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Abstract

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2),

which is the causative pathogen for the coronavirus disease 2019 (COVID‐19)

pandemic, has greatly stressed our healthcare system. In addition to severe

respiratory and systematic symptoms, several comorbidities increase the risk of

fatal disease outcomes, including chronic viral infections. Increasing cases of lytic

reactivation of human herpesviruses in COVID‐19 patients and vaccinated people

have been reported recently. SARS‐CoV2 coinfection, COVID‐19 treatments, and

vaccination may aggravate those herpesvirus‐associated diseases by reactivating the

viruses in latently infected host cells. In this review, we summarize recent clinical

findings and limited mechanistic studies regarding the relationship between SARS‐

CoV‐2 and different human herpesviruses that suggest an ongoing potential threat

to human health in the postpandemic era.
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1 | INTRODUCTION

Human herpesviruses are a family of DNA viruses with a relatively large

double‐stranded, linear DNA genome and represent a class of the most

common infectious pathogens for humans, responsible for many human

diseases.1 Currently, eight herpesviruses members have been identified,

including herpes simplex virus types 1 (HSV‐1) and 2 (HSV‐2), Varicella‐

zoster virus (VZV or HHV‐3), Epstein–Barr virus (EBV or HHV‐4,),

Cytomegalovirus (HCMV or HHV‐5), HHV‐6, HHV‐7, and Kaposi's

sarcoma‐associated herpesvirus (KSHV or HHV‐8).2 Almost 100% of the

adult population in the world is infected with at least one herpesviruses

during their life.3 All herpesviruses have two alternative life‐cycle

programs after primary infection, latent and lytic phases, which are

essential for the maintenance of viral infections and the process of

diseases.4 In general, latency is the primary status in which a virus

persists in infected cells with only a limited number of viral proteins

being expressed.5,6 However, viral lytic reactivation usually induces high

expression of most viral genes, amplification of viral DNA, and release of

mature virions.7–9 Although the mechanisms of viral reactivation in cells

are well described, how various stresses such as immunosuppression,

inflammatory disorders, and coinfections with other pathogens promote

viral reactivation is not completely understood.10,11

According to the data released by Johns Hopkins Coronavirus

Resource Center (https://coronavirus.jhu.edu/), SARS‐CoV‐2 has

infected over 0.45 billion people and accounts for over six million

deaths. Four prominent variants (Alpha, Beta, Delta, and Omicron)

have emerged since the beginning of the pandemic.12 The SARS‐

CoV‐2 virus is a single‐strand ribonucleic acid (RNA) virus belonging

to the family Coronaviridae and is transmitted from person to person

mainly by air.13 SARS‐CoV‐2 is comprised of four main structural

proteins, nucleocapsid protein (N), spike protein (S), envelope

glycoprotein (E), and membrane protein (M).14 Respiratory epithelial

cells and alveolar cells of the respiratory system are the initial sites

for SARS‐CoV‐2 infection, which is mediated by the interaction of

viral S proteins with the host cellular receptor, angiotensin‐

converting enzyme 2 (ACE2).15 Importantly, viral components have

been observed in multiple organs and body fluids16 indicating that

SARS‐CoV‐2 infection may affect other pre‐existing diseases.
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Increasing data show that SARS‐CoV‐2 infection aggravates

pre‐existing comorbidities, including cancer and other infectious

diseases.17–19 For example, a recent review of the global evidence

found that the risk of adverse COVID‐19 outcomes is highly associated

with several pre‐existing conditions including diabetes, obesity, heart

failure, chronic obstructive pulmonary disease dementia, liver cirrhosis,

and active cancer.17 Another study showed that hospitalized COVID‐19

patients with a history of cancer had a worse prognosis and a higher

mortality rate (29.4%) than those without cancer (10.2%).20 Interest-

ingly, SARS‐CoV‐2 or COVID‐19 may act as a direct regulator or an

unexpected participator in the lytic reactivation of human herpesviruses.

