLibrarian is made available as an open-source R software package, including step-by-step user
instructions, at https://github.com/MarcIsak/MSLibrarian.
KEYWORDS: data-independent acquisition, spectral predictions, proteomics, deep-learning, R-software

■ INTRODUCTION

Mass spectrometry-based proteomics allows for the quantifi-
cation of thousands of proteins in a single sample.1 Especially,
data-independent acquisition (DIA) of mass spectra allows for
reproducible protein quantification with few missing values.2,3

In classical, targeted peptide-centric DIA analysis,2,4 a spectral
library is required to identify peptides from the highly
convoluted DIA-MS data. Such a spectral library is commonly
built from data-dependent acquisition (DDA) runs of
prefractionated experiment-specific samples.5,6 Despite the
benefits of building a sample-specific and deep library, this
approach requires an additional sample amount, preparation,
and MS run time. Also, as the semistochastic DDA method
selects the most abundant precursors for sequencing,
precursors of low abundant proteins might go undetected. As
an alternative to experimental DDA spectral libraries, two
classes of library-free approaches to the interpretation of DIA-
MS data have been devised. First, spectrum-centric conversion
approaches such as DIA-Umpire and Spectronaut directDIA7,8

convert the DIA- to a pseudo-DDA data structure for
compatibility with classic spectrum-centric analysis workflows,
based on grouping precursor and fragment ion signals from
coelution and XIC signal correlation along the chromato-
graphic dimension. While reaching high levels of proteomic
coverage, conversion approaches so far do not reach the level

of quantitative accuracy or proteomic depth achievable with
dedicated, sample-specific libraries generated by DDA-MS.8,9

In contrast, recent applications of deep learning to predict MS/
MS spectra and retention times now enable accurate in silico
prediction of spectral libraries to support targeted, peptide-
centric queries of virtually any peptide or precursor, extending
DIA capabilities to previously uncharacterized proteomes.10−12

Similar to spectrum-centric-conversion approaches, predicted
spectral libraries provide deep profiling in peptide-centric
mining of DIA data sets, albeit not at the depth of dedicated
and fractionated project-specific libraries. The prediction
framework and Web server Prosit provides easy-to-use access
to accurately predicted spectral libraries for DIA queries.10 In
order to adapt and optimize fragmentation predictions to
user’s MS instruments, users need to determine the optimal
prediction parameter (normalized collision energy, CE)
through provision of a set of identified DDA-MS spectra
acquired with the same MS instrument and fragmentation
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parameters as the DIA data to be analyzed using the Prosit-
predicted spectral library. The Prosit framework does currently
not allow users to calibrate the retention time predictions to
user-observed values. Three factors which limit the sensitivity
of DIA-MS analyses via such in silico predicted libraries are (i)
the prevailing inaccuracies of predicted spectra and/or
stochasticity of observed fragmentation patterns, (ii) inaccur-
acies in expected retention times, as caused, e.g., by the use of
different chromatographic equipment or laboratory-to-labo-
ratory variability, as well as (iii) the sheer library and search
space size, resulting in a large number of tests and need for
strict multiple hypothesis testing correction in statistical
validation and FDR control.6,13,14

Here we present MSLibrarian, a workflow building on the
Prosit,10 DIA-Umpire,8 and DeepLC11 frameworks, allowing
one to obtain optimized predicted spectral libraries for DIA
proteomics. This is related to existing predicted spectral library
refinement strategies that rely on gas-phase fractionated,
narrow isolation window DIA measurements and chromato-
gram libraries15 or which reuse empirically observed retention
times and fragmentation patterns in multipass analyses.16 In
contrast to these, MSLibrarian leverages a spectrum-centric
conversion and analysis approach to optimize parameters for
the prediction of both fragmentation patterns as well as
chromatographic retention time directly based on the DIA data
set being analyzed. In addition, MSLibrarian employs variable
FDR multipass analysis to constrain the target protein set and
thereby improve the library representativeness, as well as
library size optimization by fragment ion selection. We
quantified the improvements for predicted library-based DIA-
MS data analysis incurred by MSLibrarian calibration based on
a dedicated ground-truth-embedded species mixture experi-
ment and additional data sets and tools. The MSLibrarian R
package, with step-by-step user instructions, is available at
https://github.com/MarcIsak/MSLibrarian.

■ MATERIALS AND METHODS

Generation of a Ground-Truth Mixed Species Proteome
Data Set

To benchmark prospective improvements for quantitative
DIA-MS data analyses via MSLibrarian library calibrations, we
generated a simplistic two-species mixture data set composed
of tryptic peptides derived from mouse spleen and yeast full
proteomes. Mouse spleens were harvested from 12-week-old
female C57BL/6J mice and then homogenized in PBS (Gibco)
using a bead-beater (MP-Biomedicals). Proteins were extracted
and denatured with 8 M urea in 0.1 mM ammonium
bicarbonate (Sigma-Aldrich), and debris was remove by
centrifugation at 14,000 g for 5 min. Cysteines were reduced
using 50 mM tris(2-carboxyethyl)phosphine (Sigma-Aldrich)
and then alkylated with 100 mM iodoacetamide (Sigma-
Aldrich). Protein concentration was determined with the
bicinchoninic acid assay (Thermo Scientific). Protein extract
(50 μg) was digested with 1 μg of sequencing grade modified
trypsin (Promega). The resulting peptides were desalted with
C18 reversed-phase chromatography (ultramicrospin-col-
umns) according to the manufacturer’s instructions (Harvard
Apparatus). The mouse peptides were dried down with a
vacuum concentrator (Savant). Yeast tryptic peptides, from
Saccharomyces cerevisiae whole-cell protein extract, were
purchased from Promega (Promega catalog no. V7461).
Mouse and yeast peptides were resuspended in 0.1% formic

acid, 2% acetonitrile in water at a concentration of 1 μg/μL
and mixed at a ratio of 6:1 v/v mouse−yeast for samples of
condition A and 1:6 v/v mouse−yeast of condition B. A
volume of 1 μg of the mouse−yeast hybrid proteomes were
analyzed with DIA-MS in technical reinjection triplicates per
each of the two conditions A and B.

