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SUMMARY

Advances in single cell genomics and transcriptomics have shown that at tissue
level there is complex cellular heterogeneity. To understand the effect of this in-
ter-cell heterogeneity on metabolism it is essential to develop a single cell lipid
profiling approach that allows the measurement of lipids in large numbers of sin-
gle cells from a population. This will provide a functional readout of cell activity
and membrane structure. Using liquid extraction surface analysis coupled with
high-resolution mass spectrometry we have developed a high-throughput
method for untargeted single cell lipid profiling. This technological advance high-
lighted the importance of cellular heterogeneity in the functional metabolism of
individual human dopamine neurons, suggesting that A53T alpha-synuclein
(SNCA) mutant neurons have impaired membrane function. These results demon-
strate that this single cell lipid profiling platform can provide robust data that will
expand the frontiers in biomedical research.

INTRODUCTION

The recent developments of single cell approaches have demonstrated the importance of measuring and

understanding how cellular heterogeneity affects tissues and organs to fully understand biological pro-

cesses (Heintzman et al., 2009; Tiklova et al., 2019; Tirosh et al., 2016; Deng et al., 2014). Single cell genomic

and transcriptomic approaches have enabled previously unanswered questions to be addressed. For

example, Tiklova et al. performed single cell RNA sequencing of pitx3mouse midbrain dopamine neurons

and identified seven distinct neuronal subtypes, five of which expressed dopaminergic markers and five ex-

pressed glutamatergic and GABAergic markers (Tiklova et al., 2019). However, to date there has been

limited success in the development of practical metabolic phenotyping tools that can be applied to cap-

ture the metabolic heterogeneity at a cellular level.

Lipids are the most abundant class of metabolites in the cell, and the measurement of lipids by mass spec-

trometry in bulk samples is well described. A handful of studies have previously described proof of principle

for single cell lipid profiling (Evers et al., 2019); however, these are not platforms capable or suitable for

robust high-throughput readouts of cell activity. Ellis et al. used a low-throughput approach where cell

droplets were printed onto a glass slide, which were imaged and analyzed using liquid extraction surface

analysis coupled with mass spectrometry (LESA-MS) (Ellis et al., 2012). Neumann et al. used MALDI to mea-

sure lipids from a large number of putative single cells from a section of rat cerebellum. However, without

imaging all samples lack cell-type specificity and could not guarantee that each sample contained a single

cell and not clusters of cells, leading to wide divergence in the number of lipids measured per sample (Neu-

mann et al., 2019). Most single cell mass spectrometry platforms have focused on analyzing immobilized

cells; however, Standke et al. (2019) developed an integrated cell manipulation platform that enables single

cells to be analyzed from solutions, such as bodily fluids, with minimal sample preparation. More complex

derivatization approaches have also been described. Thiele et al. (2019) reported a method for tracing lipid

metabolism in cell culture dilutions using click chemistry. This provided detailed coverage but was also un-

able to give certainty that bona fide single cells were analyzed. Together, these studies are convincing

proofs of principle, but they do not represent mature platforms. To achieve this, it is necessary to stan-

dardize sample handling, single cell isolation and to establish robust strategies for quality control to ensure

that the generated data can be meaningfully compared.
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The brain is a lipid-rich organ, and neuronal lipid metabolism regulates a range of biological processes

including cell signaling and structural integrity (Tracey et al., 2018). Perturbations of lipid metabolism

have been associated with the pathogenesis of Parkinson disease (PD), from genetic risk factors to altered

brain lipid profiles (Do et al., 2011; Fabelo et al., 2011). PD is a common neurodegenerative disorder

characterized by the loss of dopamine neurons and the accumulation of Lewy bodies, which are composed

primarily of alpha-synuclein protein (Spillantini et al., 1997). The relevance of SNCA for the pathology of PD

is further highlighted by the fact that mutations in this gene, such as the A53T mutation, lead to the devel-

opment of PD (Polymeropoulos et al., 1997). Although the underlying mechanisms of this association are

unclear, alpha-synuclein has been shown to modulate lipid metabolism in PD models (Golovko et al.,

2007; Sharon et al., 2003; Zambon et al., 2019).

Here we describe the development of a high-throughput (280 single cells/day) untargeted single cell lipid

profiling platform, detailing strategies for single cell isolation, data generation, automated signal identifi-

cation, and quality control (Figure 1). We further demonstrate that this is a mature platform by validating

the measured lipids in three independent cohorts and through its application to the analysis of human

dopamine neurons derived from induced pluripotent stem cells (iPSCs). We believe this important techno-

logical advance for single cell lipid analysis will provide a unique opportunity to address important biomed-

ical questions across various fields of research.

RESULTS

Measuring Lipids in Single Cells

Protocols for the differentiation of in vitro human dopamine neurons are known to generate heterogeneous

neuronal populations (La Manno et al., 2016). To overcome this, we engineered human wild-type (WT) iPSC

with a tyrosine hydroxylase (TH) red fluorescence protein (RFP) as previously described (Xia et al., 2017),

with modifications. To express tagRFP-T under the influence of the endogenous TH promoter we intro-

duced a P2A-tagRFP-T donor plasmid with homologous arms flanking the TH stop codon and an EF1A-

Puromycin selection flanked by LoxP sites for drug selection. The targeting plasmid was introduced into

iPSCs together with a single guide RNA targeting the 30 end of the TH gene and Cas9 RNP by nucleofection

to cause a double-strand break near the stop codon. After Puromycin selection, transient expression of Cre

was used to excise the Puromycin cassette. TH catalyzes the hydroxylation of L-DOPA (the rate-limiting

step in the synthesis of dopamine) and is considered a bona fide marker for dopamine neurons. After

differentiation into dopamine neurons (Siddiqi et al., 2019; Kriks et al., 2011), fluorescence-activated cell

sorting (FACS) was used to sort cells based on RFP expression. RFP-positive dopamine neurons were indi-

vidually sorted into multi-well plates, followed by LESA-MS.

In spectra generated from single cell samples (Figure 2) there was a clear signal for PC 34:1 with an average

deviation of 2.6 ppm and with the highest deviation being 4.8 ppm. However, in the blanks there was no

signal for PC 34:1 with a mean deviation between the closest signal and the target mass of 30.8 ppm

and the lowest deviation of 15.1 ppm. Comparison of the relative abundance and deviation of the single

cell samples to the blanks showed that the samples have a significantly higher abundance and lower devi-

ation (Table S1). Having identified PC 34:1 and other lipids in initial analyses we performed two additional

independent experiments to validate these findings. Across these experiments the average deviation in the

blanks was 17.8 ppm with only 4 of 63 blanks having a signal falling within 10 ppm of the target mass,

whereas in single cells the average deviation was 1.8 ppm and the highest deviation was 7.8 ppm with

signals detected in over 90% samples.

Figure 1. Graphical Representation of the Analytical Single Cell Pipeline Used in this Study
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Next, we determined how many lipids could be detected in the three datasets. In each dataset we applied

four QC filters, signal falling within 10 ppm of the expected mass, a signal-to-noise ratio greater than 1.5, a

linear relationship between lipid signal and cell number (r > 0.5) in a cell ‘‘standard’’ curve, and a signal had

to be present in at least 5% of single cell samples. Once we had identified the lipids measured in each of the

three datasets we defined three levels of confidence in the putative assignments. Level 1 putative assign-

ments are lipids that were successfully measured in all three datasets, level 2 putative assignments were

present in two of the three, and level 3 assigned lipids were only measured in a single experiment. We

successfully identified 37 level 1 lipid assignments corresponding to 25 glycerophosphocholines (PCs), 9

glycerophosphoethanolamines (PE), and 3 sphingomyelins (SM) (Table 1). A further 23 level 2 and 21 level

3 putative assignments were also identified including an additional 15 PCs, 22 PEs, and 1 SM as well as 2

ceramides, 1 diglyceride, 3 glycerophosphoserines, and 1 triglyceride (Table S2)

Quality Control

Having validated the platform, we expanded our method to address a relevant biological question by as-

sessing the impact of the SNCA-A53T mutation in the lipidome of human dopamine neurons at the single

cell level resolution. To reduce inherent variability associated with iPSC modeling studies as previously re-

ported (Volpato and Webber, 2020), we generated isogenic SNCA-A53T mutant iPSC lines using CRISPR-

Cas9 on a WT background as previously described (Siddiqi et al., 2019, Bruntraeger et al., 2019). Isogenic

SNCA-A53T mutant iPSCs were then engineered with a TH-RFP reporter following the same procedure

described for WT cells. Differentiation efficiency into dopaminergic neurons was similar for WT and

SNCA-A53T iPSCs (Figure 3A). After differentiation, WT and SNCA-A53T individual dopamine neurons

were sorted by FACS across 7 plates of 96 wells. For each genotype, a total of 280 single neurons across

four biological replicates were sorted with extraction blanks and quality controls added across all plates.