Clinical symptoms related to the lytic reactivation of herpesviruses were

significantly more common in patients who were coinfected with SARS‐

CoV‐2, especially those with severe COVID‐19 requiring hospitalization

in an intensive care unit (ICU), and in COVID‐19 vaccinated people. For

example, a retrospective study of 100 patients with severe COVID‐19

found that 56.1% of patients suffered viral reactivation of herpesvirus at

10 days, including 12% for HSV, 58% for EBV, and 19% for HCMV,

respectively.21 Additional studies related to SARS‐CoV‐2 induced

reactivation of herpesviruses and potential mechanisms underlying this

reactivation are reviewed below.

2 | SARS‐CoV‐2 INFECTION AND KSHV

KSHV is the etiologic agent for several malignancies, including

Kaposi's sarcoma (KS), primary effusion lymphoma(PEL), and multi-

centric Castleman disease (MCD), which are mostly seen in

immunocompromised patients or organ transplantation receipts.22

We recently reported that ectopic expression of SARS‐CoV‐2

encoded N or S proteins, two major structural proteins, induced

KSHV lytic reactivation and production of infectious virions in

KSHV + lymphoma cells.23 We further showed that the expression of

ACE2, the receptor for SARS‐CoV‐2, was upregulated in AIDS‐KS

tissues relative to normal skin tissues.23 These results suggest the

possibility that SARS‐CoV‐2 coinfection can induce KSHV

reactivation in COVID‐19 patients. In support of this possibility, a

recent case study reported that a female patient with a history of KS

without active skin lesions had a recurrence of KS after hospitaliza-

tion for COVID‐19.24 Furthermore, transmission electron micro-

scope analysis provided solid evidence for both SARS‐CoV‐2 and

KSHV viruses in this patient's specimen. The authors speculated that

SARS‐CoV‐2 stimulates a hyper‐inflammatory status which may

contribute to KSHV reactivation, replication, and ultimately the

recurrence of KS. Similarly, a case of disseminated KS in an

immunocompetent patient after hospitalization for COVID‐19 was

recently reported.25 The authors of this study postulated that

interleukin‐6 (IL‐6) activity and steroid‐induced immunodeficiency

played a major role in KS emergence. Finally, a study of 104 patients

in South Africa, where there is a high prevalence of herpesviruses

infections, reported that coinfection with KSHV but not EBV might

be associated with the severity of clinical outcomes following

COVID‐19.26

In addition to viral coinfection, anti‐COVID‐19 therapies,

including azithromycin, nafamostat mesylate, and remdesivir are

associated with activating different cellular signaling pathways

leading to viral lytic reactivation.23,27 Azithromycin, an antibiotic for

treatment of bacterial infections, effectively upregulated mitogen‐

activated protein kinases (MAPKs) signaling activities to mediate lytic

reactivation. Nafamostat mesylate, a synthetic serine protease

inhibitor, regulated the Nuclear factor kappa B pathway to induce

lytic reactivation.23 Remdesivir, an Food and Drug Administration

(FDA)‐approved anti‐COVID‐19 drug, significantly activated lytic

reactivation of not only KSHV but also EBV, from virus‐associated

lymphoma cells.27 The AMPK and signal transducer and activator of

transcription 3 (STAT3) pathways were shown to contribute to

remdesivir‐induced KSHV reactivation, while EBV reactivation may

be associated with the p38 MAPK and STAT3 pathways.28–31 In

contrast, molnupiravir, another FDA‐approved anti‐COVID‐19 drug,

had minimal effects on KSHV and EBV reactivation, even at cytotoxic

concentrations, and significantly decreased the expression of EBV

lytic genes from EBV + lymphoma cells undergoing spontaneous lytic

replication.27 Together, these data strongly suggest that the

coinfection with KSHV and SARS‐CoV‐2 and certain drugs used to

treat COVID‐19 may facilitate the pathogenesis and progression of

diseases associated with each virus (Figure 1).

