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Condition identification is an essential part of a learn-
ing health system,1 monitoring health system per-
formance and risk adjustment. The gold standard 

for case identification is typically chart review.2 This 
requires a substantial time commitment from profession-
als  — often making it infeasible for population research. 
Coded administrative data are commonly used to identify 
conditions but often have low sensitivity.3 Electronic medical 
record (EMR) phenotypes can be automated, making them 
relatively inexpensive to implement, and have the potential 
to have both high sensitivity and positive predictive value 
(PPV).2 Data from EMRs could supplement administrative 
data for health research, which could assist in clinical 
decision-making processes.

Administrative health databases have been used for hyper-
tension surveillance because the data are routinely collected, 
cover large geographic areas and have the potential for longi-
tudinal follow-up.4,5 A hypertension case definition was devel-
oped using administrative data coded by the International 
Classification of Diseases (ICD), with a reported sensitivity of 
68.3%, a PPV of 93.1%, a specificity of 97.8% and a negative 

predictive value (NPV) of 87.7%.3,6 The observed undercod-
ing of hypertension was possibly due to the process of coding 
health information to administrative data. Specifically, the 
undercoding could be attributed to coders having limited 
time with a quota of 25 charts per day in Alberta and chart 
incompleteness, with an estimated 80% of charts missing the 
discharge summary or operative report at the time of cod-
ing.7,8 Extracting collected health information from EMRs is 
a promising opportunity to improve the accuracy of identify-
ing hypertension. Clinical notes are a rich source of informa-
tion in EMRs but are underused in automated processes 
owing to the difficulties in extracting information from free 
text. The Unified Medical Language System (UMLS)9 
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Background: Case identification is important for health services research, measuring health system performance and risk adjustment, 
but existing methods based on manual chart review or diagnosis codes can be expensive, time consuming or of limited validity. We 
aimed to develop a hypertension case definition in electronic medical records (EMRs) for inpatient clinical notes using machine learning.

Methods: A cohort of patients 18 years of age or older who were discharged from 1 of 3 Calgary acute care facilities (1 academic 
hospital and 2 community hospitals) between Jan. 1 and June 30, 2015, were randomly selected, and we compared the perfor-
mance of EMR phenotype algorithms developed using machine learning with an algorithm based on the Canadian version of the 
International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD), in identifying patients with 
hypertension. Hypertension status was determined by chart review, the machine-learning algorithms used EMR notes and the ICD 
algorithm used the Discharge Abstract Database (Canadian Institute for Health Information).

Results: Of our study sample (n = 3040), 1475 (48.5%) patients had hypertension. The group with hypertension was older (median age 
of 71.0 yr v. 52.5 yr for those patients without hypertension) and had fewer females (710 [48.2%] v. 764 [52.3%]). Our final EMR-based 
models had higher sensitivity than the ICD algorithm (> 90% v. 47%), while maintaining high positive predictive values (> 90% v. 97%).

Interpretation: We found that hypertension tends to have clear documentation in EMRs and is well classified by concept search on 
free text. Machine learning can provide insights into how and where conditions are documented in EMRs and suggest nonmachine-
learning phenotypes to implement.
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attempts to overcome some of these difficulties by mapping 
the varying lexical choices available in clinical documentation 
to a single concept unique identifier (CUI). We hypothesized 
that CUIs could play an important role in creating interpre-
table models. Our objective was to develop a standardized 
hypertension case identification method using inpatient clin-
ical notes from EMRs. This work is part of our larger 
research program on EMR phenotyping.2,10–12

Methods

Study design
We conducted a retrospective cohort study in which we 
reviewed medical charts to determine a reference standard for 
hypertension status in a cohort of randomly selected patients 
who were admitted to 3  acute care centres in Calgary, 
Alberta.13 We compared the performance of EMR phenotype 
algorithms developed using machine learning and an ICD-
based algorithm in identifying patients with hypertension. We 
used machine learning to develop an EMR phenotype for 
hypertension and create a data-driven, rule-based algorithm. 
As a comparative method, we also employed a previously 
validated hypertension case-identification algorithm based on 
the Canadian version of the International Statistical Classification 
of Diseases and Related Health Problems, 10th Revision (ICD-
10-CA)  (termed ICD algorithm in this paper). We compared 
the performance of both phenotypes against the chart review 
as a reference standard. We reported our study results using the 
Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) checklist.14