When comparing the abundance of PC 34:1 measured in the QC samples from all 7 plates (Figure 3B) there

was a significant (p < 0.05) difference in the abundance of this lipid between plates, with the greatest dif-

ference seen between plates 3 and 4. However, after the data were normalized to total signal abundance

this difference was corrected for with no significant differences (p < 0.05) found in the abundance of PC 34:1

between plates (Figure 3C). Principal-component analysis (PCA) of the normalized lipid profiles from QC

samples revealed that samples could not be clustered according to different plates, confirming a robust

and standardized sample handling and processing (Figure 3D). Analysis of normalized lipid profile data us-

ing PCA showed that there was no relationship between injection order and lipid composition (Figure S1).

Figure 2. Spectra Showing the Presence of a Signal for PC 34:1 in Single Cell Samples and Its Absence from Extraction Blanks in Three Independent

Experiments

Each spectra shows the location of the ‘‘target m/z’’ and the deviation from the ‘‘target m/z’’ of the closest measured signal.
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Experiment 1 Experiment 2 Experiment 3

PC 30:1 33.3 57.5 24.3

PC 32:0 66.7 65.8 71.6

PC 32:1 88.9 65.0 67.8

PC 32:2 11.1 65.0 45.9

PC 32:3 66.7 55.0 30.0

PC 32:4 44.4 46.3 23.9

PC 34:0 66.7 15.0 30.2

PC 34:1 100.0 94.9 90.2

PC 34:2 88.9 86.1 60.8

PC 34:3 66.7 88.8 68.5

PC 34:4 77.8 93.7 78.2

PC 36:1 77.8 89.9 74.7

PC 36:2 88.9 88.6 88.4

PC 36:3 66.7 82.2 65.3

PC 36:4 88.9 91.3 86.4

PC 36:5 66.7 78.7 37.2

PC 38:3 88.9 78.8 39.2

PC 38:4 55.6 67.6 44.4

PC 38:5 88.9 77.5 65.5

PC 38:8 44.4 21.3 6.3

PC 40:3 44.4 58.1 36.9

PC 40:4 22.2 33.8 27.7

PC 40:5 22.2 17.5 42.6

PC 40:6 11.1 7.5 58.1

PC 40:9 11.1 5.0 30.0

PE 34:0 28.6 15.0 7.7

PE 34:1 44.4 46.8 30.6

PE 34:2 22.2 16.5 13.3

PE 34:3 11.1 13.9 11.3

PE 36:0 22.2 17.5 8.6

PE 36:1 44.4 32.9 30.9

PE 36:3 11.1 11.4 25.7

PE 36:4 11.1 10.1 7.9

PE 38:6 22.2 15.0 18.6

Table 1. Panel of Lipids Successfully Measured from a Single Dopaminergic Neuron

(Continued on next page)
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Comparing Single Cell and Population Lipid Profiling

Next, we explored the advantages of using single cell lipid profiling over traditional population level ap-

proaches in this dopamine neurons dataset. After data processing and normalization, themean abundance

of each lipid was calculated within each biological replicate to obtain a ‘‘population’’ lipid profile. When

these ‘‘population’’ profiles were analyzed with partial least squares-discriminant analysis (PLS-DA)

(R2X = 0.679 R2Y = 0.752 Q2 = 0.530 CV-ANOVA = 4.50 3 10�6) there was a clear difference between

WT and SNCA-A53T populations (Figure 4A). PC 36:2 was the most important lipid driving the PLS-DA

model with univariate analysis also identifying a significant difference between genotypes (p = 0.0009) (Fig-

ure 4B), with PC 36:1 and PC 34:2 also significantly different between genotypes (Figures S2 and S3). This

‘‘population’’ analysis implied significant lipid alterations associated with the A53T mutation and sug-

gested non-overlapping signatures between WT and SNCA-A53T dopamine neurons.

However, when the lipid profiles of individual dopamine neurons were analyzed we found a considerable

heterogeneity within both genotypes (Figure 4C). Although the PLS-DA scores plot (R2X = 0.306 R2Y = 0.226

Q2 = 0.195 CV-ANOVA = 7.653 10�18) still confirmed differences betweenWT and SNCA-A53T dopamine

neurons, there was some overlap between genotypes. This cellular heterogeneity could be of fundamental

importance for a complete understanding of biological function and could only be identified by single cell

lipid profiling.

Looking at individual lipids the abundance of PC 36:2 was still significantly different (p = 1.4 3 10�7) be-

tween genotypes (Figure 4D), with differences also observed in PC 36:1, PC 34:2, and PC 32:0 (Figures

S2–S4). However, there was a high degree of cellular heterogeneity (Figures 4E and 4F) with the A53T

mutants showing a high density of neurons with low abundances of PC 36:2 (Figures 4E and 4F).

To further explore this heterogeneity, we stratified samples based on their abundance of PC 36:2 and as-

sessed if the abundance of other lipids mirrored this heterogeneity. This showed that inWT nine lipids were

significantly different (p < 0.05) between cells with high and low abundances of PC 36:2, whereas eight lipid

variables were significant in SNCA-A53T dopamine neurons. Of these, six lipids were common between the

genotypes, three were specific to WT, and two were specific to SNCA-A53T including the ratio of total PC

to total PE (Table 2). The abundance of PC 36:4 in cells stratified by their PC 36:2 levels revealed similar

patterns in both WT and SNCA-A53T populations, with dopamine neurons with high PC 36:2 having

high PC 36:4 (Figure 5A). Although there were differences in the abundance and distribution of PC 36:4

in cells with high and low PC 36:2, this was similar between genotypes (Figure 5B). The same was observed

when we analyzed the abundance of PE 36:2 with similar patterns observed between genotypes (Figures 5C

and 5D); however, in this case neurons with more PC 36:2 have less PE 36:2. Cells with high PC 36:2 had

higher levels of PC 34:2 in both genotypes; however, this difference was only significant in WT neurons (Fig-

ures 5E and 5F).

DISCUSSION

This platform is the first single cell approach that enables high-throughput lipid profiling of specific

cell types without the need for additional imaging analysis. This coupled with a high degree of stan-

dardization and robust quality control has enabled us to apply untargeted lipid profiling to individual

cells and explore the functional heterogeneity of cellular populations and the implications for disease

pathology. We believe this to be a major technological advance with wide applications for biomedical

research.

Experiment 1 Experiment 2 Experiment 3

SM 34:1 33.3 37.7 30.6

SM 36:1 22.2 29.5 18.9

SM 36:2 22.2 37.5 7.9

Table 1. Continued

Data showing the percentage of cells in which each lipid was measured in each of the three sample sets. PC, glycerophos-

phocholine; PE, glycerophophoethanolamine; SM, sphingomyelin.
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Cell Location, Throughput, Quality Control, Signal Coverage

The advent of iPSCs offers the opportunity to study otherwise inaccessible cell types such as functional hu-

man neurons. However, the limitations of this model need to be acknowledged, in particular the inherent

variability associated with iPSC techniques highlighted in previous studies (Volpato andWebber, 2020). To

overcome this limitation, we generated isogenic SNCA-A53T iPSCs, a well-established approach in the

field of iPSC modeling to reduce cellular variability.

