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Abstract: Graded foam-filled channels are a very promising solution for improving the thermal
performance of heat sinks because of their customized structures that leave large amounts of room
for heat transfer enhancement. Accordingly, this paper proposes a comprehensive optimization
framework to address the design of such components, which are subjected to a uniform heat flux
boundary condition. The graded foam is achieved by parameterizing the spatial distributions of
porosity and/or Pores Per Inch (PPI). Mono- and multi-objective optimizations are implemented
to find the best combination of the foam’s fluid-dynamic, geometrical and morphological design
variables. The mono-objective approach addresses the Performance Evaluation Criterion (PEC) as an
objective function to maximize the thermal efficiency of graded foams. The multi-objective approach
addresses different objective functions by means of Pareto optimization to identify the optimal
tradeoff solutions between heat transfer enhancement and pressure drop reduction. Optimizations
are performed by assuming a local thermal non-equilibrium in the foam. They allowed us to achieve
a 1.51 PEC value with H* = 0.50, ReH = 15000, iε = iPPI = 0.50, ε(0) = 0.85, ε(1) = 0.97, PPI(0) = 5,
PPI(1) = 40, and ks→f = 104 as the design variables. For the three multi-objective functions investigated,
one can extrapolate the optimum from the Pareto front via the utopia criterion, obtaining h = 502
W/m2 K and ∆p = 80 Pa, NuH,unif = 2790 and f = 42, 〈T∗s 〉s= 0.011, and ∆p* = 91. The optimal solutions
provide original insights and guidelines for the thermal design of graded foam-filled channels.

Keywords: heat sinks; porous media; thermal management; graded foams; genetic algorithms; mono-
and multi-objective optimization

1. Introduction

Open-cell foams are a very promising kind of material for enhancing heat transfer.
They are porous materials that are also known as cellular materials because they consist
of many communicating cells that are periodically repeated through the space. Because
of their relatively high effective thermal conductivity and heat transfer area to volume
ratio, as well as of their tortuosity characteristics that promote flow mixing, they are highly
effective for applications where heat transfer plays a primary role, such as heat sinks [1,2],
thermal energy storage systems [3], nanofluids-based heat exchangers [4], and so on.

The heat transfer characteristics of foams are strongly dependent on their microstruc-
ture. Therefore, in recent years, many solutions, such as customized foams obtained with
additive manufacturing [5,6], sintered [7] or stacked [8] foam layers, or similar, have been
proposed. All of them can be labeled as functionally graded foams [9–11], where foam
characteristics, such as porosity or Pores Per Inch (PPI), vary through the foam sample.

Graded foams are promising in heat transfer applications, such as phase change
materials [12], volumetric solar air receivers [13,14], and channels which are components of
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heat exchangers. Variable pore size foams were found to increase heat transfer coefficients
if one assumes larger pore sizes in the first cells of the channel [15]. Pipes either partially
or fully filled with graded foams under different PPIs and porosities, investigated by
Wang et al. [16], showed enhanced heat transfer properties for decreasing cell sizes along
the radial direction in channels that were partially filled. Xu and Gong [17] analyzed
channels partially filled with graded foams and showed a decrease in the Nusselt number
for both porosity and PPI increase, while the friction factor was more affected by PPI than
by porosity variation. An analytical investigation of graded foams with a uniform heat flux
orthogonal to the flow direction was carried out by Bai et al. [18]. The authors assumed
the porosity to vary in the heat flux direction according to a quadratic law and showed
that the best thermal performance was attained in foams with smaller porosities close to
the heat source. Chen et al. [19] showed numerically that in a double-pipe heat exchanger,
the best solution was to employ smaller porosities and PPIs at both sides of the inner
pipe. Iasiello et al. [20] performed a parametric analysis of different porosities and/or PPI
distributions in a channel heated from below and equipped with a foam. The Performance
Evaluation Criteria (PEC) of graded foams were compared to those of uniform foams with
porosities and PPIs the same as their averaged values; increases of up to 38% in the PEC
with variable porosity and up to 42% with both variable porosity and PPI were found.
This means that a graded foam would outperform a uniform-properties foam of these
percentages if, for instance, friction power is constrained. Nonetheless, though these values
are promising, they have been obtained through standard parametric analysis without
finding optimal values because of the very high computational effort required.