3 | SARS‐CoV‐2 INFECTION AND EBV

EBV infection can cause several human malignancies, including

Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell

lymphoma, natural killer (NK)/T cell lymphomas, and nasopharyngeal

carcinoma.32 Like other herpesviruses, the life cycle of EBV includes

latent and lytic phases, which are involved in viral transmission and

genome maintenance.33,34 Increasing data support an association

between EBV reactivation and SARS‐CoV‐2/COVID‐19. Early in the

COVID‐19 pandemic, several reports described cases of EBV and

SARS‐CoV‐2 coinfection in patients.35,36 Garcia‐Martinez et al.

reported reactivation of EBV with high viral loads in blood and

plasma after SARS‐CoV‐2 infection in a 19‐year‐old French female

patient with no other relevant clinical history.37 A large survey of

50 419 samples from the United States collected between March and

August 2020 showed much higher levels of EBV coinfection (2.13%)

in the SARS‐CoV‐2 positive population compared to the coinfection

rates of HSV (0.11%) and HCMV (0.07%).38 A correlation between

EBV reactivation and SARS‐CoV‐2 infection was confirmed in a

clinical investigation of 67 COVID‐19 patients fromWuhan, China in

which it was reported that 55.2% of patients with a history of EBV

infection had a positive test for EBV Viral capsid antigen immuno-

globulin M, an indicator for EBV reactivation, within 2 weeks of

SARS‐CoV‐2 infection.39

There are several reports that indicate EBV reactivation may

contribute to the severity of COVID‐19 infection. For example,

COVID‐19 patients with EBV coinfection had a higher risk of fever

symptoms and higher levels of C‐reactive protein, aspartate
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aminotransferase, and corticosteroid use.39 Another study from

China reported that the mortality rate of COVID‐19 patients with

EBV reactivation (29.4%, 5/17) was higher than that of patients

without EBV infection (8.1%, 9/111).40 Similarly, a study from France

confirmed critically ill patients with COVID‐19 in the ICU were prone

to develop lytic reactivation of herpesviruses, including EBV, CMV,

and HHV‐6. It was observed that 82% of such patients suffered EBV

reactivation, while the incidence rates of CMV and HHV‐6 reactiva-

tions were 15% and 22%, respectively. The authors concluded that

EBV reactivation occurred early after ICU admission, and was

associated with longer ICU length‐of‐stay.41 It has also been

observed42 that 88.3% of patients (91/103) tested positive for EBV

DNA in whole blood samples and that the positive rates of EBV DNA

in ICU patients were 95.2% (40/42) higher than 83.6% (51/61) of

patients in a sub‐intensive care unit (SICU). Moreover, the levels of

viral DNA in ICU patients were higher than those of SICU patients.

Interestingly, there was a significant loss of NK and CD8+ T cells in

COVID‐19 patients, which paralleled the severity of infection, and

this reduction was significantly correlated with the presence of EBV

DNA.42 Another study suggested that EBV reactivation induced by

COVID‐19‐related inflammation was likely the main cause of chronic

COVID syndrome in COVID‐19 patients; although the underlying

mechanisms were not defined.43

Recent studies have begun to address the mechanisms underlying

the interactions between SARS‐CoV‐2 and EBV. Because of the effects

of long COVID‐1944 and EBV reactivation45 on mitochondrial functions

that are important to host immune response, Nunn et al. suggested

that EBV reactivation in patients with long COVID might represent a

second mitochondrial “hit” that promotes occurrence of longer‐term

symptoms.46 Another recent study reported a similar finding of

significant levels of EBV viremia in critically ill COVID‐19 patients

(78% of COVID‐19 patients vs. 44.4% of non‐COVID‐19 patients) and

associated the high prevalence of EBV reactivation in COVID‐19

patients with the inflammatory factor, IL‐6.41 In a different mechanistic

study, Verma et al. indicated a role for lytic infection of EBV in

increasing the susceptibility of SARS‐CoV‐2 infection of human oral

epithelium by upregulating ACE2 expression.47 This involved Zta, an

EBV lytic activator, directly acting on methylated promoters to increase

ACE2 expression thereby enhancing SARS‐CoV‐2 infectivity (Figure 2).