As with single cell genomics and transcriptomics the requirement to analyze large numbers of cells means

that these approaches need to be high throughput. In this study, we analyzed four independent replicates

of two genotypes of human dopamine neurons. To capture the cellular heterogeneity of these samples we

analyzed 70 cells per biological replicate leading to a total of 560 analyzed cells. Our platform enables

these 560 samples to be analyzed in 2 days (including the automated data processing), underlining the

high-throughput nature of this method.

We used FACS to sort TH-positive dopamine neurons into individual wells using an RFP reporter to improve

the throughput and specificity of the platform. The use of the TH-RFP coupled with an appropriate gating

strategy provides specificity and ensures that all cells analyzed are individual dopamine neurons. Using

FACS also allowed for quick sample isolation or large number of cells without the requirement for addi-

tional imaging analysis to confirm cell numbers and identity as previously required.

This need to analyze large numbers of samples requires a high-throughput platform with robust quality

control strategies to ensure the quality of the data generated. In the development of this platform we auto-

mated as many processes as possible, to both maximize the number of samples that can be analyzed in a

given time and to standardize analysis to minimize sources of analytical variation. With cells being sorted

onto all seven analytical plates at the same time and stored at �80�C before analysis it was important to

ensure that storage was not effecting the lipid composition of the cells. Although in the raw data batches

effects were observed between plates, normalization of the data removed these effects with no plate to

plate differences seen in either QC or single cell samples at either the univariate or multivariate level

demonstrating that sample storage is not introducing any bias into the lipid composition of the cells. In

the normalized data we also showed that there was no relationship between injection order and lipid

Figure 3. Plots Showing the Lipid Abundance in Quality Control Samples from all Seven Plates Both Before and After Batch Correction

(A) Immunofluorescence staining of WT iPSC-differentiated dopamine neurons showing expression of pan-neuronal marker beta-3-tubulin (TUJ1) in red,

dopamine marker tyrosine hydroxylase (TH) in green, and nuclear DAPI in blue.

(B) Plot of uncorrected abundance of PC 34:1 in individual QC samples.

(C) Plot of the corrected abundance of PC 34:1, in individual QC samples.

(D) PCA scores plot of quality control samples calculated using all corrected lipid data. Mu, SNCA-A53T mutant dopaminergic neurons; PC,

glycerophosphocholine; PCA, principal-component analysis.

(E) PCA scores plot showing the comparability of lipid composition between wild-type cell populations.

(F) PCA scores plot showing the comparability of lipid composition between SNCA-A53T cell populations.
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profile composition (Figure S1) demonstrating that the data generated from the first and last samples are

comparable.

It is crucial to control for cell size as this is the most important factor controlling the measured lipid abun-

dance, as a larger cell will have greater total signal abundance because it contains more lipids. However, as

cell size will also determine the total lipid signal observed, normalizing lipid abundances to the total signal

controls for the size of the cell analyzed.

For this method we used LESA as it requires lower solvent volume than traditional extraction protocols pro-

ducing more concentrated extracts. However, when using LESA-MS-based approaches for single cell lipid

profiling locating the cell for analysis is a significant challenge. Although other methods have used imaging

approaches to locate the cell for analysis (Ellis et al. 2012; Neumann et al., 2019), this is time consuming and

would significantly reduce the throughput of the method. Instead we calibrated the FACS to maximize the

chance of a cell being dispensed in the center of the well, with the LESA analysis subsequently performed

on that spot; however, in some cases the LESAmissed the cell. We identified these failed analysis by search-

ing the generated spectra for signals from the two most abundant lipids (PC 34:1 and PC 36:2), and if

neither of these were present then the sample was considered a failure and excluded from subsequent

analysis. It is also important to identify and exclude samples where two cells had been erroneously

dispensed into the same well. We did this by looking for samples that had significantly higher abundance

of all the lipids measured (as an analysis of two cells will increase the amount of all lipids in the well relative

to a single cell), and we excluded samples from further analysis if 80% of lipids had an abundance 2.5 stan-

dard deviations above the mean.

As in traditional lipidomic approaches we used signal to noise, mass accuracy (ppm), and missing value

thresholds to identify lipid signals, although we applied more relaxed cutoffs for each of these parameters

than are used in normal lipidomic methods (Harshfield et al., 2019). The lower signal abundance achieved

Figure 4. Comparison of the Information Provided by Population and Single Cell Lipid Profiling Approaches

(A) PLS-DA scores plot of population level lipid profiling comparing wild-type and A53T mutants (Mu).

(B) Boxplot of the abundance of PC 36:2 in wild-type and A53T mutants (Mu); p value calculated using generalized linear model.

(C) PLS-DA scores plot of single cell lipid profiling comparing wild-type and A53T mutants (Mu).

(D) Boxplots of the abundance of PC 36:2 in each biological replicate, p value calculated using generalized linear model.

(E) Beanplot showing the relative distribution of the abundance of PC 36:2 in each biological replicate cells where each line represents the abundance

measured in a cell and the width of the outline represents the density of samples.

(F) Beanplot showing the relative distribution of the abundance of PC 36:2 in combining all wild-type and all mutants where each line represents the

abundance measured in a cell and the width of the outline represents the density of samples. All p values were calculated using generalized linear models.

Mu, SNCA-A53T mutant dopaminergic neurons; PC, glycerophosphocholine; PLS-DA, partial least squares-discriminant analysis.
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when analyzing a single cell means that signal-to-noise ratios will be lower than when analyzing bulk cell

pellets, tissue, or bio-fluid samples. This low intensity does also leads to slightly lower mass accuracy

and higher percentage of samples in which a lipid will fall between the lower limit of detection, which

means that if we applied the standard values for these threshold real lipid signals would have been missed.

For signal identification, although theQC cutoffs we applied are less stringent than in traditional lipidomics

approaches they are more stringent than those used in other single cell lipid profiling methods. For

example, whereas we required a signal-to-noise threshold of >1.5, mass accuracy of <10 ppm, r > 0.5 in

a cell ‘‘standard’’ curve, and a signal to be present in at least 10% of analyzed cells with many of the

identifications validated across our multiple experiments, Neumann et al. (2019) did not apply any signal

to noise, mass accuracy, or cell ‘‘standard’’ curve cutoffs and included lipids measured in less than 1% of

cells.

After optimization and quality control we measured 37 lipids (Table 1), which is lower than reported in this

previous study; however, this is a result of our quality controls being more stringent to allow meaningful

comparison of the generated data. Although the number of lipids reported here is lower than for a tradi-

tional lipidomics study (using tissue or plasma, Ellis et al., 2012; Neumann et al., 2019; Thiele et al., 2019), it

provides sufficient coverage to interrogate the lipid metabolism of a single cell. When we look at the abun-

dances of lipids measured from a bulk cell sample (Figure S5) it can be seen that the distribution is not

linear, and unsurprisingly it can also be seen that the lipids measured in a single cell are generally the lipids

that are the most abundant in the bulk samples (Figure S5). Potentially of more interest is the fact that just

below the lower limit of detection (LLOD) in the single cell method there are a lot of lipids within a narrow

range of abundances, suggesting that a small increase in the sensitivity of the method will likely lead to a

large increase in the number of lipids measured. Despite current limitations, developments in mass spec-

trometric instruments’ sensitivity should soon provide technical improvements to expand this platform to a

larger number of detectable lipids.

Advantages of Single Cell over ‘‘Population’’ Lipid Profiling Approaches

When we compared the ‘‘population’’ and single cell lipid profiles we observed differences between WT

and SNCA-A53T mutant dopamine neurons driven predominantly by PC 36:2. However, only by single

cell analysis we were able to identify an overlap between the two genotypes both in the multivariate

and univariate analyses (Figure 4). This shows that the population level analysis failed to capture the het-

erogeneity of the biological processes at work in human dopamine neurons. There was also significant

Mutant Wild-Type

p Value FC p Value FC

PC 34:1 0.0001 0.679 1.28 3 10�7 0.628

PC 34:2 1.13 3 10�7 0.578

PC 36:1 0.0002 0.591

PC 36:4 4.76 3 10�6 0.610 2.16 3 10�7 0.641

PC 38:4 0.0009 2.32 0.038 1.61

PC 40:3 0.0041 3.29

PE 36:1 0.0061 4.31

PE 36:2 0.047 1.79 0.037 1.81

PE 36:3 0.0023 3.96 0.013 3.17

SM 36:1 0.0047 6.29 0.0005 3.64

PC/PE 0.011 0.36

Table 2. Lipids with Significantly Different Abundances in Cells with High and Low Levels of PC(36:2)

FC, fold change relative to cells with low PC(36:2); PC;, glycerophosphocholine; PE, glycerophosphoethanolamine; SM,

sphingomyelin.
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overlap in the abundance of PC 36:2 (Figure 4D) with the WT cells showing a much more even distribution

abundance across their concentration range (Figures 4E and 4F) with a high number of SNCA-A53T neurons

presenting with low PC 36:2. These results highlight the need to develop and apply methods for single cell

analysis to capture both the heterogeneity of the model in study and important cell-type-specific

differences. This is further supported by our recent single cell transcriptomic analysis of this model that

leads to the identification and characterization of cellular heterogeneity, which would not be possible using

traditional bulk approaches (Fernandes et al., 2020).

