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Themainstay treatment for patients with immediate resectable pancreatic cancer remains

upfront surgery, which represents the only potentially curative strategy. Nevertheless,

the majority of patients surgically resected for pancreatic cancer experiences disease

relapse, even when a combination adjuvant therapy is offered. Therefore, aiming at

improving disease free survival and overall survival of these patients, there is an

increasing interest in evaluating the activity and efficacy of neoadjuvant and perioperative

treatments. In this view, it is of utmost importance to find biomarkers able to select

patients who may benefit from a preoperative therapy rather than upfront surgical

resection. Defined genomic alterations and a dynamic inflammatory microenvironment

are the major culprits for disease recurrence and resistance to chemotherapeutic

treatments in pancreatic cancer patients. Signal transduction pathways or tumor immune

microenvironment could predict early recurrence and response to chemotherapy. In the

last decade, distinct molecular subtypes of pancreatic cancer have been described,

laying the bases to a tailored therapeutic approach, started firstly in the treatment

of advanced disease. Patients with homologous repair deficiency, in particular with

mutant germline BRCA genes, represent the first subgroup demonstrating to benefit from

specific therapies. A fraction of patients with pancreatic cancer could take advantage

of genome sequencing with the aim of identifying possible targetable mutations. These

genomic driven strategies could be even more relevant in a potentially curative setting.

In this review, we outline putative predictive markers that could help in the next future

in tailoring the best therapeutic strategy for pancreatic cancer patients with a potentially

curable disease.
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INTRODUCTION

Pancreatic adenocarcinoma has a dismal prognosis accounting
for a 5-year overall survival (OS) rate lower than 10%. This
proportion could exceed 30% when considering localized disease
and surgical resection represents the only hope for cure.
However, only a small proportion of patients has a resectable
disease at diagnosis and local or distance relapse occurs after
surgery in most of cases (1, 2).

Adjuvant therapy could prolong median disease-free survival
(DFS) and OS after resection, reaching 21.6 and 54.4 months,
respectively, with the most active treatment (3). Anyway, <50%
of patients are disease free even after an adjuvant triplet regimen.

One of the main reasons of this aggressiveness is that even
localized pancreatic cancer could be considered a systemic
disease ab initio, since metastatic subclones exist before the
clinical evidence of disease (4). Furthermore, circulating tumor
cells could be isolated in the bloodstream of patients with
pancreatic cancer, also in early stage, and their levels have been
correlated with the probability of survival (5–7).

Growing evidence supports an anticipation of postoperative
treatments to the neoadjuvant or perioperative setting. In
fact, neoadjuvant therapy enables an early treatment of the
micrometastatic disease (8). Furthermore, it improves R0
resection rate and decreases lymph node positivity rate, which
translates in a positive prognostic impact (9, 10). Preoperative
treatment has been also proposed as a tool for measuring
in vivo tumor response. Moreover, after pancreatic surgery a
significant fraction of patients is not fit to receive a postoperative
chemotherapy due to surgical complications, poor performance
status or early disease progression (3, 11, 12). Furthermore, more
than 20% of patients initiating adjuvant therapy fail to complete
the preplanned cycles (3). Another acknowledged advantage of

FIGURE 1 | The importance of predictive factors in defining a personalized clinical approach in resectable pancreatic cancer. The identification of predictive factors

(PF) has a central role in driving the therapeutic strategy, both in referring patients toward upfront surgery or preoperative therapy and in the choice of the optimal

systemic pre- and post-operative therapy.

preoperative therapy is the opportunity to select patients with
rapid progression who would not have benefit from surgery (13).

In the last decade oncological approach has been
revolutionized by a growing personalization of the treatment,
even if pancreatic cancer has been characterized by slower
progress. To date, the decisional algorithm in localized disease
is mainly based on clinical patient features and anatomical
surgical criteria (14). No predictive or prognostic markers
have been recognized for driving therapeutic approach in
early-stage pancreatic cancer. However, a tailored strategy for
selecting patients for upfront surgery vs. preoperative therapy,
and possibly which type of therapy, is of utmost importance
particularly in a potentially curable setting (Figure 1).

We performed a research on Pubmed/Medline, Cochrane
library and Scopus using the keywords “predictive factors
pancreatic cancer” OR “predictive pancreatic cancer” OR
“predictive resected pancreatic cancer” OR “predictive resectable
pancreatic cancer”. We selected the most relevant and pertinent
studies, both in the preclinical and clinical setting, considering
the quality of the studies and the relevance to the topic of
this review. For ongoing clinical trials, we searched in the
clinicatrials.gov database for recruiting and active phase II/III
trials focused on resectable or resected pancreatic cancer.

ADJUVANT AND NEOADJUVANT
TREATMENT IN RESECTABLE
PANCREATIC CANCER

International guidelines recommend a preoperative treatment
in borderline resectable and locally advanced disease (15, 16).
Whether preoperative therapy had to be offered in resectable
pancreatic cancer patients remains instead matter of debate
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and results in this setting are controversial. The main current
standard therapeutic approach of resectable disease is upfront
surgery followed by adjuvant chemotherapy.