Because of the increased computational power, Computational Fluid Dynamics (CFD)
techniques, coupled with numerical optimization algorithms, such as genetic algorithms,
have been widely used recently to perform mono- or multi-objective optimization analyses.
In mono-objective analyses, optimum solutions are found by employing just one objective
function; on the other hand, in multi-objective analyses, two or more contrasting objective
functions are employed in a multiple-criteria decision analysis to obtain a set of optimal
solutions. Objective functions based on heat transfer and pressure drop, which are always
in contrast, have often been employed. Safikhani et al. [21] employed a genetic algorithm
to address heat transfer and pressure drop in helically corrugated tubes by using both geo-
metrical and fluid-dynamic design variables. Chamoli et al. [22] derived a scaled Nusselt
number as a function of the friction factor Pareto front for a heat exchanger tube fitted with
compound insert geometries. Liu et al. [23] employed the Colburn j-factor and the friction
factor as the objective functions in a plate-fin heat exchanger for the hydraulic retarder. The
literature survey highlights that the above said objective functions are commonly employed
in the heat exchanger optimizations and that CFD techniques are used to figure out the
investigated problem. Optimization was carried out by employing geometrical characteris-
tics as design variables. The results showed a 12.8% increase in the Colburn j-factor and
a 26.9% decrease in the friction factor. Optimization techniques in porous materials for
volumetric solar receivers have also been employed [24,25]. A mono-objective optimization
to maximize the PEC in a heated tube was performed by Zheng et al. [26] by employing
multiple-layer porous material inserts with different porosities. A 2.5 factor increase in the
PEC, compared to a single foam layer, was found in a graded foam. Siavashi et al. [27]
optimized devices equipped with graded foams and nanoparticles by employing various
porosities and particle sizes as the design variables. A particle swarm optimization algo-
rithm with the PEC as the single-objective function achieved an up to 2.5% increase in
the PEC. Bianco et al. [28] optimized the heat rate and the pumping power in finned and
unfinned heat sinks equipped with metal foams, obtaining a five to six factor increase
in the heat rate compared to available experimental data [29], at constrained pumping
power. Shi et al. [30] optimized a graded porous medium partially filling a tube, assuming
linearly variable pore sizes and porosities and employing the Nusselt number and the
friction factor as the objective functions. The authors found that decreasing the pore size
affected heat transfer more than lowering the porosity, whereas the effects of increasing
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porosities at a larger channel filling ratio were more marked. The optimization provided
a 19.6% reduction in the pressure drop and an up to 7.1% increase compared to that in
homogeneous porous media.

The literature survey shows that, because of their customized structure, graded porous
materials are very promising for heat transfer enhancement. Moreover, the highly useful
prediction of the best mix of design variables, such as porosity and PPI, as well as of
their distribution through the investigated domain, can be performed only with numerical
optimization methods because of the large computational effort required. This implies that,
nowadays, optimizing the performance of heat transfer devices requires the combination
of customized porous materials and numerical tools, as well as realizing how these newly
derived solutions are helpful to thermal management.

In this work, CFD mono- and multi-objective optimizations are performed, in or-
der to evaluate the fluid-dynamic, geometrical and morphological design variables of a
graded foam that maximize heat transfer and minimize pressure drop. The mathematical
model is set up with reference to a local thermal non-equilibrium in the foam. A uni-
form laminar steady-state condition is assumed based on transient and turbulence effect
investigations [31,32], while a uniform heat flux boundary condition is assumed at one
side of the domain. Optimization is carried out with a non-dominated sorting genetic
algorithm (NSGA-II) for both mono-objective optimization, where the PEC is used as
objective function, and for multi-objective optimization, where Pareto fronts are obtained
to address different objective functions related to the heat transfer—pressure drop dualism.
Accordingly, the main originalities of this work are:

• To propose a comprehensive optimization approach to the design of graded foams
with a continuous distribution of the design variables (porosity and PPI) in order to
enhance the thermal performance of heat sinks; such a framework would enable the
exploration of new additive manufacturing technologies that are capable of building
up arbitrary geometries with acceptable cost;

• To compare different multi-objective approaches in order to find the best tradeoff
solutions between heat transfer enhancement and pressure drop reduction.

2. Mathematical Modeling
2.1. Governing Equations

The graded metal foam with variable porosity and/or variable PPI investigated in
the present paper is sketched in Figure 1. Its thickness, H, and length, L, are assumed to
be negligible compared to its width, W. Heat transfer and pressure drop in a casted metal
foam with spatial distributions of porosity and/or PPI will be optimized in the following.
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As in Iasiello et al. [20], we assume porosity, ε, and PPI varying according to a power
law with indices iε and iPPI, with values at the boundaries (y* = H/L = 0 and y* = 1) typical
in commercial metal foams, say ε = 0.85, 0.97 and PPI = 5, 40:

ε(y∗) = [ε(1)− ε(0)]y∗
iε
+ ε(0), (1)

PPI(y∗) = [PPI(1)− PPI(0)]y∗
iPPI + PPI(0), (2)

On the other hand, graded foams are also compared to uniform foams with poros-
ity and PPI the same as their averaged values, ε and PPI, computed via the following
correlations:

ε =
ε(1)− ε(0)

iε + 1
+ ε(0), (3)

PPI =
PPI(1)− PPI(0)

iPPI + 1
+ PPI(0), (4)

The characteristics functions evaluated with Equations (1) and (2), for different values
of the index i, and for different ε(1), ε(0), PPI(1), and PPI(0), are presented in Figure 2.

Materials 2022, 15, x FOR PEER REVIEW 4 of 21 
 

 

( ) ( ) ( )
PPI

PPI 1 PPI 0
PPI PPI 0

1i
−

= +
+

, (4)

 
Figure 1. The domain of a graded foam, with PPI increasing along the height, and the problem 
boundary conditions. 