Data-Independent Acquisition MS Analysis of
Mouse−Yeast Hybrid Samples

All peptide analyses were performed on a Q Exactive HF-X
mass spectrometer (Thermo Fisher Scientific) connected to an
EASY-nLC 1200 ultrahigh-performance liquid chromatography
system (Thermo Fisher Scientific). Peptides were trapped on
the precolumn (PepMap100 C18 3 μm; 75 μm × 2 cm,
Thermo Fisher Scientific) and separated on an EASY-Spray
column (ES803, column temperature 45 °C, Thermo Fisher
Scientific). Equilibrations of columns and sample loading were
performed per manufacturer’s guidelines. Solvent A was 0.1%
formic acid, and solvent B (0.1% formic acid, 80% acetonitrile)
was used to run a linear gradient from 5 to 38% over 120 min
at a flow rate of 350 nL/min. The mass range for MS1 was
350−1 650 m/z with a resolution of 120,000 and a resolution
of 30,000 for MS/MS with stepped normalized collision
energies (NCE) of 25.5, 27, and 30. The data-independent
acquisition (DIA) method was derived from Bruderer et al.17).
The 44 variably sized MS/MS windows were 350−371, 370−
387, 386−403, 402−416, 415−427, 426−439, 438−451, 450−
462, 461−472, 471−483, 482−494, 493−505, 504−515, 514−
525, 524−537, 536−548, 547−557, 556−568, 567−580, 579−
591, 590−603, 602−614, 613−626, 625−638, 637−651, 650−
664, 663−677, 676−690, 689−704, 703−719, 718−735, 734−
753, 752−771, 770−790, 789−811, 810−832, 831−857, 856−
884, 883−916, 915−955, 954−997, 996−1057, 1 056−1 135
and 1 134−1 650 m/z, resulting in a total cycle time of ∼3.3 s
and 6−8 sampling points per chromatographic peak on
average.

Data-Dependent Acquisition MS Analysis

A representative sample of the mouse spleen proteome was
analyzed by DDA mass spectrometry to generate identification
results to calibrate the Prosit prediction model with a fixed CE
value along the canonical workflow for Prosit predictions.
For data dependent acquisition, one full MS scan (resolution

60,000 at 200 m/z; mass range 350−1650 m/z) was followed
by MS/MS scans (resolution 15,000 at 200 m/z) of the 20
most abundant ion signals. The precursor ions were isolated
with a 1.6 m/z width and fragmented using higher-energy
collisional-induced dissociation at a normalized collision
energy of 27. Charge state screening was enabled and
unassigned or singly charged ions were rejected. The dynamic
exclusion window was set to 15 s. Only MS precursors that
exceeded a threshold of 8 × 103 were allowed to trigger MS/
MS scans. The ion accumulation time (IT) was set to 100 ms
(MS) and 30 ms (MS/MS) using an automatic gain control
(AGC) target setting of 2 × 105 (MS and MS/MS).

Determination of CE for Spectral Library Predictions with
the Prosit Online Tool

The acquired DDA-MS file, as described in the previous
section, was imported into RecalOffline (Build No. 3.0.0.19,
Thermo Fisher) and sliced to only include the first 100 min of
the LC gradient. The slicing was made to acquire a file smaller
than 2 GB, a restriction imposed by the Prosit CE calibration
online tool. Subsequently, the sliced DDA-MS file was loaded
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into MaxQuant (v.1.6.1.0) to be searched with trypsin as the
enzyme, LFQ disabled, no modifications except carbamido-
methyl (C) set as a fixed modification. A protein sequence
FASTA, created from the canonical mouse proteome (Mus
musculus, UniProt/Swiss-Prot release 2021_03), was config-
ured as a sequence database. Identification settings were left at
the default, with an FDR = 1% on PSM and protein level, and
the second peptide search was disabled. Once the MaxQuant
search was finished, the resulting msms.txt file and the sliced
DDA-MS file were uploaded to the Prosit server according to
the instructions for the online CE calibration tool. Similarly, a
representative DDA-MS file was sliced in RecalOffline and
used to determine an optimal CE value spectral library
predictions for the external mixed species data set
(PXD005573). MaxQuant parameters were the same as for
the sliced DDA-MS file for the mouse-spleen sample described
above. A merged protein sequence FASTA, created from the
individual FASTA files of the canonical proteomes for human,
yeast, C. elegans, E. coli strain K12 (UniProt release 2021_03,
canonical sequences, UP000005640, UP000002311,
UP000001940, and UP000000625), was used for the
MaxQuant search.