The first trial proving a significant survival increase using
adjuvant therapy was the ESPAC-1 trial, in which patients with
resected pancreatic cancer received adjuvant fluorouracil or only
observation (17). The phase III ESPAC-3 trial did not show a
statistically significant difference between adjuvant fluorouracil
plus folinic acid compared with gemcitabine after resection
of pancreatic ductal adenocarcinoma (18). The combination
of gemcitabine and capecitabine showed longer OS compared
with gemcitabine in the phase III ESPAC-4, though lack of
a postoperative imaging restaging and of CA19.9 level limits
for enrollment were valuable points of weakness (19). More
recently, in the phase III multicenter PRODIGE 24/CCTG
PA trial the modified FOLFIRINOX regimen (comprised of
oxaliplatin, irinotecan, leucovorin, and fluorouracil) prolonged
survival compared to gemcitabine in patients with pancreatic
cancer (3). However, even with this most active regimen, more
than fifty percent of patients relapse after 2 years.

The actual trend among pancreatic cancer experts in the
treatment of resectable disease is to move toward neoadjuvant or
perioperative treatment.

Retrospective series have firstly proposed a survival benefit of
neoadjuvant therapy, especially in patients who are not fit after
upfront surgery to receive adjuvant therapy (20).

The randomized phase III PREOPANC trial investigated
upfront surgery with adjuvant gemcitabine compared with
perioperative gemcitabine combined with preoperative radiation
in patients with resectable and borderline resectable pancreatic
cancer (21). Preoperative chemoradiotherapy has improved OS,
together with DFS and R0 resection rate.

SWOG S1505 is a phase II non-comparative trial randomizing
patients with resectable pancreatic cancer to perioperative
FOLFIRINOX or gemcitabine plus nab-paclitaxel (22). Neither
of the two arms met the preplanned 2-year overall survival based
on historical data from adjuvant trials. Similarly, the recent phase
II NEONAX trial did not meet its primary endpoint in 18-month
DFS rate neither in the perioperative arm nor in the adjuvant arm
with gemcitabine plus nab-paclitaxel.

Several studies investigating preoperative or perioperative
therapeutic strategies are ongoing (Table 1), including
the PREOPANC-2 trial (23), the nITRO trial (24), the
NorPACT-1 (25), the NEPAFOX trial (26), and the
PANACHE01-PRODIGE48 trial (27).

MOLECULAR MECHANISMS INVOLVED IN
PANCREATIC CANCER RESISTANCE TO
CHEMOTHERAPEUTIC AGENTS

The most promising biomarkers for supporting the benefit
of a preoperative chemotherapeutic strategies in resectable
PC patients emerge directly from most relevant molecular
mechanisms for the intrinsic chemoresistance of pancreatic
cancer cells. The resistance of solid tumors to the cytotoxic effect
of cancer chemotherapy is generally accountable to the activation

in key pathways involved in the regulation of cell-cycle, and, most
importantly, in the suppression of programmed cell death, or
apoptosis, induced by these DNA damage agents (28).

Different autocrine or paracrine pro-inflammatory factors
lead to the activation of transcription factors involved in
apoptosis control. Nuclear Factor κB (NF-κB) and AP-1 are
among the most relevant of these transcription factors by
representing a key mechanistic link between inflammation
and cancer chemoresistance (29, 30). In the last decade, we
contributed to demonstrate the role of the serine/threonine
kinase Transforming Growth Factor-β (TGF-β)-activated kinase
1 (TAK1, also called MAP3K7) as a major determinant in the
integration of different pro-inflammatory signals relevant for
chemoresistance—including IL-1 (31, 32) and TGF-β (33)—to
regulate, in turn, different transcription factors, including NF-
κB, AP-1 (34), and YAP/TAZ (35). In this regard, TAK1 has been
demonstrated as a major determinant of the resistance of cancer
cells to the proapoptotic activity of chemotherapeutic agents in a
number of preclinical models of solid tumors [reviewed in (36)].

More recently, with the aim of identifying circulating markers
of TAK-1 pathway activation that could potentially serve as
resistance biomarkers for the nanoliposomal irinotecan (nal-IRI)
in patients with gemcitabine-resistant advanced pancreatic
cancer, we identified CXCL8, the gene coding for IL-8, as the
most significant gene regulated by TAK1 expression among those
coding for secreted proteins. Consistently, circulating IL-8 was
the most significant predictive marker of survival in metastatic
pancreatic cancer patients treated with nal-IRI in a large panel
of different cytokines, chemokines and growth factors (37).
Collectively this evidence delineates a model in which autocrine
or paracrine proinflammatory signaling sustain the activation
of TAK-1/NF-κB cascade, and IL-8 appears to be the most
significantly regulated factor by this intracellular pathway and
one of the most significant candidates for selecting those patients
with resectable pancreatic cancer more likely to benefit from
preoperative chemotherapeutic regimens.