Study setting and participants
We used data from a chart review cohort of patients who 
were selected for a field trial of the new International Statistical 
Classification of Diseases and Related Health Problems, 11th Revision 
for Mortality and Morbidity Statistics (ICD-11) diagnosis coding 
system.13 The patients in this cohort were at least 18 years of 
age and were discharged from 1 of 3  acute care facilities in 
Calgary, between Jan. 1 and June 30, 2015. The 3 facilities 
involved were an academic hospital (Foothills Medical Centre, 
affiliated with the University of Calgary) and 2  community 
hospitals (Peter Lougheed Centre and Rockyview General 
Hospital). These were chosen because they were the inpatient 
facilities in Calgary with emergency departments and intensive 
care units that had the same EMR system at that time.

We excluded obstetric admissions owing to short stays and 
few chronic conditions. We randomly selected patient discharges 
from this period such that each hospital had about the same rep-
resentation. Each patient had the same probability of being 
selected as any other qualifying patient from the same hospital. 
For patients with several admissions, 1  admission within the 
study period was randomly selected. A sample-size calculation 
from the ICD-11 field trial study13 determined that 3000 records 
were required to detect a 10% difference in sensitivity between 
ICD-10-CA and ICD-11 coding of common comorbidities, 
such as hypertension, using Lachenbruch’s midpoint method15 
based on prevalence results from previous findings.3

Data sources
We used 3 databases to conduct this study: Sunrise Clinical 
Manager (SCM), the Alberta Discharge Abstract Database 
(DAD) and a medical chart review database, linked using a 
personal health number (a unique lifetime identifier), chart 
number (a unique number associated with a patient’s admis-
sion) and admission date. 

Sunrise Clinical Manager
This database supplied the clinical notes that were used to 
extract features to train our machine-learning models. 
AllScripts SCM is a city-wide, population-level EMR sys-
tem currently in operation throughout all acute care facili-
ties in Calgary. Alberta Health Services, the single health 
authority in Alberta, manages SCM and the associated elec-
tronic data warehouse.10 All physician and nursing notes, 
excluding diagnostic imaging reports and those associated 
with patients’ visits, in our cohort were extracted. We also 
extracted the name of the clinical notes and identified 
58  unique names (e.g., Discharge Summary  — Medical, 
Surgical Assessment and History — Nursing, History and 
Physical, and others) in our cohort. They included physician 
and nursing notes but not diagnostic imaging reports.

Discharge Abstract Database
This database supplied the ICD codes for the validated ICD 
hypertension algorithm as well as age, sex and physician 
specialty, which we stratified by. The DAD is the adminis-
trative health database where up to 25  diagnosis codes for 
all inpatient encounters are stored using ICD-10-CA.6 The 
diagnosis codes are assigned by coders after discharge, based 
on the clinical documentation in patients’ charts. The database 
also contains basic demographic information about the 
patients (e.g., sex and age). The Canadian Institute for Health 
Information provides national coding standards and training 
programs for health information managers (i.e., coders).16 It is 
common practice to identify patients with hypertension who 
were admitted to hospital using a case definition based on 
ICD-10-CA codes from any of the 25 diagnosis fields within 
DAD (I10–I13 or I15).6 We extracted physician specialty 
groups to allow grouping of patients under care to surgical and 
medical groups. We stratified by surgical versus nonsurgical 
services because preliminary analysis showed many patients 
were missing discharge summaries in their EMR, and these 
were predominantly surgical patients. We classified all DAD 
records with a column listing the specialty of the most respon-
sible physician (DOCSVC1) that corresponded to a specialty 
of general surgery, orthopedic surgery, vascular surgery, 
neurosurgery, plastic surgery, thoracic surgery, cardiac sur-
gery and oral surgery as surgical patients.