These results suggest that inhibiting EBV replication with antivirals may

decrease SARS‐CoV‐2 infectivity. There is also a case report of a

43‐year‐old Chinese female with chronic EBV infection developing

hemophagocytic lymphohistiocytosis (HLH) after receiving the

inactivated COVID‐19 vaccination.48 Importantly, there were high

levels of EBV virus and IgG antibodies, which are the most common

trigger for HLH, in this patient's samples suggesting that the

development of HLH in this patient was associated with acute

immune‐stimulation of COVID‐19 vaccination under the chronic EBV

infection condition. Together, these reports suggest a potential

interaction between these two viruses and the impacts on related

disease progression in patients.

4 | SARS‐CoV‐2 INFECTION AND HSVS

HSVs are categorized into two major types, HSV‐1 and HSV‐2,

reflecting oral herpes and genital herpes, respectively. HSV infections

are prevalent worldwide, with an estimated 491.5 million people

infected with HSV‐2 and over 3752 million with HSV‐1 based on a

WHO investigation in 2016.49 Several clinical reports and other

F IGURE 1 Schematic diagram of potential mechanisms for Kaposi's sarcoma‐associated herpesvirus (KSHV) reactivation by SARS‐CoV‐2
coinfection or anti‐COVID‐19 drugs. The arrows and bars represent the activation and inhibition, respectively. Notably, the mechanisms of
KSHV regulation of angiotensin‐converting enzyme 2 expression remain unknown. N, nucleocapsid protein; S, spike protein.
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studies indicate the prevalence of SARS‐CoV‐2 and HSV coinfection

may promote HSV‐associated diseases in COVID‐19 patients by

inducing viral reactivation. A French study involving 38 COVID‐19

patients described Herpesviridae (HSV and/or HCMV) pulmonary

reactivations. Of the 38 patients, 18 (47%) presented with at least

one viral pulmonary reactivation, nine with HSV reactivation alone,

two with CMV reactivation alone, and seven with co‐reactivation.50

Patients with Herpesviridae reactivation had a significantly longer

duration of mechanical ventilation than those without Herpesviridae

reactivation. Another cross‐sectional study involving 80 patients with

mild‐to‐moderate COVID‐19 without treatment found that 35%

(28/80) of patients had one or more HSV infections.51 Most

respondents (78%) reported a single HSV reactivation, 14.29% had

two attacks, and 7.14% experienced three attacks. Compared to

previous non‐COVID‐19‐related HSV reactivation, the COVID‐19‐

related attacks were more severe in 12 (42.85%) patients. Interest-

ingly, 10 (35.71%) patients developed an initial symptomatic HSV

attack during COVID‐19 infection, indicating a possible association

between COVID‐19 and primary HSV infection or reactivation. In

addition, several studies reported potential lytic reactivation of HSV by

COVID‐19 treatment or vaccination. In one retrospective cohort

study from Italy, although treatment with a recombinant monoclonal

antibody to the IL‐6 receptor, tocilizumab, effectively reduced the risk

of invasive mechanical ventilation or death, 13% (24/179) of patients

treated with this antibody presented new infections relative to 4%

(14/365) of patients treated with standard care alone (p < 0.0001).52

Interestingly, four patients in the tocilizumab group experienced HSV

reactivation, of which one died after receiving high‐dose glucocorti-

coids, while there were none in the standard care group. Another

study from the United Kingdom described an 82‐year‐old man with a

history of herpes simplex keratitis who presented with recurrence

after receiving a COVID‐19 vaccine (AstraZeneca),53 implying the rare

potential for HSV reactivation following the vaccination.