TRANSCRIPTOMIC CLASSIFICATION
DEFINES DIFFERENT MOLECULAR
SUBTYPES OF PANCREATIC CANCER

Molecular subtyping could lead to many advantages, including
better prognostic definition and optimizing therapeutic patient
management. Gene expression profiling, mainly performed in
resected tumors, outlined different subgroups, which have not
yet practical applications in clinical routine. The three subtypes
described by Collisson include classical, quasimenchymal and
exocrine-like type (38). Bailey and colleagues identified four
subtypes (immunogenic, progenitor, ADEX and squamous) (39).
A two-subdivision was proposed by Moffitt, distinguishing
classical and basal-like subtype (40). Although they do not
overlap, the quasimenchymal (Collisson), squamous (Bailey)
and basal-like subtype (Moffitt) share similar features and all
three have been associated with a poor prognosis. Furthermore,
these have been associated with mutations in genes involved
in chromatin modification, including DNA methylation and
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TABLE 1 | Ongoing phase II/III trials investigating systemic treatment strategies in resectable pancreatic cancer.

Trial Phase Condition Interventions Primary endpoint(s)

Preoperative strategy

NCT04141995 2 Resectable pancreatic cancer FOLFIRINOX + digoxin Resection rate

NCT04536077 2 Resectable pancreatic cancer CDX-1140 +/– CDX-301 Intratumoral dendritic cells

NCT04808687 2 Resectable pancreatic cancer Nab paclitaxel + S-1 ORR

NCT02305186 1/2 Resectable or borderline resectable

pancreatic cancer

CRT + pembrolizumab TIL infiltration; safety

NCT03750669 2 Resectable pancreatic cancer Sequential nab-paclitaxel +

gemcitabine and mFOLFIRINOX

DFS

NCT03492671 2 Resectable pancreatic cancer Gemcitabine + nab-paclitaxel +

SBRT

R0 resection rate

PRIMUS002

(NCT04176952)

2 Resectable pancreatic cancer FOLFOX + nab-paclitaxel vs.

gemcitabine + nab-paclitaxel

Time to progression

NeoOPTIMIZE

(NCT04539808)

2 Resectable, borderline resectable,

locally advanced pancreatic cancer

Early switching of mFOLFIRINOX or

gemcitabine/nab-paclitaxel

R0 resection rate

Pancreas-CGE

(NCT02818907)

– Resectable or potentially resectable

pancreatic cancer

Evaluation of survival prognostic

factors

DFS

NCT04940286 2 Resectable or borderline resectable

pancreatic cancer

Gemcitabine + nab-paclitaxel +

durvalumab + oleclumab

NCT03977233 2 Resectable, borderline resectable,

unresectable locally advanced

FOLFIRINOX best disease control rate by

pancreatic cancer subtype

Perioperative strategy

NeoPancOne

(NCT04472910)

2 Resectable pancreatic cancer Modified FOLFIRINOX DFS according to baseline GATA6

expression level

PREOPANC-3

(NCT04927780)

3 Resectable pancreatic cancer Perioperative vs. adjuvant

mFOLFIRINOX

OS

nITRo (NCT03528785) 2 Resectable pancreatic cancer nal-IRI + 5-FU/LV + oxaliplatin R0 resection rate

NCT03572400 2 Resectable or borderline resectable

pancreatic cancer

Neoadjuvant CCRT with

gemcitabine/durvalumab + adjuvant

gemcitabine/durvalumab

DFS

NCT04340141 3 Resectable pancreatic cancer Perioperative vs. adjuvant

FOLFIRINOX

OS

NCT02723331 2 Resectable or borderline resectable

pancreatic cancer

Gemcitabine + nab-paclitaxel +

neaodjuvant SBRT

R0 resection rate

NCT02451982 2 Resectable pancreatic cancer CY/GVAX +/– nivolumab +/–

urelumab +/– BMS-986253

IL17A expression;

CD8+CD137+cells;

B+PD-1+CD137+ cells; PR

Postoperative strategy

NCT04969731 3 Resected pancreatic cancer gemcitabine +/– immuncell-LC RFS

APOLLO

(NCT04858334)

2 Resected pancreatic cancer Olaparib vs. placebo in BRCA1,

BRCA2 or PALB2 Mutation

RFS

NCT04736043 – Resected pancreatic cancer Ex vivo analysis of organoid culture OS

acetylation (e.g., methylation of HNF4A and GATA6 genes). The
immunogenic subtype is defined by a stromal immune infiltrate
and decreased tumor cellularity).

Collisson examined untreated primary resected pancreatic
cancer tumors. Quasimesenchymal subtype was characterized by
high tumor grade and poor survival. The classical subtype was
KRAS dependent and was correlated with GATA6 expression.