Medical chart review
This provided the reference standard for hypertension that 
both our algorithm and the existing ICD algorithm were 
compared against. We extracted patient charts for each of 
the included admissions from the hospital records depart-
ments,13 which provided EMR data from SCM as well as 



Research

	 CMAJ OPEN, 11(1)	 E133    

paper charts not necessarily a part of the EMR. Trained 
chart reviewers (all nurses) looked for any form of listed 
diagnosis of hypertension (e.g., controlled hypertensives or 
essential hypertension) in patients’ history and physical, 
multidisciplinary progress notes, consult notes and discharge 
summary. If a diagnosis was documented, the chart was 
labelled as hypertension present. The chart reviewers were 
not trying to ascertain if patients met diagnostic criteria for 
hypertension, but only if they had a documented diagnosis 
of hypertension. The inter-rater reliability between review-
ers was high (> 0.8 κ).13 These hypertension labels were used 
as a reference standard for both our machine-learning algo-
rithms and for the ICD-based algorithm.

Development of the case definition using machine 
learning

We outline the steps from extracting the EMR data to our final 
hypertension case-identification algorithms in Figure 1. The data 
were split into 80% training and 20% test, which is common in 
machine learning.17,18 The training set was used for training and 
validation of all the machine-learning models, via fivefold cross- 
validation, and the test set was used only to compare the perfor-
mance of the final EMR models with the ICD method.

Applying cTAKES and creating a feature matrix
We used the clinical Text Analysis and Knowledge Extraction 
System (cTAKES),19 in particular its default clinical pipeline, 
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Figure 1: Case identification flow chart. We randomly sampled 3040 inpatient charts from Sunrise Clinical Manager (SCM) and extracted 
their associated clinical notes, identifying UMLS concepts with cTAKES. We used XGBoost models to select the most important concept and 
document–concept pair features separately. We used these selected features to fit reduced concept and document–concept XGBoost models. 
We also used the concept features to implement a simple search algorithm for the hypertension concept C0020538. Note: cTAKES = clinical 
Text Analysis and Knowledge Extraction System, EMR = electronic medical record, UMLS = Unified Medical Language System.
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to process all the clinical notes. We extracted clinical concepts 
in the form of CUIs from the UMLS.9 This method accounts 
for variation in terminology among EMRs, because UMLS 
maps synonymous terms to the same underlying concept. For 
example, in UMLS, the clinical concept “hypertensive dis-
ease” is assigned the CUI “C0020538.” The 2018AB UMLS 
release contains 67 synonyms for this clinical concept, includ-
ing “BLOOD PRESSURE HIGH,” “HBP,” “HTN,” 
“hyperpiesia,” “hypertension” and “systemic HTN.”

All of these synonyms map to the same CUI, which allowed 
us to generate nonredundant (i.e., normalized) features. We 
used the negation and subject attribute annotators in cTAKES 
to label each CUI. These assessed whether the concept appeared 
in a negated context (e.g., “no evidence of hypertension”) and 
whether the subject to which the CUI was associated was the 
patient or someone else. The cTAKES outputs were then con-
verted into a document–concept matrix containing the counts of 
each CUI for each differently named document (“document”) 
and each chart. Only CUIs that had the patient as their subject 
and that cTAKES determined were non-negated were counted.

Fitting machine learning models and selecting top 
features
Feature selection is the process of identifying the variables 
most relevant to the problem. Our features included both the 
CUIs and the clinical notes that could discriminate cases of 
hypertension. There were 58 unique clinical note names in 
our extracted EMR data, such as “discharge summary” and 
“history and physical.” We used these to create 2 different 
types of feature sets. The first set of concept features contained 
only the number of times each concept occurred for each 
patient; the second set of document–concept features con-
tained the number of times each concept appeared in docu-
ments with a given name. For example, the counts of history_
and_physical-C0020538 and discharge_summary_medical-
C0020538 would contribute to the same C0020538 feature in 
the first set and would be separate features in the second set. 
The first set of features could illustrate the most reliable con-
cepts used to identify hypertension, whereas the second could 
illustrate the most high-yield and trustworthy documents to 
look at for future chart review.