Impaired Membrane Function in SNCA-A53T Dopamine Neurons

PCs are key components of the cell membrane (vanMeer et al., 2008), and changes in the balance of species

of different chain lengths as well as the PC to PE ratio (van der Veen et al., 2017) affect membrane fluidity,

structure, and function (van der Veen et al., 2017; Paris et al., 2010; Sciacca et al., 2012). Several studies have

suggested that SNCA plays a role in lipid transport and synaptic membrane biogenesis (Jo et al., 2000), so

the SNCA-A53Tmutation could result in changes in the composition of the cell membrane and thus poten-

tial impairment of synaptic transmission. The results of the ‘‘population’’ lipid profiling show higher levels of

PC 36:2 in all WT replicates with no overlap between the genotypes (Figure 4B). This suggests that the A53T

mutation is causing membrane remodeling to occur evenly across all cells, potentially resulting in a distinct

cellular morphology not present in the WT neurons.

After stratifying lipid abundances based on PC 36:2 11 lipid variables were significantly different between

cells with high and low abundance of this lipid. Of these, six were common to both genotypes, and with four

Figure 5. Boxplots and Beanplots Showing Lipid Abundances in Wild-Type and A53T Mutant Neurons after Stratifying Samples by Their

Abundance of PC 36:2

(A) Boxplot showing the abundance of PC 36:4 in cells with high and low levels of PC 36:2; p values calculated using generalized linear model.

(B) Beanplot showing the relative distribution of the abundance of PC 36:4 in cells with high and low levels of PC 36:2.

(C) Boxplot showing the abundance of PE 36:2 in cells with high and low levels of PC 36:2; p values calculated using generalized linear model.

(D) Beanplot showing the relative distribution of the abundance of PE 36:2 in cells with high and low levels of PC 36:2.

(E) Boxplot showing the abundance of PC 34:2 in cells with high and low levels of PC 36:2; p values calculated using generalized linear model.

(F) Beanplot showing the relative distribution of the abundance of PC 34:2 in cells with high and low levels of PC 36.

PC, glycerophosphocholine; Mu, SNCA-A53T mutant dopaminergic neurons.

ll
OPEN ACCESS

iScience 23, 101703, November 20, 2020 9

iScience
Article



lipids differing significantly betweenWT and A53Tmutant dopamine neurons multiple factors appear to be

controlling the lipid composition of a cell. Therefore, single cell approaches provide an opportunity to

explore how the A53Tmutation interacts with these factors to modulate lipid metabolism. The ratio of total

PC to total PE in the cell membrane has been shown to have major effects on the fluidity of the bilayer and

vesicle formation as well as the composition and prevalence of transmembrane proteins (Li et al., 2006;

Brown and Seelig 1978). Thus it is interesting that in SNCA-A53T dopamine neurons we see a larger differ-

ence in the PC:PE ratio between cells with high and low PC 36:2 levels than is observed in the WT (Table 2).

The majority of the mutant cells have low PC 36:2, resulting in low PC:PE ratios for a higher proportion of

these cells.

Healthy cells have a range of mechanisms to respond to normal physiological stimuli as well as to adapt to

stress. In this study we have shown a greater heterogeneity in lipid composition in WT neurons, and given

that the cell membrane is the largest source of lipids in the cell it is likely that this reflects heterogeneity in

the makeup of the cell membrane. It is plausible that this heterogeneity in membrane composition is inte-

gral to the mechanisms by which cell populations respond to membrane stress and the skewed distribution

in the mutant neurons could impair their ability to respond to stimuli (Fu et al., 2011; Hannun and Luberto,

2000).

Strengths of Study

High Throughput

Single cell approaches require the analysis of large numbers of cells to capture inter-cell heterogeneity.

This results in the requirement of a large number of cells from each biological replicate, significantly

increasing the number of analysis required per experiment. Our method is capable of measuring the lipid

profile of 280 samples in 24 h meaning that in just 2 days we were able to analyze sufficient samples to iden-

tify different distributions of lipid abundance between WT and SNCA-A53T dopamine neurons.

Cell-Type Specificity

Tissue and cell culture models are heterogeneous and made up of diverse cell types in different propor-

tions, which can make single cell analysis difficult. Previous lipidomics methods have coupled with imaging

approaches to identify the type of cell being analyzed. Although this approach is useful for some applica-

tions, it is not translated into a high-throughput platform capable of analyzing large number of samples

required to address questions of cellular heterogeneity. Our approach of sorting cells using FACS before

analysis ensures that we are specifically analyzing a single and specific cell type of interest. This means that

differences detected between generated lipid profiles are the result of heterogeneity within a specific cell

population rather than differences between the compositions of different cell types.

Quality Control

The need to analyze large numbers of samples in single cell approaches means that robust quality control

procedures need to be implemented to ensure that all the generated data is comparable. Although some

studies have measured lipids in single cells (Ellis et al., 2012; Neumann et al., 2019; Thiele et al., 2019;

Standke et al., 2019) and some have measured in large numbers of cells (Neumann et al., 2019), these ap-

proaches have incorporated limited quality control procedures to ensure data consistency across sample

sets. In this study we also included a pooled quality control corresponding to unsorted cells, which was

added to each plate and enabled us to correct for inter-plate variability (Figure 3). This enabled us to

perform large-scale experiments while accounting for possible sources of analytical variance that could

confound our results.

Validation of Signal Identification

Signal identification in single cell lipid profile data is challenging because the majority of signals are low

abundance and are often not measured in a large proportion of samples making it difficult to distinguish

real signals from analytical noise. To avoid reporting false-positives in this study we analyzed TH-positive

dopamine neurons from three independent experiments to identify lipids that were measured consistently.

To provide clarity we have defined three levels of confidence in our putative assignments with species iden-

tified in all three experiments given our highest confidence (Level 1) and signals only putatively identified in

one experiment given our lowest confidence (Level 3).
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In conclusion, this work provides a method for high-throughput lipid profiling at the single cell level. As a

proof of principle, we used this platform to profile individual human dopamine neurons resulting in the

identification of lipid alterations that will further our understanding of PD pathology. This technological

advance potentially has major applications across a wide range of biomedical research fields, allowing

the opportunity to explore and overcome metabolic heterogeneity in complex cellular populations.

Limitations of Study

Putative Lipid Assignment

Ideally glycerophospholipids would be identified as their lipid head group and the specific pair of fatty acid

side chains rather than by the head group and the total number of carbons and double bonds, e.g., PC

16:1/18:0 rather than PC 34:1. This additional structural detail can improve biological interpretation as

the different fatty acid configurations can have differing biological functions. This additional structural

detail is usually obtained by fragmenting the parent molecule. However, it is extremely difficult to obtain

clean fragmentation spectra from low-abundance signals, making it impossible to obtain this detailed

structural information in current single cell approaches. It is for this reason that other single cell approaches

have also only been able to annotate lipids to the level of the total number of carbons and double bonds.

However, in the future we hope that the availability of more sensitive mass spectrometers will allow us to

generate fragmentation spectra and obtain these more detailed annotations.