GATA6 is a transcription factor involved in the normal
pancreatic development (41). High GATA6 expression has been
showed to correlate with the classical phenotype, also according
to Moffitt classification; viceversa, the basal-like subtype showed

low GATA6 RNA expression (42). Consistent with this finding,
GATA6 expression has demonstrated a prognostic value.

The negative prognostic effect of low GATA6 expression
has been postulated also in resected pancreatic cancer patients
(42). Furthermore, it has also been proposed that patients with
basal-like GATA6low tumors do not benefit from 5-fluorouracil.
In an analysis of the ESPAC-3 adjuvant trial, a low GATA6
expression was correlated with lower survival in patients treated
with 5-fluorouracil, while it was not associated with response
to gemcitabine (43). Another group hypothesized resistance to
FOLFIRINOX of the basal-like subtype (42).
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The paucicellularity of pancreatic cancermakes challenging an
in-depth molecular characterization. The use of patient–derived
organoids has provided additional data, recapitulating
the mutational landscape and transcriptional subtypes of
pancreatic cancer and delineating chemotherapy signatures (44).
Furthermore, they have been demonstrated to be able to predict
treatment response. Interestingly, the basal-like cohort subgroup
has been found to have most likely an oxaliplatin-resistant
signature. Moreover, about one third of the pancreatic cancer
patient–derived organoids showed no sensitivity to any of the
chemotherapeutic drugs tested (gemcitabine, paclitaxel, SN-38,
5-fluorouracil, oxaliplatin). However, about half of these were
sensitive to at least one of the targeted agents used.

Noteworthy, the basal-like subgroup is characterized by a
hypoxia-associated gene signature, higher PD-L1 and PD-1
expression and enrichment of a T-cell-inflamed signature (42,
45).

ROLE OF MICRORNAS AS PROGNOSTIC
AND PREDICTIVE FACTORS IN
EARLY-STAGE PANCREATIC CANCER

MicroRNAs (miRNAs) regulate post-transcriptional gene
expression affecting physiological and pathological processes
(46). Hundreds of messenger RNAs (mRNAs) may be targeted
by a single miRNA (47). miRNAs are classified as oncogenic or
tumor suppressor, depending on the type of activity on oncogene
or tumor suppressor genes (48). A prognostic value of miRNAs
has been proposed since they are involved in cell survival,
proliferation, invasion and metastasis (49).

Expression of miR-574-5p, miR-1244, miR-145-star, miR-328,
miR-26b-star, and miR-4321 has been associated with OS and
DFS in 104 advanced pancreatic cancer patients (50).

Upregulation of miR-155, miR-196a-2, miR-203, miR-210,
miR-219, and miR-222 and downregulation of miR-217 have
been correlated with poor prognosis and overall survival (51).
MiR-155, miR-203, and miR-222 have been related to be involved
in the angiogenesis pathway (51). Furthermore, miR-155 has
been linked with gemcitabine resistance in pancreatic cancer by
controlling exosome synthesis (52). MiR-222, miR-203, and miR-
155 are also involved in cell cycle signaling pathway (51). MiR-
222 targets the cell cycle inhibitors p27 and p57, whereas miR-
203 and miR-155 target p53. The tumor suppressor function of
miR-217 is performed by directly targeting KRAS, since miR-
217 overexpression has been correlated with reduced KRAS
levels (53).

High expression of miR-200c, miR-142-5p, and miR-204 has
been reported to be associated with longer survival after surgical
resection of pancreatic cancer (54). Indeed, up-regulation ofmiR-
200 has been demonstrated to reverse epithelial-to-mesenchymal
transition (EMT) in gemcitabine resistant pancreatic cancer cells
(55). miRNA-200 family, including 200a/200b/200c/141, and
miRNA-205 regulate EMT by targeting ZEB1 and ZEB2 (SIP1),
that are E-cadherin suppressing factors (56).

miR-21 is an oncogenic miRNA and regulates several
oncosuppressors such as CDKN1A, PTEN, PDCD4 (57–59).

miR-21 expression can modulate apoptosis, Akt phosphorylation
and expression of genes involved in invasive behavior,
contributing to gemcitabine resistance (60). High plasma
and tissue miR-21-5p levels have been associated with worse
survival in patients with resectable pancreatic cancer (60, 61).
In a series of 25 resectable pancreatic cancer patients, higher
preoperative levels of miR-375-3p and miR-21-5p were
significantly correlated with worse OS and plasma miR-21-5p
concentration was independent from other clinicopathological
factors (62). Low miR-21 expression has been associated with
benefit from adjuvant therapy in two different cohorts of patients
with pancreatic cancer and anti-miR-21 has shown to enhance
anticancer drug activity in vitro (63). miR-21-5p inhibits the
tumor suppressor PTEN, activating the PI3K/AKT/mTOR
signaling pathway (60). In fact, elevated miR-21-5p expression
has been correlated with a decreased antitumor effect of
gemcitabine and 5-fluorouracil (64, 65). Moreover, miR-21-5p
inhibition seems to increase sensitivity to gemcitabine (66).