The characteristics functions evaluated with Equations (1) and (2), for different val-
ues of the index i, and for different ε(1), ε(0), PPI(1), and PPI(0), are presented in Figure 2. 

 
Figure 2. Variable porosity and PPI functions obtained via Equations (1) and (2): (a,b) i = 0.33, 0.50,
1.00, 2.00, 3.00; (c,d): i = 0.33.



Materials 2022, 15, 968 5 of 21

Because of the complex geometry, the volume averaging technique [33] is herein em-
ployed. According to this technique, governing equations are written over a Representative
Elementary Volume (REV) of the foam [34], where each averaged variable is signed in
brackets < > and assumed to be its volume average over the REV. Additionally, if, during
this volume averaging process, the local temperature difference is relevant, then one could
employ a local thermal non-equilibrium model [35], where the energy equation for each
phase is written with a source term that accounts for the interfacial convective heat transfer
between the two phases.

The volume-averaged equations for a porous medium with variable characteristics,
under the assumptions of laminar incompressible steady-state flow, negligible buoyancy,
radiation, thermal dispersion, uniform thermophysical properties, and local thermal non-
equilibrium between the two phases, are the same as those in [14,35–37]:

∇ · 〈u〉 = 0, (5)

ρ f

ε
(〈u〉∇ · 〈u〉) = −∇〈p〉 f +

µ f

ε
∇2〈u〉 −

µ f

K
〈u〉 −

ρ f C f ε
√

K
|〈u〉|〈u〉, (6)

(
ρ cp

)
f 〈u〉 · ∇

〈
Tf

〉 f
= ∇ ·

(
ke f f , f ∇

〈
Tf

〉 f
)
+ hv

(
〈Ts〉s −

〈
Tf

〉 f
)

(7)

∇ ·
(

ke f f ,s ∇〈Ts〉s
)
− hv

(
〈Ts〉s −

〈
Tf

〉 f
)
= 0, (8)

with u is the velocity vector, ρ is the density, p is the pressure, µ is the dynamic viscosity,
K is the permeability, Cf is the inertial factor, cp is the specific heat capacity, T is the
temperature, keff is the effective thermal conductivity, and hv is the volumetric convection
heat transfer coefficient.

The effects of either natural or mixed convection can be neglected, since the 0.28 maxi-
mum value of the Richardson number, based on a uniform heat flux Grashof number [38],
with the cell size as the characteristic length [39,40] and the pore velocity as the velocity-
restrictive case herein investigated, is far smaller than 10, the typical forced-mixed con-
vection transition value for a porous media [41]. On the other hand, turbulence effects
are negligible, too. In fact, though in the worst case the cell size-based Reynolds number
achieved is roughly 670, that is higher than typical transition values [42], and so turbulence
effects on both pressure drop [43] and convective heat transfer [44,45] can be neglected.

2.2. Closure Coefficients, Boundary Conditions and Numerical Modeling

In order to close Equations (5)–(8) and to guarantee the uniqueness of the solutions,
porous media closure coefficients and boundary conditions are required. It is assumed
that the closure coefficients depend on both porosity and foam cell size; thus, they depend
on the coordinate y*. They are shown in Table 1, with their mathematical expression and
sources. The coefficients in the momentum equations are taken from Calmidi [46]; the
correlation between the cell size and PPI was given by Andreozzi et al. [47]; an isotropic
thermal conductivity of both fluid and solid phases is assumed [48]; the volumetric heat
transfer coefficients, the Reynolds and Nusselt numbers, are derived by neglecting the
thermal entrance effects in the equations proposed by Iasiello et al. [49].

Boundary conditions, the same as those in Iasiello et al. [20], are reported in Figure 1,
and are described in the following. As it is common for porous media, plug flow, to-
gether with a uniform temperature and no heat exchange with the environment (adiabatic)
boundary condition, is assumed at the inlet section of the domain (x* = x/L = 0). A no-slip
condition is invoked at the side walls (y* = 0 and y* = 1); a uniform heat flux, qi, through the
bottom side wall (y* = 0) enters the solid phase of the foam, since keff,s/keff,f >> 1 (see [20]).
The upper side wall (y* = 1) is assumed to be adiabatic. Finally, an atmospheric pressure
and outflow condition is employed at the exit section of the domain (x* = 1).
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Table 1. Closing coefficients in the governing equations.