Coverage of the Lipidome

Lipids represent the largest andmost diverse group of metabolites in the human body consisting of dozens

of structural classes and potentially thousands of structurally distinct molecules. In this study we have

identified 81 lipid species from six lipid classes, which is only a small proportion of the total lipids present.

However, if we look at the distribution of the abundance of the identified lipids in a lipid dataset

generated from a bulk cell pellet it can be seen (Figure S5) that the assigned lipids are the most abundant

lipids. It can clearly be seen that the distribution of lipid abundances is not linear, so even a small improve-

ment in the lower limit of detection can potentially greatly improve the coverage of the lipidome. This

improvement can potentially be achieved by using more sensitive mass spectrometry equipment in the

future.

Exclusion of Internal Standards

Traditional lipidomics methods include internal standards to correct for analytical variation within the data.

However, internal standards only work when the amount of lipid in a sample is known, as analytical variation

will then be the major source of stochastic variance. If we consider single cell approaches, each sample will

consist of one cell, yet the amount of total lipid will differ between samples due to differences in cell size.

This means that the intensity of the lipid signals will be independent of the intensity of the internal stan-

dards. To support this, we showed that lipid and internal standard signal correlated in plasma samples

but did not in single cell samples (Figure S6).

Missing Data

In an ideal scenario all the lipids detected would be measured in all the samples analyzed; however, this is

never the case as across samples some lipids will fall below the lower limit of detection. Large numbers of

missing values can be problematic in both multivariate and univariate statistical analysis by potentially

obscuring the relationship of lipid abundances. This is particularly an issue in single cell approaches where

low andmedium abundance lipids will only bemeasured in larger cells. Improving the sensitivity of the plat-

form and lowering the LLOD will increase the proportion of samples that we can measure of a given lipid in

helping to alleviate this problem.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to the lead contact Albert

Koulman (ak675@medschl.cam.ac.uk).

Material Availability

This study did not generate any unique reagents.
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Data and Code Availability

All the code used in this study is shown in the Supplemental Information of the article.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101703.
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Supplemental Figures 

Supplemental Figure 1 PCA Scores plots showing the compositional relationship between cells from the 

same population and their relative injection order. Related to Figure 3.  

 

 

A) Wild type 1 B) Wild type 2 C) Wild type 3 D) Wild type 4 E) SNCA-A53T 1 F) SNCA-A53T  2 G) SNCA-

A53T  3 H) SNCA-A53T 4 

  



Supplemental Figure 2 Plots comparing the abundance of PC 36:1 in wild type and A53T mutant cells. 

Related to Figure 4. 

 A) Boxplot comparing the abundance of wild type and mutant cells (Mu)  in ‘population’ level data B) Boxplot 

comparing the abundance in individual wild type and mutant cells (Mu) populations using single cell data, p-

value calculated using generalised linear models C) Beanplot comparing the distribution of abundances in 

individual wild type and mutant cell (Mu) populations using single cell data. Mu; SNCA-A53T mutant 

dopaminergic neurons. 

 
Supplemental Figure 3 Plots comparing the abundance of PC 34:2 in wild type and A53T mutant cells. 

Related to Figure 4. 

 

A) Boxplot comparing the abundance of wild type and mutant cells (Mu) in ‘population’ level data B) Boxplot 

comparing the abundance in individual wild type and mutant cell (Mu) populations using single cell data, p-

value calculated using generalised linear models C) Beanplot comparing the distribution of abundances in 

individual wild type and mutant cell (Mu) populations using single cell data. Mu; SNCA-A53T mutant 

dopaminergic neurons. 

 

Supplemental Figure 4 Plots comparing the abundance of PC 32:0 in wild type and A53T mutant cells. 

Related to Figure 4.

  

A) Boxplot comparing the abundance of wild type and mutant cells (Mu) in ‘population’ level data B) Boxplot 

comparing the abundance in individual wild type and mutant cell (Mu) populations using single cell data, p-

value calculated using generalised linear models C) Beanplot comparing the distribution of abundances in 



individual wild type and mutant cell (Mu) populations using single cell data. Mu; SNCA-A53T mutant 

dopaminergic neurons. 



Supplemental Figure 5 Scatter plot showing the relative abundance of level 1,2 and 3 single cell 

annotations in a bulk lipidomics dataset generated from the same cell lines. Related to Figure 3. 

 

 

Supplemental Figure 6 Scatter plots showing the relationship between the abundance of PC internal 

standard and the abundance of PC 34:1 in both plasma and single cell samples. Related to Figure 3. 

 

p-values calculated using generalised linear models. PC; glycerophosphocholine. 

  



Supplemental Figure 7 Plots of the signal abundance and signal to noise ratio of PC C16:0-d31/C18:1 

when optimising infusion back pressure. Related to Figure 3. 

 

A) signal abundance in individual test samples  B) signal to noise in individual test samples   

Supplemental Figure 8 Plots of the signal abundance and signal to noise ratio of PC C16:0-d31/C18:1 

when optimising electrospray ionisation current. Related to Figure 3.  

 

A) signal abundance in individual test samples  B) signal to noise in individual test samples   

Supplemental Figure 9 Plots of the signal abundance and signal to noise ratio of PC C16:0-d31/C18:1 

when optimising the mass window analysed. Related to Figure 3.  

 

A) signal abundance in individual test samples  B) signal to noise in individual test samples   

  



Supplemental Figure 10 Plots of the signal abundance and signal to noise ratio of PC C16:0-d31/C18:1 

when optimising the solvent volume used for LESA. Related to Figure 3.  

 

A) signal abundance in individual test samples  B) signal to noise in individual test samples   

  



Supplemental scheme 

Supplemental scheme 1 R script used to run our in-house pipeline for comparing generated spectra to list 

of know lipids. Related to Table 1.  

 

source("hrms.R") 

files = list.files(".", pattern=".mzXML") 

system.time( 

  for (i in 1:length(files)) { 

    main(files[i],rtwin=c(20,78),mzwin=c(650,850)) 

  } 

) 

results <- signals_deviations() 

 

Supplemental Scheme 2 R script contained in “hrms.R” referred to in supplemental scheme 1 that 

compares generated spectra to list of known lipids listed in Supplemental table 3. Related to Table 1. 

 
main <- function(filename,rtwin,mzwin) { 

  require(xcms) 

  require(data.table) 

  targets <- read.table("./LipidList.csv" , header=T, sep=',') 

  targets <- data.table(targets) 

  options("nwarnings" = (length(targets$mz)+50)) # we need to get at least as many warnings as 

targets 

  spectrum <- getspectra(filename=filename, rt=rtwin, mz=mzwin) 

  tgts <- peaktable(targets,spectrum) 

  write.csv(tgts, file = gsub(pattern=".mzXML", x=filename, replacement=".csv"), row.names=F) 

} 

 

signals_deviations <- function() { # the csv files must be in the active directory 

  x <- read.csv(gsub(pattern=".mzXML", x=files[1], replacement=".csv"),header=T) 

  targets <- read.table("./LipidList.csv" , header=T, sep=',') 

  targets <- data.table(targets) 

  signals <- data.frame(x$targets.name,targets$mz) 

  for (i in 1:length(files)) { 

    x <- read.csv(gsub(pattern=".mzXML", x=files[i], replacement=".csv"),header=T) 

    signals[files[i]] <- data.frame(x$signal) 

  } 

   

  x <- read.csv(gsub(pattern=".mzXML", x=files[1], replacement=".csv"),header=T) 

  deviations <- data.frame(x$targets.name,targets$mz) 

  for (i in 1:length(files)) { 

    x <- read.csv(gsub(pattern=".mzXML", x=files[i], replacement=".csv"),header=T) 

    deviations[files[i]] <- data.frame(x$mz_deviation) 

  } 

  results <- list(signals,deviations) 

  write.csv(results[[1]],file="signals.csv", row.names=F) 

  write.csv(results[[2]],file="deviations.csv", row.names=F) 

  return(results) 

} 

 

getspectra <- function(filename,rt,mz) { 

  spectra <- list() 



  spectrum <- getSpec(xcmsRaw(filename), rtrange=rt, mzrange=mz) 

  spectrum[,"mz"] <- round(spectrum[,"mz"], digits=4) 

  spectrum <- as.data.table(spectrum) 

  spectrum <- spectrum[,mean(intensity), by=mz] 

  spectrum <- na.omit(spectrum) 

  setkey(spectrum,mz) 

  return(spectrum) 