High presurgical levels of miR-365a-3p, which inhibits NF-κB
function inducing apoptosis, and of miR-99a-5p, which regulates
mTOR, are predictors of longer survival in resected pancreatic
cancer patients (67). miR-221-3p has been proposed as a marker
of recurrence after resection of pancreatic cancer (68). High
serum and tissue levels of miR-196a-5p, which is involved
in cancer proliferation and invasiveness, have been associated
with inferior median OS in patients with early-stage pancreatic
cancer (69). Furthermore, patients with unresectable pancreatic
cancer showed higher serum miR-196a-5p levels compared to
those with resectable cancer (70). Levels of plasmatic miR-182-
5p demonstrated to be negative predictors of DFS and OS in
pancreatic cancer (71).

Moreover, miRNA levels could help in predicting treatment
response or resistance (72). Since miRNAs could affect cell
cycle, drug efflux and apoptosis, they have been proposed to be
involved in chemoresistance by regulating ATP-binding cassette
(ABC) membrane transporters as well as exploiting intracellular
effects (73).

MiR-142-5p and miR-320c were proposed as positive
predictive factors of tumor response to gemcitabine (54, 74).
Similarly, downregulation of mi-R-33a, mi-R-200b, mi-R-200c,
mi-R-205, let-7b, let-7c, let-7d, and let-7e has been associated
with gemcitabine resistance (75). Let-7 is an oncosuppressor
and reduced expression of Let-7 have been correlated with
cancer progression. mRNAs target of Let-7 include KRAS,
HRAS, NF2, HMGA2 and LIN28 (76). The restoration of Let-
7 levels in pancreatic cancer cell lines has shown to inhibit cell
proliferation (77).

Furthermore, gemcitabine-resistant pancreatic cancer cells
were resensitized to gemcitabine showing decreased expression
of caveolin-1 and Ki-67.

A tumor suppressing role of miR-7-5p has been proposed, as
its serum levels were found decreased in patients with stage III or
IV pancreatic cancer compared to normal controls. Furthermore,
miR-7 was shown to be significantly lower expressed in
gemcitabine-resistant pancreatic cancer patients (78).

Chemoresistant pancreatic cancer cells showed
P-glycoprotein overexpression associated with miR-181a-5p
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and miR-218-5p dysregulation (79). Plasmatic miR-181a-5p
decline has been correlated with FOLFIRINOX response in
pancreatic cancer patients (80). Overexpression of miR-192-5p
and miR-215-5p has shown to decrease cancer cell proliferation,
affecting the S-phase of cell cycle and negatively influencing
response to drugs such as 5-fluorouracil (81).

In conclusion, miRNAs could play a role in guiding the
best therapeutic strategy approach in early-stage pancreatic
cancer patients. The tissue- and disease-specific expression and
the stability in body fluids of miRNA represent their main
advantages. Furthermore, they represent a potential therapeutic
target based on evidence coming from in vitro and in vivo studies
(82, 83).

MOLECULAR PROFILING IN
PERSONALIZING THERAPEUTIC
STRATEGY IN PANCREATIC CANCER

The molecular characterization in pancreatic cancer is not
yet standard in clinical care. However, growing evidence is
highlighting its relevance in the advanced setting. In a series of
71 patients whose tumor biopsies underwent whole-exome and
RNA sequencing, 48% were shown to have relevant genomic
alterations and 18% pathogenic or likely pathogenic germline
alterations, leading to a change in clinical management in 30%
of enrolled patients as a result of genomic results (84). A large
US registry study showed a longer median OS in patients with
actionable molecular alterations, that were about a quarter of
patients screened, who received a matched therapy (85).

A recent study performing next generation sequencing
(NGS) on resected pancreatic cancer specimens found likely
pathogenic/pathogenic variants in 94% of samples, 18% of which
were potentially actionable (86).

We recently used FoundationOne CDx or Liquid, a next-
generation DNA sequencing (NGS) service to identify genomic
alterations in 68 patients affected by pancreaticoduodenal
cancer patients who failed standard treatments. According to
ESMO Scale of Clinical Actionability for molecular Targets
(ESCAT), at least one alteration ranking tier I, II, III, or IV
according to ESCAT classification was detected in 8, 1, 9,
and 12 patients, respectively (44.1%). Ten of them (33.3%)
received a matched therapy. Patients with ESCAT tier I
to IV were generally younger than the overall population
(median= 54, range= 26–71 years), had an EGOG performance
status score = 0 (83.3%), and an uncommon histological
or clinical presentation. The most common mutations
with clinical evidence of actionability (ESCAT tier I-III)
involved genes of the RAF (10.3%), BRCA (5.9%) or FGFR
pathways (5.9%). These results indicated that in advanced
pancreaticoduodenal cancer, NGS is a feasible and valuable
method for enabling precision oncology. However, this genomic
profiling method might be considered only after standard
treatments failure, and especially in young patients maintaining
a good performance status, in order to detect potentially
actionable mutations and offer molecularly targeted therapeutic
approaches (87).