5 | SARS‐CoV‐2 INFECTION AND VZV

VZV infection usually causes herpes zoster (shingles) and varicella

(chickenpox).54 This herpesvirus infection is prone to establishing

latency in dorsal‐root or cranial‐nerve ganglia.55 Although there are

available vaccines against VZV, some stressors, for example, fever,

immunosuppression, and inflammatory may induce its reactivation.56 It

recently has been reported that SARS‐CoV‐2 and its vaccines may

represent a trigger for VZV reactivation. Previous clinical observation

reported after getting COVID‐19, some patients suffered various

cutaneous manifestations, ranging from erythematous rash to

chickenpox‐like/urticarial eruption, including herpes varicella zoster‐

induced skin diseases.57–59 Two recent publications reported specific

COVID‐19‐associated varicella‐like exanthema, which may be associ-

ated with VZV reactivation.60,61 Fernandez‐Nieto et al. also reported 15

cases of COVID‐19 hospitalized patients with typical clinical skin

manifestation, including HSV‐associated zoster and VZV‐associated

zoster.62 Elsaie et al. reported two COVID‐19 patients who first

presented with herpes varicella‐zoster lesions, suggesting VZV

reactivation should be considered an alarming sign for possible

COVID‐19, especially during the pandemic.63 Maldonado et al. reported

that a 25‐year‐old woman had itchy vesicular lesions associated with

varicella‐zoster infection and a subsequent positive diagnosis of

SARS‐CoV‐2.64 Although this patient had an immunocompetent system,

she suffered from a worsening condition even though she was treated

with paracetamol and topical calamine powders. Ferreira et al. also

presented a clinical case of a 39‐year‐old man with co‐infection of

F IGURE 2 Schematic diagram of potential mechanisms for Epstein–Barr virus (EBV) reactivation by SARS‐CoV‐2 coinfection or anti‐COVID‐19
drugs. The arrows and bars represent the activation and inhibition, respectively. The mechanisms of Molnupiravir downregulating EBV lytic genes
remain unclear.
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SARS‐CoV‐2 and VZV who suffered the left facial herpes zoster

affecting the three divisions of the trigeminal nerve,65 which is probably

related to viral inflammatory responses. Tartari et al. observed four

elderly COVID‐19 patients showed a decrease in CD3+/CD8+ elements

in circulating blood, providing another possible mechanism of VZV

reactivation.66 These reports together indicate a potential role of

SARS‐CoV‐2 co‐infection in VZV reactivation.

Several case reports describe herpes zoster induced by VZV

reactivation following vaccination with either inactivated or messen-

ger RNA (mRNA) COVID‐19 vaccines. A cross‐sectional investigation

from Spain collected 405 patients with cutaneous reactions after

vaccination with the BNT162b2 (Pfizer‐BioNTech; 40.2%), mRNA‐

1273 (Moderna; 36.3%) and AZD1222 (AstraZeneca; 23.5%), and

found the reactivation of VZV and HSV accounted for 13.8% of

reactions.67 Yalici‐Armagan et al. reported an unusual case of VZV

reactivation in a 78‐year‐old man after receiving the inactivated

COVID‐19 vaccine.68 This patient suffered from some severe and

painful pimple‐like lesions but no other symptoms such as fever,

dyspnea, or cough 5 days after the inactivated COVID‐19 vaccine.

Eid et al. presented another case of VZV reactivation in a 79‐year‐old

man after receiving the mRNA COVID‐19 vaccine.69 This patient

suffered from a skin eruption over the right thigh in a dermatomal

distribution, and the condition improved after antiviral treatment.