} 

 

peaktable <- function(targets,spectra) { 

  nearest_mz <- vector(length=length(targets$mz)) #predefine length later 

  signal <- vector(length=length(targets$mz)) #predefine length later 

  for (i in 1:length(targets$mz)) { 

    target <- targets[i,mz] 

    peak <- peakfind_midpoint(target,spectra,0.01,warnings) 

    nearest_mz[i]<-peak[1,mz] 

    signal[i]<-peak[1,V1] 

  } 

   

  mz_deviation <- targets[,mz] - nearest_mz 

  peak_id <- data.frame(targets$name,targets$mz,nearest_mz,mz_deviation,signal) 

  return(peak_id) 

} 

 

peakfind_midpoint <- function(target,spectra,hwidth,warnings) { 

  window <- subset(spectra, spectra$mz > target-hwidth & spectra$mz < target+hwidth) 

  if (nrow(window)==0) { # no data for target? 

    peak = data.table('mz'=target,'V1'=0) # enter zero intensity for target mass 

  } else if (sum(window$V1) < 5000) { # very low s/n? 

    peak <- peakfind_max(target,spectra,hwidth) # uses older peakmax finder for low s/n peaks, while 

less accurate this helps with exception handling dramatically 

    warning(paste("low signal/noise found for target mass-", target, "-using older peakmax finder. 

Identification may not be accurate", sep=" ")) 

  } else { # now we run the peak width peak finder 

    peak <- peakfind_max(target,spectra,hwidth) 

    hh_close=peak[1,V1]/2 

    window <- subset(spectra, spectra$mz > peak$mz-hwidth & spectra$mz < peak$mz+hwidth) 

    if (window$V1[length(window$mz)] > hh_close | window$V1[1] > hh_close) { # window doesn't 

sample the width of the peak? 

      setkey(window,V1) #this will sort table by intensity, thus finding peak maximum as last entry in 

table 

      peak <- window[length(window$mz)] #get last entry of table for the peak maximum 

      window <- subset(spectra, spectra$mz > peak$mz-hwidth & spectra$mz < peak$mz+hwidth) 

      if (window$V1[length(window$mz)] > hh_close | window$V1[1] > hh_close) { # is the bad 

sampling of peak due to interference? 

        setkey(window,V1) #this will sort table by intensity, thus finding peak maximum as last entry in 

table 

        peak <- window[length(window$mz)] #get last entry of table for the peak maximum 

        warning((paste("interfered peak detected for target mass-", target, "-older peak_max() function 

used", sep=" "))) 

      } 

    } else { 

      ## for resolved peaks (at half height) the follow code is run ## 

      setkey(window,V1) #this will sort table by intensity, thus finding peak maximum as last entry in 

table 

      peak <- window[length(window$mz)] #get last entry of table for the peak maximum 



      hh=peak[1,V1]/2 

      nearmz=peak[1,mz] 

      left_mzs <- c(max(subset(window, window$mz < nearmz & window$V1 < 

hh)$mz),min(subset(window, window$mz < nearmz & window$V1 > hh)$mz)) 

      left_int <- c(max(subset(window, window$mz < nearmz & window$V1 < 

hh)$V1),min(subset(window, window$mz < nearmz & window$V1 > hh)$V1)) 

      right_mzs <- c(max(subset(window, window$mz > nearmz & window$V1 < 

hh)$mz),min(subset(window, window$mz > nearmz & window$V1 > hh)$mz)) 

      right_int <- c(max(subset(window, window$mz > nearmz & window$V1 < 

hh)$V1),min(subset(window, window$mz > nearmz & window$V1 > hh)$V1)) 

      midpoints <- data.frame(left_mzs,left_int,right_mzs,right_mzs) 

      ### there has got to be a way to combine the last five rows into one row 

      coordinates <- list() 

      left <- coefficients(lm(left_int ~ left_mzs, data=midpoints)) 

      right <- coefficients(lm(right_int ~ right_mzs, data=midpoints)) 

      midpoint <- ((hh-left[1])/left[2]+(hh-right[1])/right[2])/2 # midpoint between the intersection 

points of both lines from a y=hh flat line 

      peak$mz <- round(midpoint[1], digits=4) # modify the peaks variable with the new more accurate 

m/z value 

    } 

  } 

  return(peak) 

} 

 

peakfind_max <- function(target,spectra,hwidth) { 

  window <- subset(spectra, spectra$mz > target-hwidth & spectra$mz < target+hwidth) 

  setkey(window,V1) #this will sort table by intensity, thus finding peak maximum as last entry in table 

  peak <- window[length(window$mz)] #get last entry of table for the peak maximum 

  #plot(window, type='h', lwd=1) 

  return(peak)  

} 

 

if(!interactive()){ 

  args <- commandArgs(trailingOnly = TRUE) 

  f <- args[1] 

  main(f,rtwin=c(85,130),mzwin=c(190,1800)) 

} 

  



Supplemental Tables 

Supplemental Table 1 comparison of signal abundance and mass deviation of individual lipids in both 

extraction blanks and single cell samples. Related to Figure 1. 

 Abundance Deviation 
 Blanks Samples p-value Blanks Samples p-value 

PC 30:1 42 803 3.1×10-4    

PC 32:0 70 3117 5.1×10-10 8.6 2.2 3.0×10-10 

PC 32:1 633 7122 0.003    

PC 32:2 215 651 0.001    

PC 32:4 80 232 0.01    

PC 34:0 5 625 4.1×10-6    

PC 34:1 614 10330 4.6×10-13 14.7 1.8 4.6×10-13 

PC 34:2 97 2977 7.1×10-32 8.3 2.1 2.1×10-9 

PC 34:3 309 1445 8.7×10-12    

PC 34:4 71 1575 4.5×10-34 6.3 8.4 0.03 

PC 36:1 160 2062 3.8×10-7 11.5 2.6 9.7×10-11 

PC 36:2 75 2619 1.2×10-46 10.8 3.0 9.9×10-15 

PC 36:3 124 1945 9.1×10-38 9.3 8.1 0.02 

PC 36:4 400 3541 1.2×10-8 16.2 5.1 3.8×10-11 

PC 36:5 96 2295 0.07 13.3 6.2 0.05 

PC 38:3 41 294 1.9×10-9    

PC 38:4 56 179 1.7×10-6 7.4 7.1 0.50 

PC 38:5 33 792 2.2×10-20    

PC 38:8 3 357 0.03    

PC 40:3 26 371 4.8×10-6 6.7 4.4 0.01 

PC 40:4 328 686 0.03    

PC 40:5 11 263 4.5×10-6    

PC 40:6 826 1249 0.04    

PC 40:9 6 322 0.02    

PE 34:0 64 229 0.02    

PE 34:1 8 553 4.3×10-5 11.3 4.6 2.1×10-7 

PE 34:2 53 510 0.01 7.2 1.9 8.4×10-7 

PE 34:3 67 235 0.04 8.1 5.7 0.04 

PE 36:0 42 347 0.06    

PE 36:1 1030 2365 0.03 7.4 3.4 1.2×10-5 

PE 36:3 39 104 0.11 8.6 6.4 0.01 

PE 36:4 39 129 0.0002 8.5 5.4 0.003 

PE 38:6 61 154 0.006    

SM 34:1 66 754 0.0009 7.8 1.3 3.2×10-11 

SM 36:1 48 323 5.6×10-6 7.8 1.4 1.1×10-8 

SM 36:2 135 294 0.04    

 

PC; glycerophophocholine, PE; glycerophosphoethanolamine, SM; sphingomyelin. 

  



Supplemental Table 2 comparison of signal abundance and mass deviation of individual lipids in both 

extraction blanks and single cell samples. Related to Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cer; ceramide, DG; diglyceride, PC; glycerophophocholine, PE; glycerophosphoethanolamine, PS; 

glycerophophoserine SM; sphingomyelin, TG; triglyceride. 