A clinical subgroup of patients with pancreatic cancer is
identified by homologous recombination deficiency (HRD),
which is caused by defects in DNA damage response (DDR)
genes. The main genes that have been proposed to be involved
in homologous recombination repair are BRCA1/2, PALB2, ATR,
ATM, CHEK1,2, RAD51, and FANC (88). Inactivating mutations
or epigenetic silencing of these genes result in HRD. The exact
prevalence of HRD in pancreatic cancer has yet to be defined,
partly due to the lack of a univocal definition and the variability
of assays used.

If pathogenetic germline alterations have a prognostic impact
remains matter of debate and available data in all stages of
pancreatic cancer are conflicting (89). However, studies focusing
on patients with germline mutations in DDR genes, including
ATM, BRCA1/2, CDKN2A, CHEK2, ERCC4, and PALB2, have
shown an improved OS (90).

Besides implications on prognosis and in terms of risk
assessment and prevention, the identification of these patients
has potential therapeutic repercussions (91). HRD has been
identified to be a positive predictive factor of response to
platinum-based therapy in patients with advanced pancreatic
cancer (92–95). Furthermore, it has been speculated that the
objective responsive rate of chemotherapeutic drugs containing
platinum salts could reflect this subpopulation characterized
by inactivation of DNA maintenance genes (96, 97). Further
investigation is needed to confirm whether HRD could
be a predictive factor of response to platinum therapy
in early stage, since major evidence comes from advanced
pancreatic cancer. However, two retrospective studies showed
increased pathological complete response rates and longer
OS in resectable and borderline resectable pancreatic cancer
patients treated with platinum-based therapies (98, 99). Ongoing
studies are investigating different therapeutic regimens in
resectable and borderline resectable pancreatic cancer with HRD
signature (100).

Germline BRCA mutation represents the first prospectively
validated predictive factor in advanced pancreatic cancer (101).
In the POLO trial the poly (ADP-ribose) polymerase (PARP)
inhibitor olaparib showed to prolong PFS compared to placebo in
patients whose disease had not progressed on first-line platinum-
based chemotherapy [hazard ratio (HR) of 0.53, p = 0.004],
even if it lacked to improve OS (102). Various ongoing trials
are investigating the efficacy of adding PARP inhibitors in the
preoperative or locally advanced setting, even in combination
with radiotherapy, on the basis of a possible synergy from
preclinical studies (NCT04005690) (103, 104).

Even if they represent a small proportion, mismatch repair-
deficient (dMMR) tumors might benefit from immunotherapy
(105, 106). The minor fraction of NTRK fusions could also
represent a target for the agnostic drugs TRK inhibitors (107).

Different platforms are being used with the aim of improving
precision medicine in pancreatic cancer (e.g., PRECISION-Panc
in the UK, Precision Promise in the USA, EPPIC in Canada). The
phase II PIONEER-Panc study is investigating novel therapeutic
strategies in early-stage pancreatic cancer (NCT04481204).

Proteins involved in metabolism and mechanisms of action of
chemotherapeutic drugs have been also proposed as predictive
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markers. Low thymidylate synthase (TYMS), excision repair
cross-complementing (ERCC1) and ribonucleotide reductaseM1
(RMM1) levels have been correlated with increased efficacy to
fluoropirimidines, cisplatin and gemcitabine, respectively (108,
109). High levels of secreted protein acid and rich in cysteine
(SPARC) have been associated with nab-paclitaxel response
(110). Low expression of human equilibrative nucleoside
transported 1 (hENT1) has been proposed to be involved in
gemcitabine resistance (111).

Interestingly, a prospective, phase II trial enrolling patients
with resectable and borderline resectable pancreatic cancer
and selecting neoadjuvant therapy (fluoropyrimidine-based or
gemcitabine-based) based on molecular profiling reported high
resection rates (112).

IMMUNE SIGNATURE IN PREDICTING
TREATMENT RESPONSE

For several years it has been observed an increased infiltration of
CD8+ and CD4+ T cells together with a reduction of FOXP3+

T regs after neoadjuvant therapy in pancreatic cancer patients
(113, 114).

A recent study has analyzed immune blood cells in patients
with pancreatic cancer after neoadjuvant FOLFIRINOX (115).
Response to FOLFIRINOX was associated with increased
CD8T cell levels, in particular CD27−Tbet+ effector/effector
memory subsets, while FOLFIRINOX non-responders showed
higher GATA3, CCR4 and ICOS expression in CD8T cells.
FOLFIRINOX treated patients were observed to express
increased Th1 cells and decreased Th2 cells, inflammatory
monocytes and regulatory T cells. Similarly, in a larger series
of resectable pancreatic cancer patients high Th2 cytokines of
IL-4 and IP10 and low TH1 cytokines TNFα and INFγ were
significantly associated with a shorter disease-free survival (116).
Low γδT cell levels have been associated to worse OS in patients
with borderline resectable pancreatic cancer patients treated with
neoadjuvant mFOLFIRINOX (117).