Characteristic Expression Source

Permeability, K (m2);
Inertial factor, Cf (-)

Strut diameter, ds (m)

K(y∗)/[dc(y∗)] 2 =

0.00073[1− ε(y∗)]−0.224
[

ds(y∗)
dc(y∗)

]−1.11

[46]
C f (y∗) = 0.00212[1− ε(y∗)]−0.132

[
ds(y∗)
dc(y∗)

]−1.63

ds(y∗)
dc(y∗)

= 1.18
G(y∗)

(
1−ε(y∗)

3 π

)0.5

G(y∗) = 1− e−
1−ε(y∗ )

0.04

Cell size, dc (m) dc(y∗) = 10−3{−0.921 ln[PPI(y∗)] + 5.3564} [47]

Fluid and solid phases effective thermal conductivities,
keff,f (W/m K); keff,s (W/m K)

ke f f , f (y∗) = ε(y∗)k f
[48]

ke f f ,s(y∗) = 0.329[1− ε(y∗)]ks

Volumetric heat transfer coefficient,
hv (W/m3 K)

hv(y∗) =
Nuv(y∗)k f

[dc(y∗)/ε(y∗)] 2

[49]Nuv(y∗) = 2.864[Rec(y∗)] 0.4872[ε(y∗)]−5.306

Rec(y∗) =
ui [dc(y∗)/ε(y∗)]

ν

Equations are solved with a standard numerical approach by means of a finite element
code because the mathematical model does not require any particular techniques that are
like meshless-based techniques [50,51]. For each run, 15,000 rectangular elements, 150 in
the y direction, according to an arithmetic sequence, with a consecutive elements ratio of
10, and 100 in the x direction, were employed. Grid convergence for velocity, pressure,
and temperature was verified, as in [20]. Up to 240,000 different grid elements with an
equal arithmetic sequence ratio were analyzed by constraining the arithmetic sequence
ratio. Namely, a number of elements that allows us to underline the channeling effect, as
in [20], was employed for the velocity profile. Average pressure and temperature for both
phases were checked with a 0.5% tolerance compared to the highest number of elements
simulated in the grid convergence analysis. The check on the Nusselt number and friction
factor was carried out, as in [20]; it showed that choosing more than 15,000 elements would
not significantly improve the solution. It is worth underlining that the grid convergence
plays a primary role, since many configurations were simulated in order to achieve opti-
mum points. The fully coupled linear solver PARDISO was employed with a 10−4 RMS
deviation. The herein employed model had been validated in [20] by comparing predicted
dimensionless temperatures as a function of the axial coordinate, in different cross-sections,
to experimental results from Dukan and Chen [52]; the agreement was very good.

2.3. Optimization Procedure and Data Reduction

The design of the graded foam-filled channel was optimized with different mono- and
multi-objective approaches by implementing the procedure described in Figure 3, where
a flowchart on its left side resumes the optimization procedure and the upward red and
downward blue arrows refer to objective functions to be maximized and minimized, respec-
tively. Mono- and multi-objective analyses are carried out in the following, with reference to
a unit size of the domain in the z direction of the 2D problem under investigation. Because
of the large solutions domain to be investigated, optimization is carried out by running a
genetic algorithm (GA), coupling MATLAB® R2018b and COMSOL Multiphysics® (5.2).
The model for the GA fitness function is developed in COMSOL Multiphysics, while COM-
SOL Multiphysics® LiveLinkTM (5.2) for MATLAB® is used for coupling the CFD solution
with the GA in MATLAB®. A non-dominated sorting genetic algorithm (NSGA-II), which
is a population-based numerical optimization technique, is implemented via the MATLAB®

functions ga.m for the mono- and gamultiobj.m for the multi-objective cases. Further details
of the optimization algorithm can be found in [28]. The GA parameters for mono- and
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multi-objective optimizations are set according to MATLAB® recommended values and
authors’ expertise, as detailed below:

• The population size (number of solutions investigated by each iteration/generation)
is assumed to be equal to 50 in both mono- and multi-objective optimizations;

• The crossover fraction is assumed to be equal to 0.60 in the mono-objective optimiza-
tions, and equal to 0.45 in the multi-objective ones;

• The mutation probability is assumed to be equal to 0.20 in both mono- and multi-
objective optimizations;

• The maximum number of generations is assumed to be equal to 50 in both mono-
and multi-objective optimizations, with a 0.1 tolerance criterion, i.e., the stop criterion
depicted in Figure 3.

Notably, with the multi-objective optimizations, a two-objective approach addressing
different couples of objective functions is implemented. A Pareto front collecting optimal
non-dominated solutions is achieved for each couple. A comprehensive analysis of the
solutions allows us to identify recurrent optimal values and, then, by applying the utopia
point criterion [28] for multi-criteria decision making, a Pareto solution is chosen. The
above said solution, denoted as a utopia optimum, represents the best trade-off among the
objective functions. The utopia optimum is obtained by means of the following graphical
construction. Once the Pareto front for a generic objective function with two performance
indicators, f 1 and f 2, to be maximized and minimized, respectively, is obtained, one can
define the utopia point, that is, a couple of values made up by the maximum and minimum
values, f 1,min and f 2,max, from the Pareto front. The utopia optimum is the couple of solutions
(f 1,opt, f 2,opt) closer to the aforementioned utopia point (f 1,min, f 2,max).
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Design variables and objective functions are presented in the right side of Figure 3.
Porosity ε and PPI foam characteristics, at y* = 0 and y* = 1, variable through the foam
domain via the indices iε and iPPI defined in Equations (1) and (2), are considered to be the
discrete design variables, together with the following dimensionless variables:

H∗ =
H
L

(9)

ReH =
ui H

ν
(10)

ks→ f =
ks

k f
(11)

The dimensionless foam height, H*, in Equation (9), was chosen to account for the
geometrical characteristics of the channel. The Reynolds number, ReH, in Equation (10),
refers to the macro-scale of the problem, the channel height, whereas the cell size is the
pore micro-scale. Finally, the thermal conductivity ratio in Equation (11), ks→f, points out
the preferential pattern of the heat through the porous medium.