We estimated the relative importance of each feature for 
determining hypertension using the gradient boosted algo-
rithm XGBoost, commonly used for supervised learning 
problems.20 For each feature set, 5 XGBoost models were fit, 
each using fivefold cross validation21 optimizing for area under 
the receiver operating characteristic curve (AUC) (Appen-
dix 1, Supplementary Table 1, available at www.cmajopen.ca​/
content/11/1/E131/suppl/DC1, for grid search parameters). 
The training data were split into 5  groups with about the 
same number of visits and proportion of patients with hyper-
tension. Five models were then trained, each using a different 
fold (group) as the validation set to test performance and 
trained on the remaining 4 folds. This was done to ensure that 
only reliable features were selected, and to exclude those that 
only performed well on a subset of the data. This also ensured 
that the models were not exposed to the 20% test data set 

aside at the beginning, to not bias the final models toward the 
test set. We selected the most important features that 
occurred in all 5 models. The gain was used as the measure of 
feature importance (i.e., the improvement in accuracy of classi-
fication attributable to a feature) (https://xgboost.readthedocs​
.io/en/stable/tutorials/model.html).20

Refitting XGBoost and selecting final models
We then used these top features to create new document–
concept and concept models, again using the parameters from 
Appendix 1, Supplementary Table 1. Interpretability of our 
algorithms was a key study objective. We used a new technique22 
to compute SHapley Additive exPlanations (SHAP) values on 
trees, called TreeExplainer.23 If a feature has a large positive 
SHAP value for a given patient, it indicates that the feature 
makes a positive finding of hypertension much more likely, 
with a large negative SHAP value indicating the opposite. We 
selected only those that were in the top 20 most important fea-
tures across all folds, for both sets of models, to remove spuri-
ous features. We chose the top 20 as this appeared sufficient to 
capture the most relevant features, because feature importance 
decayed rapidly for both sets of models. Finally, we used these 
results to suggest a simpler concept search strategy for case 
identification and provide insights for future chart review.

Statistical analysis
We characterized the study cohort based on age, sex, type of 
admission (i.e., medical v. surgical) and hypertension status 
(from chart review). We determined the performance of the 
machine-learning–based algorithms across each fold of cross 
validation on the training, validation and testing sets separately. 
We calculated SHAP values for each of the features and used 
these to assess the importance of each feature to the final pre-
diction. To determine the availability of each kind of EMR 
document, we computed the proportions of admissions that 
had each different document name available. We applied our 
hypertension phenotype to the extracted EMR text and the 
ICD definition to the extracted DAD records. We calculated 
sensitivity, specificity, PPV and NPV using the chart review 
hypertension status as a reference standard.

Ethics approval
This study was approved by the Conjoint Health Research 
Ethics Board at the University of Calgary (REB15-0790).

Results

Cohort characteristics are presented in Table 1. The median 
age of patients was 62  years, about half of the cohort were 
female (50.3%) and almost half had hypertension (48.5%). 
Most hospital admissions were nonsurgical (n = 1939, 63.8%) 
compared with surgical (n = 1101, 36.2%).

Machine learning model training
We split the patient data randomly: 80% (n = 2432) into a 
development (training) set, with the remaining 20% (n = 608) 
held out to test the performance of the final models, and 
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stratified by hypertension status to ensure there were about 
the same proportion of patients with hypertension in both 
sets. The performance of the initial document–concept and 
concept models are shown in Table 2, where each row is the 
fold used to calculate that model’s performance, with the 
remaining 4  folds used to train that model. The concept 
models seemed to overfit on the training data but had similar 
performance to the document–concept models on the valida-
tion data. We found that all the models performed relatively 
well on the validation data, with sensitivities and PPVs close 
to 90% throughout. After limiting to the top 20 most impor-
tant features in each fold, 10 document–concept and 8 con-
cept features remained.

To evaluate how features affected the classification of each 
patient in the training set, we show the relation between feature 
and SHAP values for the concept model in Figure 2 and the 
document–concept model in Figure 3, where a larger SHAP 
value means a higher likelihood of classifying the patient as hav-
ing hypertension. Figure 2 shows that the concept for hyper-
tension (C0020538) is the most important feature in the con-
cept model and is the only feature with strong negative 
classification results when absent. In Figure 3, all but 1 of the 
features in the document–concept model involve hypertension, 
which amounts to a ranked set of documents to search for 
hypertension documentation, with the best document to search 

being “Surgical Assessment and History — Nursing.” The pre-
dominance of the hypertension concept in determining hyper-
tension status showed that a concept search for C0020538 
could also perform well and would have the benefit of being 
simpler to implement. These concepts are still extracted from 
cTAKES, and exclude those flagged by cTAKES as being 
negated (e.g., does not have hypertension) or refer to someone 
other than the patient (e.g., family history of hypertension).