Spectrum-Centric DIA-MS Data Analysis

As an integral part of the MSLibrarian workflow, DIA-MS data
were first analyzed via the DIA-Umpire workflow to convert
DIA data structures to pseudo-DDA (pDDA) spectra
(MSconvert, ProteoWizard release 3.0.20365) via the
implemented DIA-Umpire signal extraction module, operated
with standard parameters). pDDA spectra were then searched
against the respective protein sequence database via
MSFragger (v3.2) where the default parameter file (*.params)
for closed searches was used as a template with trypsin as the
enzyme, precursor charges of 2 and 3, and peptide lengths
from 7 to 30 AA allowed. Carbamidomethylation on cysteines
was set as the fixed modification but no variable modifications.
The MSFragger output pep.xml-files were imported into
PeptideProphet (TPP v.5.2.0) for PSM validation using the
nonparametric model with decoys modeling the negative PSM
distribution. The retention time model and accurate mass
binning options of PeptideProphet were enabled. The resulting
*pep.xml files were then imported into iProphet (TPP v.5.2.0)
for further PSM validation. Only PSMs having a posterior error
probability (local FDR) ≤ 0.01 were used for consensus
spectral library creation with Spectrast (TPP v.5.2.0) to ensure
high spectral quality. A set of 11 iRT peptides with known iRT
values (Biognosys, iRT kit) were used by Spectrast to convert
RT in seconds to iRT values. OpenSwathAssayGenerator
(OpenMS v2.5.0) was then used to convert the consensus.splib
library format into the MSLibrarian-compatible OpenSwath
(.TSV) format to be used as a latter calibration library, ready
for comparisons to the predicted spectra per each matched
peptide precursor ion. Spectrum-centric search and assembly
of results into the calibration library are accessible in
MSLibrarian via the function create.calibration.lib (Figure S1,
top left).

Spectrum-Spectrum Matching and Library Formulation in
MSLibrarian

Spectrum-centric identifications from the DIA data were
matched to spectral warehouse database entries via the
MSLibrarian functions process.calibration.lib and create.spec-
tral.lib (Figure S1, lower left and upper right panel). For each
precursor length and charge bin, spectra predicted with

collision energies resulting in maximal similarity, as measured
by the dot product score, are selected for inclusion into the
spectral library produced via the function create.spectral.lib. The
product library contains precursor length- and charge-depend-
ent, variable collision energies (CE-LZ). Further processing
steps are executed via the function mod.spectral.lib and include
(i) retention time replacement with calibrated DeepLC
predictions, (ii) protein group subsetting to a list of proteins
from first-pass DIA-NN analysis with relaxed FDR criterion
(5% protein-level FDR), and (iii) subsetting of transitions/
fragment ions to be included in the final library (library
variants, _RT, _Pr and _Tr, respectively) (Figure S1, bottom
right).

Peptide-Centric DIA-MS Data Analysis

For peptide-centric analyses of the DIA data sets, leveraging
either of the compared spectral libraries as prior information
for the analysis, DIA-NN (v1.8)18 and EncyclopeDIA
(v1.2.2)19 tools were employed. DIA-NN operated directly
on the Thermo.raw files, whereas EncyclopeDIA analysis
commenced from .mzML format upon conversion via
MSconvert (Centroiding the MS1 level via the peak picking
option, ProteoWizard release 3.0.20365). DIA-NN was run
with fixed MS1 accuracies (4.92 and 3.93 ppm for the mouse-
yeast data set and external mixed species data set, respectively)
based on recommended MS1 values by DIA-NN from first
pass analysis of the samples with automated determination of
optimal mass accuracies. The MS/MS accuracy was automati-
cally determined by DIA-NN as a consequence of the set fixed
MS1 accuracies (MS/MS accuracy = 2 × 10−5, i.e., 20 ppm, for
both data sets). The retention time extraction window was
determined individually for all MS runs analyzed via the
automated optimization procedure implemented in DIA-NN.
Protein inference was enabled, and the quantification strategy
was set to Robust LC = High Accuracy. The precursor-level
FDR was set to 1%. The flag report-lib-info was set in order to
report fragment-level intensities for quantification in the R
package iq.20 Output main DIA-NN reports were filtered with
a global FDR = 0.01 on both the precursor level and protein
group level. Quantitative matrices on the peptide and protein
group and gene level were extracted from the main DIA-NN
reports using the diann-rpackage (https://github.com/
vdemichev/diann-rpackage). For fragment-level MaxLFQ
analysis via iq,20 fragment ion information associated with
each entry in the main DIA-NN reports (intensities from
column Fragment.Quant.Corrected) was extracted and con-
catenated to its precursor, protein group, and MS run. Note
that for the mouse-yeast data set, where raw intensities in the
absence of further processing were of interest, values from
column Fragment.Quant.Raw were used. Fragment ions with a
log2-intensity ≤ 0 were removed. Median normalization in iq
was applied to the external mixed species data set, while no
normalization was applied to the mouse-yeast data set.
MaxLFQ-based pairwise ratio estimation between common
fragment ions for the same precursors of each protein group
was performed. In the last step, a full quantitative intensity
matrix with protein groups as row headers and MS-runs as
column headers was written out. Similarly, a quantitative
matrix for stripped peptide sequences was generated, where
fragment ions and precursors were grouped based on peptide
sequences.
For the EncyclopeDIA analyses, all generated spectral

libraries were first converted from the Spectronaut format
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(.CSV) to the DLIB-format. Following library conversions,
DIA-MS files were analyzed sequentially for each library using
default settings and with HCD as fragmentation. A global
EncyclopeDIA analysis was then carried out to retrieve
quantitative matrices for peptides and protein groups identified
with a FDR ≤ 0.01. Median normalization was applied to the
quantitative matrices using the R-package NormalyzerDE.21