One can deduce from Figure 3 that the solution domain comprises 450,000 variable
combinations, i.e., solutions; each of them requires about 1 min computational time to be
simulated via COMSOL Multiphysics®, using a 3.70 GHz 6-core processor Intel® Core™

i7-8700K equipped with 32 GB Random-Access Memory (RAM). Finally, an exhaustive
or brute-force search would require more than 300 days, which makes it unfeasible; it is
also worth considering that the selected ranges of the design variables could be extended
during the optimization.

Three couples of objective functions, including contrasting performance indicators,
F1(x), F2(x), and F3(x), with x as the design variables vector, are considered in the multi-
objective analysis:

F1(x) =

 h = qe

〈Ts〉s− 〈Tf 〉 f

∆p = 1
H
s

p(0, y)dy
(12)

F2(x) =

 NuH = h H
ke f f , f

= h H
ε k f

f = ∆p
L

H
ρ f u2

i /2

, (13)

F3(x) =

 〈T∗s 〉
s = 〈Ts〉s−Ti

qe H/ke f f ,s(ε)

∆p∗ = ∆p
1
2 ρu2

i

, (14)

where:

〈Ts〉s =
1
L

L∫
0

〈Ts〉s(y = 0)dx, (15)

〈
Tf

〉 f
=

1
H L

 L∫
0

 H∫
0

〈
Tf

〉 f
dy

dx

, (16)

The effective thermal conductivities in Equations (13) and (14) are computed with the
expressions reported in Table 1, making reference to the average porosity, ε, evaluated with
Equation (3), accounting for ε(0), ε(1), and iε in each case.

The reason why the above reported couples of objective functions are chosen is that
F1(x) allows us to grasp the physical meaning of the problem, since both heat transfer
rate and pressure drop are somehow related to the overall thermal resistance and drag
resistance. The couple F2(x) is the dimensionless form of the quantities in F1(x). Finally,
the dimensionless temperature and pressure drop in F3(x) make them meaningful in
many applications, such as in electronics, where the main objective is to improve the
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thermal management of a surface by reducing its temperature when the heat to be removed
is known.

Mono-objective analysis is performed by making reference to the Performance Evalua-
tion Criterion (PEC), proposed by Webb and Eckert [53] and already used in [20]:

PEC =

(
NuH/NuH,unif

)(
f / funi f

)1/3 , (17)

where NuH,unif is the Nusselt number and funif is the friction factor in a foam with uniform
characteristics. They are computed by assuming uniform values of the porosity and PPI
equal to their average values computed via Equations (3) and (4) for each computed case.
According to Webb and Eckert [53], when PEC is higher than 1, the thermal performance of
a foam with variable characteristics is better than that of foams with uniform characteristics
and the same surface area at equal pumping power.

3. Results and Comments
3.1. Mono-Objective Optimization

The mono-objective optimization aims to find the combination of the design variables
that maximizes the PEC. The Performance Evaluation Criterion as a function of the individ-
uals (i.e., simulated solutions), for mono-objective optimization, is reported in Figure 4. The
figure shows that, above a certain number of simulations, the solutions investigated by the
GA approach a 1.51 value. Data are scattered because of the large number of mutated indi-
viduals achieved for each generation. Notably, in order to avoid local minima, a quite high
0.20 mutation probability, amplified by the large solutions domain herein explored, was set.
The 1.51 PEC was obtained with the following values of the design variables: H* = 0.33,
iε = 0.33, iPPI = 1.00, ReH = 15,000, ε(1) = 0.97, ε(0) = 0.85, PPI(1) = 40, PPI(0) = 5, and
ks→f = 1000. The foam morphology is rather consistent with that investigated by Iasiello
et al. [20], who found a 1.42 maximum PEC with H* = 0.50, iε = iPPI = 0.50, ReH = 15,000,
ε(1) = 0.97, ε(1) = 0.85, PPI(1) = 40, PPI(0) = 5, and ks→f = 10,000. The above said increase in
the PEC was attained because the present optimization allowed us to investigate a larger
number of cases than a standard sensitive analysis. Iasiello et al. [20] obtained the highest
PEC by assuming equal indices for porosity and PPI. The herein simulation achieved a 9%
increase in the PEC, compared to the 6% increase in [20], highlighting how optimization
is better than a sensitivity analysis and showing that a numerical optimization, such as
the one herein carried out with the genetic algorithm, is mandatory if exhaustive research
requires much time and high cost.
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3.2. Multi-Objective Optimization

The multi-objective optimization for F1(x), F2(x), and F3(x) objective functions is
presented in this sub-section. Figure 5 shows the investigated solutions, the Pareto front,
and the utopia optimum for F1(x) (see Equation (12)), i.e., the optimum values of the average
heat transfer coefficient and pressure drop. The Pareto front spans in the 413 W/m2 K–
667 W/m2 K range of the average heat transfer coefficient and in the 42 Pa–420 Pa range of
the pressure drop. The utopia optimum values are h = 502 W/m2 K and ∆p = 80 Pa.