Document availability
The availability of documents identified by the document–
concept model are important in selecting documents that have 
a reasonable likelihood of being present. In order of impor-
tance of the identified feature: Surgical Assessment and His-
tory — Nursing was available in 36.7% of admissions; Nursing 
Transfer Report — Emergency Department to Inpatient was 
available in 57.9% of admissions; Discharge Summary  — 
Medical was available in 41.6% of admissions; Nursing Trans-
fer Report — Postanesthesia Care Unit to Inpatient was avail-
able in 38.1% of admissions; Adult Triage Note was available 
in 62.7% of admissions; Pharmacy Care Plan was available in 
28.0% of admissions; Multidisciplinary Progress Report was 
available in 99.1% of admissions; History and Physical was avail-
able in 12.1% of admissions; and Discharge Summary was 
available in 15.5% of admissions.

Table 1: Characteristics of the study cohort

Variable

No. (%) of patients*

All
n = 3040

With hypertension†
n = 1474

No hypertension†
n = 1566

Age, yr; median (IQR) 62 (48–76) 71 (61–82) 52.5 (38–65)

Sex, female 1529 (50.3) 710 (48.2) 819 (52.3)

Admitted for surgery 1101 (36.2) 482 (32.7) 619 (39.5)

Note: IQR = interquartile range.
*Unless specified otherwise.
†We determined hypertension status by chart review.

Table 2: Performance of initial XGBoost document–concept models and 
concept models

Data used 
for validation

Training data* Validation data*

Sensitivity, % PPV, % Sensitivity, % PPV, %

DC C DC C DC C DC C

Fold 0 90 100 93 100 89 89 88 89

Fold 1 85 100 94 100 86 92 94 93

Fold 2 90 100 94 100 87 91 90 91

Fold 3 90 100 94 100 88 91 92 92

Fold 4 89 100 94 100 91 94 91 89

Note: C = concept model, DC = document–concept model, PPV = positive predictive value.
*Folds 0 and 1: patients in the training (n = 1945) and validation (n = 487) cohorts; and folds 2, 3 and 4: 
patients in the training (n = 1946) and validation (n = 486) cohorts.
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Model performance
Table 3 provides the results of the final machine-learning 
models, as well as the concept search algorithm and the ICD-
10-CA algorithm, on the 20% of held out test data. The 
EMR algorithms had much higher sensitivities and NPVs 
than the ICD algorithm across all stratifications. This is offset 
by slightly worse PPVs, which are still above 90% for all 
groups except the youngest 2 age stratifications, where it 
drops as low as 82%. The youngest age stratification is the 
only place where the ICD algorithm has a lower PPV than 
the EMR algorithms. The ICD algorithm also has a higher 
specificity than the EMR algorithms, which are still above 
90% for all groups except the oldest age stratification, where 
they drop as low as 87%. In general, we see that the concept 
search algorithm has quite comparable performance to the 
machine-learning algorithms.

Interpretation

We found hypertension could be accurately identified in an 
inpatient population using UMLS concepts extracted from 
EMR clinical notes, with a higher sensitivity than using a 
validated ICD algorithm. This shows that an EMR hyperten-
sion phenotype could be used in place of ICD case definition 
for health services research or be used to enhance existing 
administrative databases such as the DAD. Electronic medical 
record phenotypes like this also have the potential to be 
implemented directly in EMR systems to aid in clinical 
decision-making.

Our results were similar to those reported in a 2017 
study involving the health records of 631 patients followed 
for hypertension status at Vanderbilt University School of 
Medicine,24 where a hypertension case identification algo-
rithm with a sensitivity of 96.6% and a PPV of 93.4% was 
developed. However, this algorithm also used primary care 
encounters, ICD codes and vital signs, as well as textual 
information. 