  

 Experiment 1 Experiment 2 Experiment 3 
Cer 42:1 (Lv2) 33.3 18.8  

Cer 44:2 (Lv2)  23.7 37.8 

DG 42:2 (Lv2) 11.1 12.5  

PC 30:0 (Lv2)  60.0 40.5 

PC 34:5 (Lv3)  92.5  

PC 36:0 (Lv2) 55.5  17.3 

PC 38:2 (Lv2)  38.8 32.9 

PC 38:6 (Lv2) 22.2  47.3 

PC 38:7 (Lv3)   36.5 

PC 40:7 (Lv3) 33.3   

PC 40:8 (Lv3) 22.2   

PC-O 32:0 (Lv3)   10.8 

PC-O 34:1 (Lv2)  30.0 17.6 

PC-O 34:2 (Lv2) 55.5  19.4 

PC-O 36:3 (Lv3)  7.3  

PC-O 36:4 (Lv2)  13.8 19.4 

PC-O 36:5 (Lv3) 22.2   

PC-P 34:4 (Lv3) 33.3   

PE 32:2 (Lv2)  6.3 11.9 

PE 38:2 (Lv3)   26.1 

PE 38:3 (Lv2)  11.7 20.4 

PE 38:4 (Lv3)   4.3 

PE 38:5 (Lv3)   49.8 

PE 40:4 (Lv2)  22.2 6.3  

PE 40:5 (Lv3)    23.4 

PE 40:6 (Lv3)   14.6 

PE 40:7 (Lv2) 33.3  9.9 

PE-O 34:2 (Lv3)   22.1 

PE-O 36:1 (Lv3)   6.8 

PE-O 36:2 (Lv2) 22.2  43.2 

PE-O 36:3 (Lv3)   13.3 

PE-O 36:4 (Lv2)  28.8 15.8 

PE-O 36:5 (Lv2)  1.3 7.9 

PE-O 38:2 (Lv2) 11.1 10.0  

PE-O 38:4 (Lv3)   10.6 

PE-O 38:5 (Lv3) 55.5   

PE-O 38:6 (Lv3)   1.8 

PE-O 40:5 (Lv3)   12.4 

PE-O 40:6 (Lv2)  41.3 27.3 

PE-P 40:7 (Lv2) 11.1  49.3 

PS 38:5 (Lv2)  23.7 51.4 

PS 40:4 (Lv3)   35.6 

PS 40:6 (Lv2)  20.0 27.0 

SM 34:0 (Lv2) 11.1  11.5 

TG 42:4 (Lv2)  18.8 13.3 



Transparent Methods 

Key resources Table 

Reagent or Resource Source Identifier 

Biological Samples 
KOLF-2 iPSC (WT) HipSci RRID:CVCL_9S58 
KOLF-2 iPSC (SNCA-A53T) Fernandes et al, 2020  

   
Chemicals and consumables 
Isopropanol  Sigma Aldrich Cat# I9516-1L 

Methanol Thermo Fisher Cat# 10675112 

Chloroform Sigma Aldrich Cat# 366927-2.5L 

Methyl-tertiary butyl ether Sigma Aldrich Cat# 34875-2.5L 

Ammonium acetate Fluka Cat# 17836-250G 

Phosphatidylcholine  C16:0-

d31:C18:1 

Avanti  

Glass coated 96 well plate   

SAG Enzo Life Sciences ALX-270-426-m001 

LDN-193189 Cambridge Bioscience 2092-5 

Recombinant Human FGF-8a 

Protein 

R&D Systems 4745-F8-050 

StemMACS Purmorphamine Miltenyi Biotec 130-104-465 

Bovine Serum Albumin 7.5% Sigma-Aldrich A8412 

3’,5’-Dibutyryl Cyclic AMP Sigma-Aldrich D0627-1G 

L-ascorbic acid Sigma-Aldrich A4544-25G 

DAPT Tocris 2634/50 

SB-431542 Tocris 1614/10 

Y-27632 Tocris 1254/10 

CHIR99021 Tocris 4423/10 

2-Mercaptoethanol Thermo Fisher Scientific 31350-010 

Antibiotic-Antimycotic (100X) Thermo Fisher Scientific 15240062 

L-Glutamine 200mM Thermo Fisher Scientific 25030081 

N-2 Supplement (100X) Thermo Fisher Scientific 17502048 

B-27 Supplement (50X), minus 

Vitamin A 

Thermo Fisher Scientific 12587-010 

Geltrex LDEV-Free hESC-

qualified 

Life Technologies A1413302  

Knockout Replacement Serum Life Technologies 10828-028 

Neurobasal Media Life Technologies 21103-049 

StemPro Accutase Life Technologies A1110501 

Dimethyl Sulfoxide Merck D2650-100ML 

Recombinant Human BDNF Peprotech 450-02 

Recombinant Human GDNF Peprotech 450-10 

Recombinant Human TGF-b3 Peprotech PHG9305 

MEM Non-essential amino 

acids (100X) 

Life Technologies 11140-035 

Knockout DMEM Life Technologies 10829-018 

TeSR-E8 STEMCELL Technologies 05990 

   

Deposited Data   

Raw and analysed data This paper  

Analysis scripts used This paper  

   

Software   

R  Open source version 3.4.2 



SIMCA Umetrics Version 13.0.4 

 

Resource availability 

Lead contact 

Further information and requests for resources and reagents should be directed to the lead 

contact Albert Koulman (ak675@medschl.cam.ac.uk).  

Material availability 

This study did not generate any unique reagents. 

Data and code availability 

All of the code used in this study is shown in the supplemental information of the paper 

 

Experimental model and subject details 

Cell culture and dopaminergic differentiation 

Human iPSCs were cultured in TeSR-E8 medium on Vitronectin coated plates. Cells were 

passaged with 0.5mM EDTA when reaching 70% confluency at a ratio of 1:6. Differentiation 

into dopaminergic neurons was performed according modify version of existing experimental 

protocols (Siddiqi et al., 2019, Kriks et al., 2011). In brief, iPSCs were first dissociated into 

single cells, plated at 150,000 cells/cm2 on Geltrex coated plates and grown for 11 days in 

Knockout Serum Replacement media (KSR) containing KO DMEM media, KSR (15%), Non 

Essential Amino Acids (1:100), 2-Mercaptoethanol (10 µM) and 2 mM L-glutamine. KSR 

medium was gradually changed to NNB medium containing Neurobasal medium, N2 (0.5X) 

and B27 (0.5X) and 2 mM L-glutamine from day 6. Media was changed to NB medium on 

day 12 containing Neurobasal medium, B27 (1X) and 2 mM L-glutamine. Medias were 

supplemented with LDN-193189 (100nM) from days 0-10; SB431542 (10 µM) from days 0-

4; SAG (100 nM) from days 1-6; Purmorphamine (2 µM) from days 1-6; FGF8a (100 ng/ml) 

from days 1-6; and CHIR99021 (3 µM) from days 3-12. From Day 12 onwards, the following 

supplements were added: BDNF (20ng/ml), GDNF (20ng/ml), Ascorbic Acid (200 µM), 

TGFβ3 (1 ng/ml), dibutyryl cAMP (500 µM), and DAPT (10 µM). At day 21 cells were 

dissociated with StemPro Accutase and replated at 300,000 cells/cm2 in dishes pre-coated 

with Geltrex and fed every second day for 2 weeks before analysis. 

Protocols for the differentiation of in vitro human dopamine neurons are known to generate 

heterogenous neuronal populations (Le Manno et al., 2016). To overcome this, we engineered 

human wild-type (WT) iPSC with a tyrosine hydroxylase (TH) red fluorescence protein 

(RFP) (Xia et al., 2017), with modifications. In order to express tagRFP-T under the 

influence of the endogenous TH promoter we introduced a P2A-tagRFP-T donor plasmid 

with homologous arms flanking the TH stop codon and an EF1A-Puromycin selection 

flanked by LoxP sites for drug selection. The targeting plasmid was introduced into iPS cells 

together with an sgRNA targeting the 3’ end of the TH gene and Cas9 RNP by nucleofection 

to cause a double strand break near the stop codon. After Puromycin selection, transient 

expression of Cre was used to excise the Puromycin cassette. TH catalyses the hydroxylation 



of L-DOPA (the rate limiting step in the synthesis of dopamine) and is considered a bona fide 

marker for dopamine neurons. After differentiation into dopamine neurons (Siddiqi et al., 

2019; Kriks et al., 2011), fluorescence-activated cell sorting (FACS) was used to sort cells 

based on RFP expression. RFP positive dopamine neurons were individually sorted into 

multi-well plates, followed by LESA mass spectrometry. 