The design variables of the Pareto non-dominated solutions for F1(x) are reported in
Figure 6. Figure 6a,c shows that all Pareto solutions belong to H* = 0.50 and ε(0) = 0.85.
This occurs because H* = 0.50 characterizes the shortest investigated channel, and it is
well known that the local heat transfer coefficient decays along the length. On the other
hand, the pressure drop is the smallest, since the length of the channel is the shortest. As
for ε(0), the largest fraction of highly conductive solid phase close to the wall implies the
maximum heat transfer. In contrast, preferential values are presented by variables ε(1)
in Figure 6c and PPI(0) in Figure 6d, whose optimal values are among the lowest in the
investigated domain. The reason why this occurs depends on the PPIs, which are lower
in the region far from the wall where heat flux is applied, and which still promote local
convection and increase pore velocity. However, the above effect is less marked for ε(0), and
this means that points at ε(1) = 0.88 belong to the Pareto front. As for PPI(0), in Figure 6d,
the low permeability and inertial factor (see Table 1) reduce the pressure drop, making
lower PPIs optimal for pressure drop-related objective functions. At the same time, some
points with 5 PPI are on the Pareto front because interfacial convection is quite weak, too,
even if it does not have the same impact of lowering the pressure drop. The spread of the
remaining design variables confirms the contrast between the characteristics in F1(x) and
the usefulness of multi-objective optimization. When a fixed design variable is so spread, it
means that the performance indicators of each objective function are in total contrast with
each other. For instance, ReH presents the spread value in Figure 6b, which means that
the increasing Reynolds number promotes heat transfer, but has an impact on the pressure
drop, too. Having some spread design variables makes the multi-objective optimization
very meaningful, since there is no preferential design variable value with which to obtain
the set of optimal solutions, i.e., the Pareto front.
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The convergence of the Pareto front and various percentages of the generations number
(GEN) for F1(x) are presented in Figure 7, which allows us to appreciate how the set of
optimum solutions is achieved for different percentages of the generations number. The
figure points out that convergence is attained for GEN75%.
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Figure 8 shows the investigated solutions, the Pareto front, and the Utopia optimum
for F2(x), i.e., according to Equation (13), the optimum values of the dimensionless objective
functions, the average Nusselt number, and the friction factor. The Pareto front varies in
the 2200–3000 range of the average Nusselt number and in the 35–80 range of the friction
factor; it starts far from the origin for the Nusselt number and includes few solutions,
which provide very high values of NuH with quite small values of f. As it was already
achieved for mono-objective optimization, one can compare the herein achieved results to
the experimental data reported by Kim et al. [54], who investigated experimentally three
aluminum foams (named A, B, and C in the following) under different air mass flow rates
in an asymmetrically heated channel. In all foams, the maximum NuH and minimum f
values were attained at the maximum Reynolds number, which was about 2800. Numerical
predictions from the present work can be compared to the experimental results obtained
by Kim et al. [54] through the utopia optimum in Figure 8, that is, NuH = 2790 and f = 42.
Since the comparison must be carried out with different Reynolds numbers, the following
expression of PECref, proposed by Webb and Eckert [53], is used:

PECref =

(
NuH/ReH

NuH,ref/ReH,ref

)
(

f / fre f

)1/3 , (18)

where the subscript ref indicates data from Kim et al. [54]. If reference is made to the
best three couples of NuH and f for cases A, B, and C in [54], we find PECref = 2.34, 1.87,
and 1.60, respectively. Values of PECref larger than 1 in all cases highlight the impor-
tance of employing both graded foams and numerical optimization in designing the best
foam parameters.

The design variables of the Pareto non-dominated solutions for F2(x) are reported in
Figure 9. It is worth remarking that, because of the scaling process, the distribution of
the above values is somewhat different from that in Figure 6. Figure 9a,e exhibit all the
Pareto solutions for the highest ReH = 1.5 104 and ks→f = 104, respectively, which means
that increasing the Reynolds number increases the heat transfer rate less than the pressure
drop. Figure 9c presents all the Pareto solutions for the lowest value of the foam porosity
adjacent to the wall, ε(0), since the larger fractions of the solid phase are located close to
the wall through which the heat enters the foam. The smaller values of PPI(0) in Figure 9d
imply a higher impact of the reduction in the pressure drop via the friction factor on the
reduction of the heat transfer due to the smallest heat transfer coefficient at y* = 0. It is
worth noticing that the smaller the PPI, the lower the volumetric heat transfer. Preferential
values are presented by PPI(1) in Figure 9d, whose optimal values are among the highest in
the investigated domain.
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The convergence of the Pareto front and various percentages of the generations number
(GEN) for F2(x) are presented in Figure 10, which shows a faster convergence than for F1(x),
reported in Figure 7; as a matter of fact, one can notice that at about 50% of the generations
performed (GE75%), the Pareto front approaches the GEN100 value.
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Figure 11 shows the investigated solutions, the Pareto front, and the Utopia optimum
for F3(x), i.e., according to Equation (14), the optimum values of the dimensionless tem-
perature of the solid phase at y* = 0 and pressure drop objective functions. The Pareto
front spans in the 0.010–0.029 range of the dimensionless temperature and in the 74–186
range of the dimensionless pressure drop. The investigated solutions for dimensionless
temperatures higher than 0.03 are not reported, since they provide no points on the Pareto
front; it means that obtaining smaller surface temperatures implies larger costs.