Generation of Spectral Warehouse Databases

Spectral warehouse databases have been precomputed as
described below for the following proteomes: H. sapiens, M.
musculus, S. cerevisiae, C. elegans, E. coli strain K12, and D.
melanogaster (UniProt/Swiss-Prot release 2021_03, canonical
and isoform sequences for proteome IDs UP000005640,
UP000000589, UP000002311, UP000001940, UP000000625,
and UP000000803). The precomputed databases can be
downloaded from Zenodo by users of MSLibrarian with the
function get.spectral.db (Figure S1). This obviates the need for
users to use the Prosit Web-services or set up local instances of
the Prosit predictor for these most common usage scenarios.
Spectral warehouse databases were generated from in silico

predicted peptide fragmentation spectra along collision
energies ranging from 20 to 40, using the Prosit 2020 HCD
model with built-in retention time prediction (https://www.
proteomicsdb.org/prosit/).10 The results, 21 variant fragment
intensity sets and one iRT value per precursor, were stored in a
nonredundant SQL database, storing the multi-CE intensity
sets in an efficient manner. Detailed step-by-step instructions
to assemble warehouse predictions for custom protein
sequence databases are included in the MSLibrarian usage
wiki on Github (https://github.com/MarcIsak/MSLibrarian/
wiki/).
MSLibrarian-Based CE Calibration

Each calibration library in OpenSwath format (*.TSV) was
imported into MSLibrarian, where library entries were filtered
to only contain predictable precursors with lengths of 7−30
amino acids and charge states 2 and 3. Remaining precursors
were mapped to precursor entries in the spectral warehouse
database. MS/MS information, for precursors in the calibration
library and matching precursors in the spectral warehouse
database, was extracted to create Spectrum2 objects using the
R software package MSnbase.22,23 Spectral comparisons were
carried using the dot product score, as implemented in the
MSnbase library, as a metric for spectral similarity between
experimental spectra and predicted spectra. The comparisons
were performed for all predicted spectra with CE values in the
range of 20−40.
Retention Time Prediction via DeepLC

Peptide retention times in reversed-phase chromatography
were predicted using DeepLC11 (v.0.1.29). Retention time
prediction was calibrated based on experimental retention
times (represented in iRT values) of 25% of all targets in the
spectrum-centric search-based calibration libraries created by
MSLibrarian. Using this calibrated model, iRT values for all
targets in the spectral libraries were predicted and introduced
into the libraries via the MSLibrarian function mod.spectral.lib
replacing the native Prosit-predicted iRT values with the
calibrated iRT values from DeepLC for each target in the
respective library (Figure S1, lower right).
Benchmarking through Quantitative Validation

To compare the different libraries’ performance in generating
correct identifications and quantifications from the DIA data

sets, quantitative matrices as generated by DIA-NN in
conjunction with the diann-rpackage or the iq package and
EncyclopeDIA for both peptides and protein groups were
processed in R. Peptide and protein detections were validated
based on conformance with the known species mixing ratio
embedded in the ground truth data sets. Identifications
supported by an observed quantitative ratio value within a
tolerance of ±20% from the expected ratio on the linear scale
were considered valid. Accordingly, each library produced a
certain number of high-quality identifications on the peptide
and protein group levels that were supported by matching
quantitative ratios in the sample group comparison. The
number of valid values were calculated for both, protein group
and peptide levels in the separate matrices. Protein
quantification data together with valid ratio Boolean are
provided in Table S1.

MSLibrarian R Package Development and Availability

The MSLibrarian workflow has been implemented as an R
software package using devtools and roxygen2 libraries.
Dependencies from the R ecosystem include tidyverse, stringr,
readr, dplyr, and ggplot2. MSLibrarian has been developed and
tested in Windows environments. Additionally, MSLibrarian
depends on third party software utilized within the workflow,
specifically, MSconvert (as part of the ProteoWizard suite of
tools, https://proteowizard.sourceforge.io/),24 the Trans-
Proteomic Pipeline (TPP, https://sourceforge.net/projects/
sashimi/files/Trans-Proteomic%20Pipeline%20%28TPP%29/
),25 OpenMS (https://github.com/OpenMS/OpenMS/
releases/tag/Release2.6.0), MSFragger (https://github.com/
Nesvilab/MSFragger,26 DeepLC (https://github.com/
compomics/DeepLC),11 and DIA-NN (https://github.com/
vdemichev/DiaNN/releases/tag/1.8). Full details on how to
download, install, and run MSLibrarian can be found at the
package Github repository and Wiki page (https://github.
com/MarcIsak/MSLibrarian). Raw data, peptide-centric anal-
ysis results as well as spectral warehouse databases, spectral
libraries, and protein sequence databases have been uploaded
to the ProteomeXchange Consortium via the Pride partner
repository (accession number: PXD028901).

■ RESULTS AND DISCUSSION

Guiding Principles of the MSLibrarian Workflow

The MSLibrarian workflow builds on Prosit in silico predicted
spectral libraries and refines these for improved performance in
downstream targeted, peptide-centric DIA analyses. Refine-
ment and optimization via MSLibrarian is based on three key
principles:

(I) Peptide fragmentation is subject to instrument- and run-
by-run variability and differs in narrow isolation-window
DDA when compared to wide-isolation-window DIA
operation of the mass spectrometer. MSLibrarian
optimizes the Prosit CE prediction parameter directly
comparing against the DIA data to be analyzed using the
library, and in a peptide charge state- and -length-
dependent manner and using the dot product as a
metric. To this end, rather than trying different
prediction parameters “on the fly”, MSLibrarian relies
on fragment ion intensities predicted across a range of
collision energy parameter settings a priori, efficiently
stored in a ‘spectral warehouse’.sql database and
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available for multiple species (see Materials and
Methods section).