  

TH-RFP engineering 

iPSCs were engineered with a TH red fluorescence protein (RFP) reporter following previous 

methods (Xia et al., 2017) with modifications. We introduced a P2A-tagRFP-T donor 

plasmid with TH homologous arms and an EF1A-Puromycin selection flanked by LoxP sites 

for drug selection. The targeting plasmid was introduced into iPS cells together with a TH 

sgRNA (GACGCCGTGCACCTAGCCAA TGG) against the 3’ end of the TH gene and Cas9 

(HiFi) RNP by nucleofection (AMAXA 4D nucleofector, “CA 137” pulse code). 

Nucleofection was performed using the P3 Primary Cell 4D-Nucleofector X Kit L (cat. 

V4XP-3024) according to the manufacturer’s instructions. Briefly, 1.5x106cells were used for 

each nucleofection reaction together with 2g of donor plasmid, 16g of TH sgRNA and 

20g of HiFi Cas9. After Puromycin selection (0.25g/ml for 10 days), transient expression 

of Cre (Tat-Cre, 4uM, 3 hours) was used to excise the Puromycin cassette. Clones were 

picked and genotyped for correct insertion using the following primers: 

GCCCTCGACCACCTTGATTCTCATGG and CCAAGACCAGACGTACCAGTCAGTC; 

GCCAGGGGCATCTTACAGAGTCTG and GGCCGACAAAGAGACCTACG; 

CAGGAGCTATGCCTCACGCATCCAG and GTGACGGTGATTGGGGCAGCAGAC. 

Flow cytometry 

Following differentiation until day 35, neuronal cultures were washed with PBS and 

incubated with StemPro Accutase (1X) for 20 min at 37ºC. An equal volume of Tripsin-

EDTA (0.25%) was added followed by additional incubation at 37ºC for 10 min. Neurons 

were then gently dissociated into a single cell suspension with a P1000 pipette and reaction 

was neutralized by the addition of an equal volume of Neurobasal media containing Y-27632 

(10µM). Cell suspension was then filtered through a 40µm FALCON Cell Strainer (Corning) 

to remove any undissociated cell clumps, and spun at 300xg for 5 minutes. Cells were 

resuspended in PBS and sorted based on their expression of RFP using a BD-Influx cell 

sorter (Becton-Dickinson, San Jose, CA, USA). Buffer used during sorting was BD 

FACSFlow (cat. 342003, BD Biosciences). 

Method details 

Liquid extraction surface analysis – mass spectrometry (LESA-MS) 

Liquid extraction surface analysis (LESA) on TH positive dopamine neurons from the bottom 

of a well of a glass coated 96 well plate  using a Triversa Nanomate (Advion, Ithaca, USA). 

Lipid extraction was achieved using a solvent of 20 mM ammonium acetate in isopropanol, 

methanol and chloroform (4:2:1, v:v:v), with 3 μl aspirated from the solvent reservoir with 

1.0 μl subsequently dispensed onto the sample area and held there for 7 seconds before being 

re-aspirated and infused into the mass spectrometer for 90 seconds.  



Data was acquire on an Exactive Orbitrap (Thermo, Hemel Hampstead, UK) with data 

acquired between 650-850 m/z in full scan in the positive ionisation mode. Parameters were 

optimised to maximise sensitivity (Supplemental Information 1) with the optimal settings 

being an infusion back pressure of 0.4 psi, 1.4 Kv electrospray current, mass accuracy of 

100,000, a balanced AGC target, and an injection time of 100 m/s. 

Quality control and extraction blanks 

To help ensure that there was no bias in our experimental design an equal number of cells 

from each replicate was sorted onto each plate, with the samples from each replicate evenly 

distributed across the run order to help reduce within batch effects. Extraction blanks were 

created by diverting a droplet of FACS sheath fluid into 8 wells on each plate, with these 

wells subsequently treated identically to single cell samples. Quality control samples were 

generated by pooling additional neurons by FACS and spinning them down to produce a bulk 

pellet. This pellet was then extracted by adding 1.8 ml of MTBE:MeOH (5:1, v:v) and was 

then vortexed for 60 seconds after which 600 μl of water was added. Subsequently the sample 

was spun at 2000 rpm (845 × g) for 2 minutes to produce a phase separation with the upper 

organic phase removed. Prior to adding QC’s to the plate, the material was analysed by 

LESA to assess concentration with MTBE added to reduce the concentration to give a signal 

within 2 orders of magnitude of the single cell signal. Once the QC sample was diluted 25 μl 

was added to 8 wells per plate and was subsequently dried under a continuous flow of 

nitrogen. 

Optimisation of analytical method 

Method optimisation was performed using a 1 nM solution of glycerophosphocholine (C16:0-

d31/C18:1) dried down in a glass coated 96 well plate under a continuous stream of nitrogen. 

Liquid extraction surface analysis (LESA) was performed on these samples with a single 

parameter at a time with data collected from 5 replicates of each setting. 

We demonstrated that at this low analyte concentration increasing infusion back pressure had 

no effect on signal abundance or signal to noise ratio (Supplemental Figure 6). The data also 

showed that increasing the electrospray current increased both signal abundance and signal to 

noise ratio up to a current of 1.4 kV, however when it was increased to 1.5kV we observe a 

slight increase in signal abundance but a slight reduction in signal to noise ratio 

(Supplemental Figure 7). When looking at the analysed mass window it can be seen that 

narrowing the mass range analysed increased both signal abundance and signal to noise ratio 

(Supplemental Figure 8). Reducing the solvent volume used to extract the sample from 7 µl 

to 3 µl increased both signal abundance and signal to noise ratio (Supplemental Figure 9). 

However, reducing this further to 1.5 µl actually reduced the measured signal abundance and 

signal to noise ratio (Supplemental Figure 9). 

 

Quantification and statistical analysis 

Data processing  

Data processing was performed in R using an in-house pipeline (for code see Supplemental 

Information 2). Scans collected between 20 and 78 seconds were integrated and compared to 



a list of 578 known lipid m/z’s (Supplemental Table 3) identifying the signal abundance and 

its deviation from the expected mass. Signal identification was done by comparing the 

abundance and mass deviation of the nearest signal to the target m/z in both FACS blanks and 

single cell samples. A signal was defined as present if it had a signal to noise ratio of > 1.5 

and an average deviation of less than 10 ppm, if no signal was observed within 10 ppm the 

signal was defined as missing, with a positive signal identified in at least 5% of cells in two 

of the three analysed sample sets. To be defined as a measured signal a linear response 

between signal abundance and cell number (r>0.5) had to be observed (Table 1). Data 

processing for 560 samples and the accompanying 56 blanks and 56 QC samples took 

approximately 3 hours with signal identification and data clean up taking about 2 hours, 

which is comparable with other high throughput lipidomics methods (Harshfield et al., 2019). 

Statistical Analysis 

Prior to statistical analysis data was normalised to the total signal, this was done by 

calculating the abundance of all signals within each sample with all the measured signals then 

divided by the mean abundance. The mean abundance of each lipid was calculated for each 

biological replicate to give a ‘population’ lipid profile, which could be compared to single 

cell profiles.  Multivariate analysis using principal component analysis (PCA) and partial 

least square discriminant analysis (PLS-DA) were performed with SIMCA v13.0.4 

(Umetrics, Umeå, Sweden) all data was logarithmically transformed (base10) and scaled to 

unit variance (UV). The relationship between individual lipid species and given Y-variables 

were determined using generalised linear models (GLM) applied to the whole of the dataset, 

all models were calculated in ‘R’ (version 3.4.2). 

Data and code availability 

All R code used in this study is included in the supplemental information. All data will be 

upload to a publically available repository on publication of the manuscript. 
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