Our work also provides insight into the underlying doc-
umentation of EMR data. The availability of documenta-
tion will vary greatly with the type of visit. As we noted 
earlier, only 54% of surgical visits contained a discharge 
summary compared with 86% of nonsurgical visits. Our 
document–concept algorithm showed that hypertension 
was documented most reliably in Surgical Assessment and 
History  — Nursing followed by Nursing Transfer 
Report  — Emergency Department to Inpatient, which 
occurred in 37% and 58% of admissions, respectively. 
Canadian coders are not required to review these nursing 
documents and only review physician documentation.25 In 
hospitals, nurses check patient blood pressures and docu-
ment them in nursing notes, and they also collect patients’ 
daily clinical information. Thus, our EMR-based method 
could be automated, which could avoid potential bias asso-
ciated with coding guidelines and practice.26 This has the 
potential to improve ICD databases with minimal cost.

The presented EMR methods have various applications in 
clinical and research contexts (e.g., measuring and monitoring 
health system performance, cohort selection for research 
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Table 3: Stratified validity scores across population characteristics for classification models document–concept model/concept 
model/concept search/validated International Classification of Diseases algorithm

Characteristic

Sensitivity, % Specificity, % PPV, % NPV, %

DC C CS ICD DC C CS ICD DC C CS ICD DC C CS ICD

Validation cohort 
(n = 608)

95* 91* 95* 47 92 93 92 98† 91 93 92 97† 95* 91 95* 66

By age, yr

    < 45 (n = 123) 100* 100* 100* 29 98 97 97 99† 88† 82 82 80 100* 100* 100* 92

    45–64 (n = 206) 87 90* 90* 42 92 90 91 98† 87 84 85 94† 92 93 94† 74

    > 64 (n = 279) 91 96 97† 50 88 87 87 97† 95 95 95 98† 79 89 90† 42

By admission type

    Surgical (n = 213) 90 91* 91* 44 94 93 93 99† 92 90 90 98† 92 93* 93* 70

    Nonsurgical  
    (n = 395)

91 96 97† 48 93 91 92 98† 93 92 92 96† 91 96* 96* 64

By sex

    Female (n = 302) 90 94* 94* 45 94 92 92 98† 92 91 91 95† 92 95* 95* 68

    Male (n = 306) 91 95 96† 48 93 91 92 99† 93 92 93 97† 91 94 95† 64

Note: C = concept model, CS = concept search, DC = document–concept model, ICD = validated International Classification of Diseases algorithm, NPV = negative 
predictive value, PPV = positive predictive value. 
*Highest performing models (tied).
†Highest performing model. 
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studies and surveillance). Although hypertension is most often 
diagnosed in a primary care setting, patients are admitted to 
hospital when the severity of the condition worsens. There-
fore, identifying hypertension in an inpatient setting, without 
relying on primary care data, is essential for the assessment of 
health system performance. The machine-learning approach 
we present herein could also be applied to identifying other 
conditions in inpatient EMR data, which may not have as 
straightforward documentation. Our methods could be used 
with a common data model such as Observational Medical 
Outcomes Partnership.27,28 This model would make use of a 
NOTE_NLP table where CUIs, their annotations and the 
document names are referenced.

Limitations
We used only inpatient documentation and are aware that 
hypertension is largely managed in outpatient settings. 
However, our study was aimed at developing EMR-based 
hypertension case identification to overcome undercoding 
issues in professionally coded ICD databases. Our reference 
standard identified cases based on clinician documentations 
and did not rediagnose hypertension based on charts. 
Although blood pressure measurements are part of diagno-
ses, the criteria can vary across countries, including cut-off 
values for blood pressure to define hypertension.29,30 There-
fore, clinical rule-based algorithms may not be as robust 
when performing case identification in other contexts. 
Finally, we have not conducted external validation of our 
algorithm using data from other jurisdictions. This type of 
external validation study between multiple systems may be 
feasible using common data models, such as Observational 
Medical Outcomes Partnership.27,28

Conclusion
We have leveraged EMR clinical notes to create a case identi-
fication algorithm for inpatients. We used machine-learning 
models to identify the most relevant concepts and documents 
to evaluate in EMRs and used those insights to create a sim-
pler concept search case identification algorithm. This algo-
rithm has the potential to improve the quality of hospital dis-
charge abstract administrative data and also to provide a tool 
to measure rates of hospital admission for hypertension for 
system performance measurement and monitoring. The 
machine-learning models also provide insights into EMR 
documentation for future research, fulfilling the iterative 
feedback goal of a learning health system.
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