(II) Peptide retention time and accuracy of its prediction
depend on training data and LC equipment, such as
bead pore size and chemistry, used in each laboratory.
MSLibrarian negotiates prediction of more accurate

retention times, calibrating retention time prediction
based on observed values in the DIA data set and an
underlying liquid chromatography setup. Notably, a
conservative and deliberate decision not to (re-) use the
empirically observed retention time values of DIA-
Umpire-identified precursors in subsequent peptide-

Figure 1. MSLibrarian workflow for DIA-guided predicted library optimization. (A) Schematic overview of the MSLibrarian workflow, taking as
input fragmentation spectra predicted using Prosit along a range of CE settings and stored in a spectral warehouse SQLite database and DIA data to
be analyzed. DIA-MS data are converted to pseudo-DDA spectra, and these are identified via spectrum-centric search and fragment intensities
compared against predicted spectra. MSLibrarian then (1) selects optimal collision energy spectra per precursor length and charge group, (2)
recalibrates LC retention time by DeepLC calibration and prediction, and (3) optimizes library representativeness by variable FDR multipass
analysis and fragment selection. (B) Exemplary distribution of dot product scores for a representative peptide group of length 15, indicating
divergent optimal prediction CE parameter settings per charge state. In this example, the optimal CE parameters are 28 and 35 for charge states 2
and 3, respectively, as shown by the median dot product (red dots). (C) Number of precursors per peptide length group. (D) Exemplary set of
optimal CE parameter settings per peptide length and charge and optimal median dot product achieved. (E) Example of LC normalized retention
time recalibration to DIA data set generated on different LC-MS setups in comparison to uncalibrated retention times.
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centric analyses was made. We reason that this choice is
conservative as it counteracts potential leakage of false
positive spectrum-centric identifications into the pep-
tide-centric analysis results because of artificially low

retention time offsets for a subset of target peptides
where spectrum-centric evidence is available.

(III) Single-shot DIA measurements with a gradient time
below 2 h likely do not contain more than 100,000
detectable precursor signals due to technological

Figure 2. Benchmarking DIA-guided library calibration via MSLibrarian. (A) Experimental design of the two-species proteome sample set analyzed
in triplicate DIA-MS injections (upper panel) and schematic overview of processing steps included to generate each of the spectral libraries in the
present comparison (lower panel). (B) Observed protein level quantitative ratios across the abundance range and represented as density
distributions for library CE-LZ_RT_Pr_Tr. The range in which quantitative values were considered valid is highlighted as shaded areas. (C)
Number of ratio-validated analytes detected via either library, quantifying changes relative to using the standard Prosit library with CE calibration
on the DDA-MS data set, for peptides. (D) Equivalent to panel C but on the protein group level after protein quantification via fragment-level
MaxLFQ via R/iq (Materials and Methods). (E) Overview of total peptide and protein identification numbers and changes relative to STD (CE-
30) achieved via either library.
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constraints, such as limited intrascan dynamic range.27

Thus, querying millions of predictable precursors per
proteome unnecessarily escalates the need for multiple
testing correction in statistical FDR control and, thereby,
limits the sensitivity and coverage of such analyses. It is
thus beneficial to trim the library to a more relevant set
of precursors containing those detectable in the DIA-MS
record while not compromising discovery by removing
relevant ones.14 To this end, MSLibrarian implements a
two-tiered library representativeness optimization ap-
proach based on multipass variable FDR analysis and
transition filtering.

Steps of the MSLibrarian Workflow

A schematic overview of the MSLibrarian workflow is shown in
Figure 1A. Inputs to the workflow are spectrum predictions
from Prosit stored in a spectral warehouse database,
accompanied by the corresponding protein sequence database,
and a DIA-MS data set.
In the first step, predicted spectra are obtained using the

Prosit Web server (see Materials and Methods). Note that for
frequently studied proteomes (H. sapiens, M. musculus, S.
cerevisiae, C. elegans, E. coli, and D. melanogaster), precomputed
spectral warehouse databases can be downloaded from
Zenodo.org from within MSLibrarian (Figure 1A, left).
In the second step, DIA-MS data are converted to pseudo-

DDA (pDDA) spectra which are then identified by a spectrum-
centric search against the protein sequence database (Figure
1A, left).
In the third step, the identified spectra are then compared to

the set of spectra predicted for this precursor across the range
of CE prediction parameter values (stored in the spectral
warehouse database) using the dot product score. Compar-
isons are binned by peptide length and precursor charge state,
producing dot product distributions as exemplified in Figure
1B for typically ∼100−1200 precursors per comparison bin
(Figure 1C). For each length and charge bin, spectra predicted
with collision energies resulting in maximal similarity, as
measured by the dot product score, are selected for inclusion
into the MSLibrarian library (Figure 1D and Materials and
Methods).
In the fourth step, peptide retention times are predicted via

the DeepLC tool, with calibration based on the retention times
of peptides identified via spectrum-centric analysis, effectively
adjusting parameters for deviating chromatographic setups
(Figure 1E).
In the fifth step, the set of detectable proteins is estimated by

a reduced stringency peptide-centric analysis of the DIA data
with the MSLibrarian library in its current state using DIA-NN,
noting all target protein groups identified at an increased FDR
threshold of 5% on the protein level. In addition, the product
library is trimmed, retaining only the 6−14 most-intense
fragment ion signals of a given spectrum (Figure 1A, center).
The workflow produces as output a refined version of the input
in silico predicted spectral library, calibrated for preferable
performance in peptide-centric analysis of the given DIA-MS
data set (Figure 1A, right).
Benchmarking DIA-Guided Library Calibration via
MSLibrarian