Myeloid-derived suppressor cells are also involved in tumor
response to chemotherapeutic treatments (118). The negative
prognostic impact of high pretreatment monocyte levels in
early-stage pancreatic cancer has been extensively reported
(117, 119). Aiming at targeting monocytes, the combination
of FOLFIRINOX with CCR2 blockade has been explored in
borderline resectable and locally advanced pancreatic cancer
patients in an early phase study (120). The induction of a
macrophage polarization into the “classically activated” M1
phenotype by chemotherapy is still matter of debate (121, 122).

These results indicate that neoadjuvant approaches are
effective not only because of their cytotoxic effect but also for the
positive impact on the immune response.

CIRCULATING TUMOR DNA AS
NON-INVASIVE AND DYNAMIC TOOL

Circulating tumor DNA (ctDNA) analysis has been proposed
also in pancreatic cancer as prognostic biomarker and as a tool

for improving early tumor detection and monitoring tumor
dynamics (123–125).

Preoperative detection of ctDNA in patients with early-
stage pancreatic cancer has been correlated with decreased
recurrence-free survival (RFS) and OS (126, 127). Moreover, it
has been shown that a lower proportion of patients undergoing
neoadjuvant chemotherapy has detectable ctDNA levels. Thus,
ctDNA analysis could help in identifying patients at high risk
of early recurrence after resection that might benefit from
neoadjuvant chemotherapy. Some evidence has demonstrated
that even high exosome DNA (exoDNA) levels are predictive of
poor survival in presurgical patients (128).

Another potential application of ctDNA is the possibility
of monitoring over time response to anticancer drugs. The
correlation between ctDNA changes and tumor responses has
been firstly demonstrated in other tumors (129–131). More
recently, tumor response has been correlated with reduction
of ctDNA levels also in advanced pancreatic cancer patients
(132–134). Moreover, the same ctDNA dynamic trend has been
observed in series of patients with resectable disease (126, 127).
Therefore, serial liquid biopsies might be able to predict disease
progression of on-treatment patients earlier than radiological
imaging. This could be even more important in a neoadjuvant
setting, where the choice of the best treatment strategy could
heavily impact on patient prognosis. Furthermore, the use of
liquid biopsies could find a pivotal role in patients whose
tumors do not express CA19.9, that could routinely be useful in
understanding clinical course.

Lastly, the mutational profile observed in ctDNA is highly
overlapping compared to primary or metastatic tumor tissues
(135). Thus, liquid biopsies may offer the opportunity of dynamic
molecular profiling, helping in the personalization of patient
treatment (136).

The most frequently used methods for measuring ctDNA
levels include NGS, KRAS digital-droplet PCR assay and Safe-
Sequencing System (126, 137, 138).

ORGANOIDS RECAPITULATING TUMOR
PRIMITIVE CHARACTERISTICS COULD
SERVE FOR TESTING CHEMOSENSITIVITY

Organoids are 3D cellular structures that recapitulate the identity
and the cell type diversity of the organ from which they derive.
Tumor organoids are novel ex vivo models that can mimic the
characteristic of the original tumor in vitro, offering an additional
strategy to personalizing therapeutic approaches and are being
studied in pancreatic cancer (139).

Pancreatic cancer patient–derived organoid (PDO) libraries
have been generated, overcoming the challenge of low neoplastic
cellularity, that characterizes pancreatic cancer. PDOs have
been proposed to reflect somatic mutations of primary tumor,
preserving intratumoral heterogeneity (140).

Gene expression signatures of chemosensitivity have been
explored in pancreatic cancer PDOs (44). PDO profiling with
DNA and RNA next-generation sequencing combined with
pharmacotyping, a PDO drug-testing pipeline, may predict
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response to conventional chemotherapeutic agents, both in the
adjuvant and metastatic setting. A PDO-derived oxaliplatin
sensitivity signature has been correlated with differential
response to FOLFIRINOX in patients with advanced pancreatic
cancer. About one third of the pancreatic cancer PDOs were not
sensitive to any of the chemotherapeutic drugs tested (oxaliplatin,
SN-38, 5-fluorouracil, gemcitabine, paclitaxel) but approximately
half of these showed sensitivity to one or more of the targeted
agents evaluated. Pharmacotyping PDO biobank has shown a
chemotherapeutic efficacy that seems to recapitulate the clinical
response in patients (140).

PDO pharmacotyping has a potential role in personalizing
the therapeutic approach of pancreatic cancer patients, even
in the early stage. PDO cultures could facilitate molecular
characterization in pancreatic cancer, since its typical low
cellularity could render it difficult in primary pancreatic cancer
specimens. On the other side, since their high cost, the time
requested and the need of specialization, they could not yet be
routinely used.

FUTURE PERSPECTIVES INVOLVING GUT
MICROBIOME

As in many other neoplasms, a significant field of research
is focusing on analyzing the link between microbiota and
pancreatic cancer, in which could play a role in cancer
development, progression and therapeutic response (141).