Foster et al. also described two young patients under 20‐year‐old

with acute lymphoblastic leukemia who presented with VZV

reactivation following BNT162b2 vaccination.70 Similarly, five cases

of VZV reactivation in Spain were reported from 3007 persons

vaccinated with the BNT162b2 mRNA COVID‐19 vaccine, who were

immunocompetent without any abnormality.71 Furer et al. assessed

the safety of the BNT162b2 vaccine by comparing VZV reactivation

in patients with autoimmune inflammatory rheumatic diseases

(AIIRD) (n = 491) and controls (n = 99) in Israel.72 Their data

indicated that six patients with AIIRD presented VZV reactivation

compared to none in controls, and antiviral treatment showed a

positive effect on VZV‐related symptoms. Although a series of cases

reported the possible relationship between VZV reactivation and

COVID‐19 vaccines, several groups provided epidemiological data to

refute the promoted effect of vaccines on herpes virus‐associated

diseases. Broth‐Nissimov et al. investigated the prevalence of herpes

viruses in 103 paired samples of immunocompetent patients before

and after receiving BNT162b2 vaccination. Their data showed no

increase in oropharyngeal reactivation of herpesviruses, including

VZV and all other HHVs except KSHV.73 Birabaharan et al. presented

a retrospective cohort study, including 1 306 434 persons who

received a dose of the mRNA COVID‐19 vaccine. However, they

were unable to observe the difference in the relative risk of herpes

zoster in the 28 days after index events within vaccinated persons

compared to the control cohorts.74 Therefore, their data suggest

mRNA COVID‐19 vaccination is not associated with increased rates

of VZV reactivation. However, their analysis is limited by potential

misclassification bias, which is inherent in using diagnostic codes. Still,

these studies indicate a possible connection between COVID‐19

vaccines and VZV reactivation.

6 | SARS‐CoV‐2 INFECTION AND HCMV

HCMV infection has a prevalence of 60%–70% of adults in developed

countries and almost 100% in developing countries.75 Although

HCMV infection‐induced symptoms are mild in healthy people, the

congenital infection of HCMV can lead to severe organ disease and

even death in immunocompromised or immunosuppressed patients,

including HIV‐infected patients, organ transplant recipients, and

newborn infants.76 Moreover, like other human herpesviruses, HCMV

reactivation is commonly reported in critically ill patients and

promotes morbidity and mortality.77 Not surprisingly, its reactivation

has been reported in individuals with severe COVID‐19 and is

potentially associated with SARS‐CoV‐2 coinfection.

A clinical investigation including 38 COVID‐19 patients in France

found that among 47% (18/38) of patients who presented with

lymphopenia and the reactivation of herpesviruses, 2 of these patients

had HCMV reactivation.50 Another study including 257 laboratory‐

confirmed COVID‐19 patients in China indicated that 1.2% of patients

had HCMV reactivation, while 20.2% and 3.1% for EBV and HSV

reactivation, respectively.78 A retrospective single‐center cohort study

from Germany, including 117 patients with severe COVID‐19 in ICU,

found that 9% of patients presented HCMV reactivations, of which 55%

were detected in patients under systemic corticosteroid treatment,79

suggesting that critically ill patients with COVID‐19 are at high risk for

HCMV reactivations. Another study from France also observed that 15%

(5/34) of patients with severe COVID‐19 in the ICU suffered HCMV

reactivation.41 A previous clinical observation reported five patients

at a median age of 68.2 years (range 61–78) with a coinfection of

SARS‐CoV‐2 and HCMV.80 All patients were admitted to ICU in the

context of respiratory failure due to severe COVID‐19 and developed

HCMV reactivation symptoms during the stay. Thus, the authors

speculate that immune suppression caused by severe COVID‐19 may

represent a primary reason for HCMV reactivation. Amaral et al.

described a case of coinfection in a 62‐year‐old Caucasian male patient

with hypoxemia, lung parenchyma, and prolonged fever.81 This patient

then developed invasive HCMV colitis, which was cured after receiving

treatment with Ganciclovir, an antiviral drug against HCMV. They thought

HCMV reactivation might be associated with SARS‐CoV‐2 coinfection

and COVID‐19 treatment, such as glucocorticoids, anti‐IL‐6, and other

immunobiological therapies. Interestingly, Basic‐Jukic et al. studied the

potential benefit of hyperimmune anti‐HCMV globulin for treating renal

transplant recipients with COVID‐19.82 Their results strongly suggest

using HCMV‐specific immunoglobulin to treat COVID‐19 patients with

the immunocompromised state and HCMV reactivation.