To validate the impact of library refinements through
MSLibrarian and to ensure these were not noise from false
positive identifications, we generated a simple two-proteome
species mixture proteomic data set with a known ground truth

embedded as defined proteome mixing ratios, along the
LFQbench rationale.9 Specifically, we acquired DIA data of a
mouse-yeast tryptic peptide mixture with a stable amount of
mouse and yeast tryptic peptides mixed to obtain a ratio of 6:1
for mouse peptides and 1:6 for yeast peptides in the
comparison of sample A to sample B (Figure 2A and Materials
and Methods). Considering only identifications that were
validated by conformance of the observed quantitative ratio
with the true mixing ratio allowed us to compare the libraries’
proteomic profiling efficiency, with auxiliary confidence in the
correctness of the assigned signals and validity of observed
gains. As a reference baseline of the comparison, the canonical
Prosit-derived library workflow was applied, obtaining a full
proteome predicted library with a fixed collision energy setting,
calibrated based on a side-by-side DDA-MS raw file and
accompanying MaxQuant search results (Fixed CE = 30,
“STD-Prosit” Library, Materials and Methods). In order to
assess the impact of the individual library refinement steps
applied by MSLibrarian, partially optimized libraries gradually
including more refinement steps toward the full MSLibrarian-
calibrated library were included. Specifically, library CE-LZ
included only collision energy parameter optimizations
affecting fragment intensities; library CE-30_RT included
only retention time prediction recalibration via DeepLC;
library CE-LZ_RT combined both variable collision energy
parameter optimization and retention time prediction recali-
bration; library CE-LZ_LC_Pr added protein set confinement;
and the final, fully MSLibrarian-calibrated library CE-
LZ_RT_Pr_Tr added fragment selection (schematized in
Figure 2A, bottom panel). The libraries were then searched
against the DIA-MS data by peptide-centric analysis via DIA-
NN and peptides and proteins quantified via the iq package20

that implements the MaxLFQ approach to calculate the
relative protein group and peptide quantities for all samples.
Cross-sample ratios were calculated on both the peptide and
protein levels separately, and identifications with quantitative
ratios conforming with the known mixing ratio within the
±20% tolerance were considered valid in the primary
benchmark (Figure 2B, Table S1, and Materials and Methods).
At the peptide level, up to 8% improvement was observed, with
library modifications ranking by decreasing benefit for peptide-
level performance as follows: protein set confinement > LC
calibration > transition selection (Figure 2C). Variable CE
selection, in this data set, was detrimental to peptide-level
performance, whereas this was not the case on the protein
level. On the protein level, a similar improvement of up to
7.7% additional protein groups (henceforth also referred to as
proteins) detectable with valid quantitative ratios was
observed, albeit only in the absence of transition filtering
that had a detrimental impact on the fidelity of protein
quantities in this data set (Figure 2D). Having confirmed that
more ratio-conformant, valid quantifications were produced
when employing refined libraries in peptide-centric processing,
we moved on to compare the total identification numbers
reported at equivalent FDR control per analysis (global protein
and precursor level FDR 1%). Overall, up to 7% more peptides
and 3% more proteins (9534 vs 9287) were identified using the
MSLibrarian-calibrated library relative to the standard Prosit
library (Figure 2E). Overall, MSLibrarian-based calibration of
predicted libraries, in our hands, led to noticeable improve-
ments in peptide-centric DIA-MS analyses. Notably, library
improvements resulted primarily in improved quantification as
observed by ratio validation analysis, with more modest gains
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in total identification numbers irrespective of quantitative
conformance criteria (Figure 2E). An overview of observed
species ratios and ratio distributions using the different
libraries are visualized in Figure S2, and protein quantitative
information is summarized in Table S1.

Performance with External Data Set and Alternative
Analysis Tool

Next, we explored whether the benefits of DIA-based
calibration of predicted spectral libraries observed in our

internal benchmark experiment could also be replicated on an
external data set using an alternative software framework for
targeted, peptide-centric analysis with these libraries as prior
knowledge. We selected a high complexity data set generated
by Bruderer et al.17 with a similar multispecies mixture setup,
containing a total of four proteomes with only small mixing
ratio differences between the two sample sets comprising the
“low ratio” LFQbench data set in the study. We then analyzed
this data set via the standard Prosit workflow, calibrating the
CE parameter based on the side-by-side DDA-MS measure-