The design variables of the Pareto non-dominated solutions for F3(x) are reported in
Figure 12. Figure 12a shows that all the Pareto solutions belong to H* = 0.5, the same as
those for F1(x) and F2(x); the H* maximum value is likely due to the smaller dimensionless
temperatures defined in Equation (14). Figure 12a exhibits the highest value of the optimal
Reynolds number of all the Pareto solutions, the same as that for F1(x); this is due to the
high Reynolds number that enhances heat removal through the solid in the channel. All
the Pareto solutions that achieved the minimum ks→f = 102 value are reported in Figure 12e;
as a matter of fact, the lower the thermal conductivity of the solid phase, the lower the
dimensionless temperature of the solid phase at the heated wall (see Equation (14)). Looking
at Figure 12c, one can remark that at ε(1), higher porosities are recommended, since smaller
pore velocities (uin/ε) imply smaller pressure drops; on the other hand, at the heated
surface, values of ε(0) from the Pareto front are lower because lower porosities promote
heat removal from the heated wall, though they have undesirable effects on pressure drop.
Finally, Figure 12d exhibits PPIs at the heated wall, PPI(0), far higher than those at the
adiabatic top wall, PPI(1), since high interfacial convection is required at the heated wall in
order to remove heat from it (see Table 1), whereas less heat convection is required at the
unheated wall and more emphasis is assumed by the pressure drop, which decreases with
increasing PPI, according to the correlations presented in Table 1.
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After analyzing the different objective functions Fj(x), the design variables shown in
Figure 6, Figure 9, and Figure 12, that allow us to optimize them can now be compared.
One can remark that, in most cases, the maximum height of the foam, H* = 0.5, optimizes
the objective functions because shorter channels generally enhance heat transfer. Unlike
Figure 6a, because of the scaling process, the optimizing 1.5 · 104 Reynolds number in
Figures 9a and 12a is the same. As for the foam morphology, one can remark that some
variability in the power-law indices makes the optimization analysis meaningful. The
comparison of F3(x) (Figure 6c–e) with F1(x) (Figure 9c–e) and F2(x) (Figure 12c–e) points
out differences in porosity and PPIs for y* = 0 and y* = 1, as well as in thermal conductivity
ratios; on the contrary, F1(x) and F2(x) show similar objective functions.

The convergence of the Pareto front for F3(x) and the various percentages of the
generation numbers are presented in Figure 13. The Pareto front slowly approaches the
solution GEN100%, similarly to what occurs for F1(x) (see Figure 7), whereas the convergence
is faster for F2(x) (see Figure 10), which requires less computational burden. Notably,
points with dimensionless temperatures higher than 0.03 for GEN100% are excluded by the
optimization algorithm, which finds better solutions during its evolution.

The utopia optimum for multi-objective optimization functions Fj(x), the optimum
for mono-objective optimization, the optimum from [20], as well as the design variables
that allow us to obtain them, are presented in Table 2. The comparison among the different
solutions in Table 2 shows that, in all cases, PPI(0) = 5, while ε(0) = 0.85 in all cases but
0.91 for F3(x). This means that foams with low PPIs and low porosities close to the heat
source exhibit the best performance. This is justified from a physical point of view, since
low PPIs reduce pressure drop and low porosities increase both conduction heat transfer
and interfacial heat transfer, since they increase both local velocity and local heat transfer
area (see equations in Table 1). On the other hand, it is worth pointing out both that the
optimal value of the investigated PPI functions index, iPPI, is either equal to or lower than 1,
and that employing different power-law functions for porosity and PPIs is the best choice.
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Figure 13. Convergence of the Pareto front and percentages of generation numbers for F3(x).

Finally, all the optimum design variables presented in Table 2 are employed as inputs
for the mono- and multi-objective investigated functions. The obtained results for all the
investigated objective functions, together with results obtained for the optimum reported
in [20], are reported in Table 3. The performance indicators of the optimal solutions
reported in Table 3 highlight the importance of choosing the suitable objective function,
since, when using the same design variable vector for different objective functions, different
optimal performance indicators are obtained. This means that the utopia optimal solution
depends also on the chosen objective function, to which attention needs to be paid for its
appropriate choice.
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Table 2. Utopia optimum for multi-objective optimization functions Fj(x), optimum for mono-
objective optimization, optimum from [20], and design variables.