7 | SARS‐CoV‐2 INFECTION AND HHV‐6/
HHV‐7

HHV‐6 and HHV‐7 are two closely related members of the

Roseolovirus genus of the Herpesviridae family.83 The primary infection

of both viruses commonly occurs in infants or young children and then

establishes latency that persists throughout life. A large majority of the
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general adult population is latently infected with both viruses.

Reactivation of both viruses commonly causes Pityriasis rosea (PR),

an acute, self‐limiting exanthematous inflammatory skin disease. Lytic

reactivation of latent HHV‐6 and HHV‐7 can be induced in the

conditions of immunosuppression or under stress. Several clinical

investigations reported PR and PR‐like eruptions in COVID‐19

patients, which may represent a cutaneous manifestation of COVID‐

19 infection, although virology tests for HHV‐6 or HHV‐7 were not

performed.84–87 In addition, Hu et al. reported a case of HHV‐6B

reactivation in a 70‐year‐old patient with COVID‐19.88 They

confirmed the presence of nucleic acid of SARS‐CoV‐2, HHV‐6B,

and HSV‐1 in the eye swabs from these patients using next‐generation

sequencing technology. Drago et al. also reported a 16‐year‐old

patient with pityriasis rosea following COVID‐19.89 This patient was

further found positive for HHV‐6, HHV‐7, and EBV in serology, and

detectable viral DNA of HHV‐6 and EBV but not HHV‐7. Furthermore,

Simonnet et al. reported 7 cases of HHV‐6 reactivation by investigat-

ing 34 patients with COVID‐19 under ICU stay.41 Although PR or PR‐

like eruptions were reported in patients after receiving different

COVID‐19 vaccines,90 the evidence of reactivation of HHV‐6 and

HHV‐7 following vaccination has not been provided in the literature.

Together, these data have provided clinical clues of HHV‐6/HHV‐7

lytic reactivation in some COVID‐19 patients.

8 | CONCLUSION AND PROSPECT

Increasing data have indicated the potential roles of SARS‐CoV‐2

coinfection, COVID‐19 treatments, or vaccination in the

reactivation of human herpesviruses. However, most of these

studies come from clinical or retrospective investigations, therefore,

the underlying mechanisms remain largely unclear. Nevertheless,

several possible mechanisms are probably involved. First, the

transcripts or proteins of SARS‐CoV‐2 can directly induce herpes-

viruses' reactivation by interacting with herpesvirus elements or

regulating host factors involved in reactivation‐related cellular

signaling pathways. Second, one of the key characteristics of

SARS‐CoV‐2 infection is causing the cytokine storm, which is

especially noteworthy in severely ill COVID‐19 patients. One or

more of these cytokines/chemokines, including IL‐6 and TNF‐α,91

could induce herpesvirus reactivation.92,93 Third, immuno-

suppression in COVID‐19 patients may contribute to herpesviruses

reactivation. SARS‐CoV‐2 infection can result in lymphopenia,

especially in severe COVID‐19 patients, that results from hyperin-

flammation exhausting T cells and virus infecting T cells to interfere

with T cell expansion.94 Significant loss of NK and CD8+ T cells may

cause herpesvirus infections and reactivation.95,96 Fourth, the

pandemic caused psychological stresses that may contribute to

herpesviruses reactivation. Increasing data have confirmed COVID‐

19 results in several psychological disorders, including stress,

anxiety, and depression. A systematic review of recent literature

showed the prevalence of stress, anxiety, and depression obtained

as 29.6%, 31.9%, and 33.7% in COVID‐19 patients, respectively.97

In addition, we assume that different herpesviruses may share some

similar mechanisms (e.g., certain cellular signaling pathways) for

reactivation by SARS‐CoV‐2 coinfection, although still requiring

further investigation.

Because several human herpesviruses, such as KSHV, and EBV,

are oncogenic, it is necessary to establish an appropriate follow‐up or

surveillance system for COVID‐19 patients even after their full

recovery (or some vaccinated personnel). This is especially important

for immunocompromised people with herpesvirus infection because

they may have a higher risk of developing severe COVID‐19 and

developing virus‐associated cancers.
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