Figure 3. Benchmarking on 4-species data set with DIA-NN and EncyclopeDIA as downstream analysis tools. Left column: Results from DIA-NN.
Right column: Results from EncyclopeDIA. (A) Overall intensity ratio distributions observed for the four species in the data set from Bruderer et
al., on protein level, employing the fully optimized library CE-LZ_RT_Pr_Tr. (B) Number of ratio-validated peptide analytes gained by employing
either library, quantifying changes relative to using the standard Prosit library with CE calibration on the DDA-MS data set. (C) Number of ratio-
validated peptide analytes gained by employing either library, quantifying changes relative to using the standard Prosit library with CE calibration
on the DDA-MS data set. (D) Overview of total peptide and protein identification numbers achieved via either library and downstream peptide-
centric analysis tools.
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ment and MaxQuant search results to obtain the standard
Prosit library. As described above, we comparatively processed
the data set with the MSLibrarian workflow, in part and in full,
to generate the partially processed as well as fully processed
DIA-calibrated library (compare scheme in Figure 2A, bottom
panel). The DIA data were then analyzed by peptide-centric
analysis by DIA-NN as above as well as using EncyclopeDIA19

as an alternative software (For parameters, see the Materials
and Methods). Identifications per species were then catego-
rized based on validity of their quantitative ratios, relative to
the true mixing ratio with ±20% tolerance, equivalent to the
benchmark used for the internal data set presented above
(exemplified in Figure 3A).
Comparing the standard Prosit library STD (CE-39) and the

MSLibrarian-processed libraries, peptide level gains of up to
13.4% (>7000 peptides) and 8.3% (>1500 peptides) were
achieved in combination with downstream processing via DIA-
NN or EncyclopeDIA, respectively (Figure 3B and Table S1).
On the level of protein groups passing the validation criteria,

processed libraries achieved gains of up to 7.8% (>750
proteins) and 6.1% (∼300 proteins) with DIA-NN and
EncyclopeDIA, respectively (Figure 3C, Table S1). On the
level of total identifications, gains of up to ∼5% on protein
group level were observed for both DIA-NN and Encyclope-
DIA (Figure 3D). For manual inspection, fold-change ratio
distributions across the libraries not covered in Figure 3A are
visualized in Figure S3A,B. Library optimization also affected
peptide-centric analysis processing times, with optimized
libraries allowing up to 40% shorter processing times evaluated
for DIA-NN searches of the Bruderer et al. data set (Figure
S5C).
Simplified Workflow with Fixed Collision Energy Setting

Based on the observation that variable CE calibration was
beneficial for library performance exclusively in the Bruderer et
al. data set, we explored the impact of library optimizations on
raw scores in peptide-centric analysis and evaluated the
performance of an abbreviated MSLibrarian workflow that
omits variable CE calibration. Based on the analyses via

Figure 4. Impact of protein quantification and library optimizations on quantification quality metrics. (A) Impact of protein quantification strategy
starting from fragment ion (left, iq) or precursor level (right, DIA-NN via the diann-rpackage), displayed as % change distributions in linear space
as displayed in Bruderer et al.17 and in log2 fold change ratio distribution space for reference. Data were generated via library CE-LZ_RT_Pr_Tr.
(B) For the data displayed in panel A, precision and accuracy of quantification inferred through stacked species log2 fold change distribution
interquartile ranges (left) and stacked offsets of most frequently observed ratio per species (Mode) from expected log2 fold change values (right)
for both fragment-level and precursor-level MaxLFQ via iq or diann-rpackage. (C) Comparison of protein-level coefficients of variation upon
fragment-level protein quantification across analyses performed with the differently processed libraries. Median CVs and statistical significance of
these differences in paired t tests are indicated. (D) Precision and accuracy of protein quantification for the libraries displayed in Figure 3 and panel
C based on fragment-level MaxLFQ via iq. Precision and accuracy of quantification inferred through stacked species log2 fold change distribution
interquartile ranges (left) and stacked offsets of most frequently observed ratio per species (Mode) from expected log2 fold change values (right)
across the libraries included in the main comparison.
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EncyclopeDIA, raw score distributions for both the internal
mouse-yeast data set and the external Bruderer et al. data set
were compared (Figure S5A,B). Retention time recalibration
via DeepLC leads to sharper delta.RT score distributions and
significantly lower absolute delta.RT readings consistently
across replicates and both data sets (unpaired t.test p < 10 ×
10−4 in all three replicates of both data sets, Figure S5A).
Variable CE selection, comparing the library CE-LZ versus the
respective standard, fixed CE library, leads to significantly
higher Spectrum.Similarity scores in analysis of the Bruderer et
al. data set, consistently across replicates (unpaired t.test p <
10 × 10−4 in all three replicates, Figure S5B). In the mouse-
yeast data set, however, Spectrum.Similarity is reduced in two
out of three replicates and is insignificantly higher in the third
replicate (unpaired t.test p < 10 × 10−4 for reduced similarity
in the first two replicates, Figure S5B). These observations
indicate that the improvements by retention time recalibration
more consistently benefit library quality than is the case for
variable CE selection, which shows mixed results and therefore
needs to be evaluated on a case-by-case basis.
Therefore, we assessed the performance of a workflow based

on single, fixed CE, in combination with downstream
optimization modules of MSLibrarian. Specifically, we
generated libraries (fixed CE_Pr and fixed CE Pr_Tr) per
each data set and compared their performance with the
corresponding variable CE libraries (Figure S4 and see scheme
in panel B). Indeed, fixed CE libraries, in combination with the
MSLibrarian downstream processing (RT, Pr, Tr) exhibit good
performance as judged by ratio-valid identifications along the
benchmarking criteria introduced above (Figure S4A). On the
peptide level, performance was indistinguishable from variable
CE libraries in the mouse-yeast data set (maximal gain, 8.3% in
both cases) and similar in the Bruderer et al. data set (11.8% vs
13.4% maximal gain with fixed vs variable CE calibration
libraries, respectively) (Figure S4A). Protein level performance
remained in most cases optimal when going the extra mile of
variable CE selection (6.9% vs 7.7% maximal gain in mouse-
yeast and 7.2% vs 7.8% maximal gain in the Bruderer et al. data
set with fixed vs variable CE, respectively, Figure S4A). Total
identifications remained essentially unchanged (Figure S4C).
The shortened workflow based on fixed CE prediction, along
the standard workflow or via a fixed CE approach in
MSLibrarian directly on the DIA data, provided a viable
entry point to optimization using the downstream modules of
MSLibrarian with performance levels comparable to those of
the full workflow with variable CE calibration.