The microbiota comprises trillions of microorganisms
including bacteria, virus (virome), fungi (mycobiome) and
archaea and is involved in host physiologic homeostasis.

Substantial abundance of microbiome in pancreatic tumors
has been reported (142). Previous studies have demonstrated an
association between gut microbial alteration and the presence of
pancreatic cancer, but more recently a putative causative role has
been also proposed (143–145).

The ability of gut microbiota to colonize pancreatic tumors
canmodify the tumormicrobiome (146). Interestingly, flora from
long survivors or healthy patients could shape tumor immune
milieu, by recruiting and activating CD8+ T cells.

Moreover, the microbiome has been also proposed as
predictor of postoperative survival in pancreatic cancer.
Patients with resected pancreatic cancer showing a longer
survival were characterized by higher tumor bacteria diversity
(146). A signature including three tumor bacteria taxa
Pseudoxanthomonas, Streptomyces and Saccharopolyspora
and the species Bacillus clausii predicted patient prognosis after
resection and tumor microbiome sequencing has been proposed
to be used to stratify patients in adjuvant trials. Additionally, gut
microbiome could impact even on postoperative complications
rates after pancreatic surgery (147).

Noteworthy, recent in vitro and in vivo evidence suggests
that microbiota may influence response of gastrointestinal
cancers to chemotherapeutic agents. Gemcitabine metabolism
has been hypothesized to be decreased by Escherichia coli through
bacterial acetylation (148). Diverse bacteria from the class
Gammaproteobacteria have been correlated with gemcitabine

resistance in preclinical colon and pancreatic models (142). The
upregulation of BIRC3, an inhibitor of apoptosis, caused by
Fusobacterial nucleatum infection in colorectal cancer cells has
showed decreased sensitivity to 5-FU (149). Furthermore, high
levels of Fusobacterial nucleatum in resected colorectal cancer
specimens have been correlated with 5-FU resistance and shorter
DFS. It has been also suggested that in response to oxaliplatin
treatment bacteria could mediate the infiltration of myeloid cells
producing reactive oxygen species, which are responsible for the
cytotoxic effect of oxaliplatin (150).

Fungal population is extremely represented in pancreatic
cancer compared to normal pancreas and it migrates from the
gut lumen to the pancreas retrogradely via the sphincter of Oddi
(145). Fungi has been suggested to be involved in the process
of pancreatic carcinogenesis. Recently, intratumoral mycobiome
has been demonstrated to stimulate extracellular secretion of IL-
33, that recruits TH2 cells and innate lymphoid cells 2, facilitating
the type 2 immune response (151). TH2-polarized lymphoid cell
tumor infiltration and circulating type 2 cytokines have been
associated with poor prognosis in pancreatic cancer (116, 152).
Interestingly, genetic deletion of IL-33 or anti-fungal treatment
has been correlated with tumor burden decrease and survival
prolongation in mice.

Increasing evidence is supporting a role of microbiota in
pancreatic cancer progression and therapeutic response. Thus,
therapeutic strategies targeting gut microbiome are under
investigation and could highlight novel predictive factors and
enhance treatment of pancreatic cancer.

CONCLUSIONS

Choosing the best treatment strategy is essential in patients
affected by pancreatic cancer at early stage, when a chance of
cure still exists. The optimal management of resectable pancreatic
cancer is debated, and a field of research is moving toward an
anticipation of the standard adjuvant therapy. To date, the main
factors guiding the clinical decision making include anatomical
definition of resectability and clinical and biological patient
aspects. However, research is focusing on the identification of
novel possible prognostic and predictive markers, able to drive
a tailored treatment.

In recent years, different subgroups of pancreatic cancer have
been delineated based on the molecular profile. However, this has
not yet found application in clinical routine.

The tumor microenvironment and immune cell infiltration
have a key role in tumor progression and in resistance to
chemotherapeutic treatments in pancreatic cancer patients.

A promising role of miRNAs as prognostic and predictive
markers, as well as part of a potential novel therapeutic
approach, in pancreatic cancer has been proposed. In the
future they could contribute to drive the treatment also before
or after surgery or could also become a therapeutic target.
Increasing data supports the possible benefit of molecular
profiling of advanced pancreatic cancer patients and some
evidence is emerging in an early setting too. CtDNA could
represent a tool as predictive factors of response and for

Frontiers in Surgery | www.frontiersin.org 8 May 2022 | Volume 9 | Article 866173

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Merz et al. Predictive Factors in Resectable Pancreatic Cancer

monitoring the emergence of resistance in advance compared
to radiological imaging. Finally, organoids, that can recapitulate
typical characteristics of pancreatic cancer, could support
evaluation of chemosensitivity. The growing knowledge of the
association between gut microbiome and pancreatic cancer
could improve the strategic and the therapeutic management of
patients affected by resectable pancreatic cancer.
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