Impact of Library Optimization on Quantification Quality
Metrics

To further explore the impact of MSLibrarian-based library
optimization and the protein quantification strategy employed
on the goodness of quantification, we used additional quality
metrics relating to accuracy, precision, and variation of
quantification in the external data set from Bruderer et al.
Specifically, we measured (i) the precision of quantification
based on the cumulative interquartile range of log2 fold change
distributions observed across all species; (ii) the accuracy of
quantification based on the cumulative absolute offsets of the
observed log2 fold change distributions (represented by the
most frequently observed value, mode) from the theoretical
centers as per the known mixing ratios. In addition, offsets of %
intensity change in linear space, equivalent to the analysis
presented by Bruderer et al.,17 were employed as metrics for

quantitative accuracy. Further, (iii) the coefficient of variation
of protein group quantities within experimental replicates of
the same biological condition was assessed.
First, we compared downstream protein quantification on

precursor level (MaxLFQ, as implemented in DIA-NN) against
quantification with ratio maximization on the fragment ion
level (fragment-level MaxLFQ, as implemented in the R
package iq), based on the analysis with the fully MSLibrarian-
optimized library CE-LZ_RT_Pr_Tr. Both, log2 fold-change
ratio distributions as well as % change distributions on a linear
scale indicated higher accuracy of E. coli ratios and % change
values (lower offset to theoretical value) when employing
fragment-level ratio normalization via the iq package (Figure
4A, lower panels). When simplified via the interquartile ranges,
precision appeared similar between the two methods, with a
small advantage of the fragment-level procedure via iq (Figure
4B, left). However, quantification via iq clearly showed the
benefits on the level of quantitative accuracy, indicated by
lower overall offsets of the distributions from the theoretical
ratios (Figure 4B, right).
Second, upon selection of the fragment-level ratio max-

imization strategy, we explored the impact of MSLibarian
processing on the coefficient of variation of protein
quantification across the different spectral libraries under
investigation. Protein-level variation across libraries essentially
remained stable, with only libraries CE-LZ, CE-39_RT, and
CE-LZ_RT showing statistically significant reductions of
observed CVs relative to the STD (CE-39) library (unpaired
t.test p-values of 8 × 10−16, 5.1 × 10−3, and 6 × 10−3,
respectively, Figure 4C). The further processed libraries
including protein set optimization, CE-LZ_RT_Pr and CE-
LZ_Pr_Tr, did not show significant changes of CV values
(Figure 4C).
Third, we explored the precision and accuracy of

quantification across the different libraries using the metrics
as described above (Figure 4D). Precision of quantification
remained essentially stable, with a minor negative impact of
library processing (Figure 4D, left), whereas accuracy of
quantification did improve with library processing (Figure 4D,
right), suggesting that primarily improved accuracy, rather than
precision, contributes to the observed gains of correctly
quantified proteins upon MSLibrarian optimization.

■ CONCLUSIONS
Predicted spectral libraries promise deep mining of DIA data
sets independent of side-by-side DDA-MS analyses, yet with
limited sensitivity of such analyses due to residual differences
between predictions and the signals in the DIA data and large
library search space.
Here, we present an approach to calibrate predicted spectral

libraries directly based on the DIA-MS data set under analysis,
realizing synergies between the two conceptually different
approaches to library-free DIA analysis, spectrum-centric
conversion via, e.g., DIA-Umpire8 and in silico prediction via,
e.g., Prosit.10

We implemented this approach in an R package,
MSLibrarian, that supplements the Prosit framework to
generate DIA-refined and trimmed spectral libraries with up
to 13% improved performance as demonstrated using internal
and external ground truth data sets and across two popular
tools for DIA-MS data analysis. We demonstrated that library
optimizations transcend into improved peptide-centric DIA-
MS analysis results on the levels of both, identification
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sensitivity (absolute numbers of identified analytes at matched
q-value cutoff), as well as improved quantification as assessed
by multiple quality metrics. Selection of variable CE
parameters for spectrum prediction proved beneficial only in
one of the two data sets. As an alternative route, we
demonstrated the utility and performance of a simplified
workflow employing spectra predicted with static CE
parameters in combination with the downstream optimization
modules. Although MSLibrarian has been tested for DIA-MS
data sets generated via nanoflow liquid chromatography and
high-resolution Orbitrap mass spectrometry, we expect these
benefits to extend to other DIA-enabled LC-MS instrumenta-
tion and software not covered in our evaluations. MSLibrarian
leverages synergies between spectrum-centric and prediction-
based library-free analysis approaches to facilitate deeper and
more accurate mining of DIA-MS data maps and should find
wide application in the field of DIA-based proteomics. It is
implemented in the popular R framework for easy usage and
extensibility by the DIA proteomics community and made
available at https://github.com/MarcIsak/MSLibrarian.
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3, exploring impact of DeepLC-based retention time
prediction and collision energy optimization on delta RT
and spectrum similarity scores in EncyclopeDIA); and
MSLibrarian user instructions (PDF)
Table S1, quantitative tables underlying library perform-
ance benchmarks (XLSX)
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