Fj(x) H* ReH iε iPPI ε(0) ε(1) PPI(0) PPI(1) ks→f Optimum

F1(x) (Equation (12)) 0.50 5000 2.00 1.00 0.85 0.85 5 40 104 h= 502 W/m2 K
∆p = 80 Pa

F2(x) (Equation (13)) 0.50 15,000 3.00 1.00 0.85 0.85 5 10 104 NuH= 2790
f = 42

F3(x) (Equation (14)) 0.50 15,000 0.33 0.33 0.91 0.97 5 5 102 〈T∗s 〉s= 0.011
∆p* = 91

PEC (Equation (17)) 0.33 15,000 0.33 1.00 0.85 0.97 5 40 103 PEC = 1.51
[20] 0.50 15,000 0.50 0.50 0.85 0.97 5 40 104 PEC = 1.42

Table 3. Performance indicators of the optimal solution of the multi-objective optimizations, the
mono-objective optimization, and the optimal solution by [20].

Fj(x) PEC h(W/m2 K) p(Pa) NuH f 〈T*
s〉

s ∆p*

F1(x) (Equation (12)) 1.09 502 80 2243 109 0.686 217
F2(x) (Equation (13)) 1.01 624 277 2790 41.9 0.523 84
F3(x) (Equation (14)) 1.31 37.9 300 151 45.4 0.011 91
PEC (Equation (17)) 1.51 136 706 552 71.3 0.051 214

[20] 1.42 577 530 2361 80.2 0.245 160

4. Conclusions

Numerical heat transfer and fluid flow optimization of a channel filled with a graded
foam is presented. A rectangular, longitudinal section channel is assumed to be heated
uniformly at its bottom wall. Porosity and Pores Per Inch (PPI) morphological parameters
are assumed to vary through the domain according to power laws in the heat flow direction.
The mathematical model used to predict heat transfer and fluid flow is built up with local
thermal non-equilibrium porous media equations.

The velocity of the fluid, the morphology of the foam, and the channel geometry are
assumed as design variables. Different optimization approaches are employed:

• A mono-objective approach for the maximization of the Performance Evaluation
Criterion (PEC) compared to a uniform foam with the same averaged porosity and PPI;

• Three Pareto two-objective approaches addressing heat transfer coefficient vs. pressure
drop (F1), Nusselt number vs. friction factor (F2), and dimensionless temperature of
the solid phase at the heated wall vs. dimensionless pressure drop (F3).

The thermal design of the heat sink is optimized using a genetic algorithm (NSGA-II)
via the coupling between MATLAB® and COMSOL Multiphysics®. The main performance
indicators for the optimal solutions are found using the utopia point criterion for multi-
criteria decision making, as concerns the multi-objective approaches.

The main conclusions are summarized as follows, and could be considered to be
guidelines for the design of such devices based on the mentioned optimal solutions:

• By means of the mono-objective function, a PEC = 1.51 maximum value is achieved,
which means a heat transfer efficiency of the optimal simulated graded foams that is
51% higher than that of a uniform foam with the same averaged characteristics. The
above reported PEC is higher than the 1.42 achieved in [20], where just a parametric
analysis was performed;

• The Pareto front for the multi-objective function F1(x) spans in the 413 W/m2 K–
667 W/m2 K range of the averaged heat transfer coefficient and in the 42 Pa–420 Pa
range of the pressure drop. Utopia optimum values are h = 502 W/m2 K and
∆p = 80 Pa;
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• For F2(x), the average Nusselt number spans in the 2200–3000 range and the friction
factor spans in the 35–80 range. Utopia optimum values are NuH= 2790 and f = 41.9;

• For F3(x), the dimensionless volume-averaged temperature of the solid phase at the
heated wall range is 0.010–0.029 and the dimensionless pressure drop spans between
74 and 186. Utopia optimum values are 〈T∗s 〉

s = 0.011 and ∆p* = 91.

The considered performance indicators of the optimal solutions undergo significant
variations as a function of the employed optimization approach. The same occurs for the
optimal values of the design variables. Therefore, the final user is strongly recommended
to carefully choose the objective function depending on actual needs and wills.

Further heat exchanger configurations, such as porous insert channels and so on,
should be investigated in the future in order to appreciate the potential of the solutions
proposed in the present paper.
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Nomenclature

Cf inertial factor
cp specific heat capacity (J/kg K)
d diameter (m)
ds strut diameter (m)
f friction factor
Fj(x) objective function
G geometric function (Table 1)
h heat transfer coefficient (W/m2 K)
hv volumetric heat transfer coefficient (W/m3 K)
H foam height (m)
i index (Equations (3) and (4))
k thermal conductivity (W/m K)
K permeability (m2)
L foam length (m)
n normal vector
NuH Nusselt number
Nuv volumetric Nusselt number
p pressure (Pa)
q heat flux (W/m2)
Rec cell-size Reynolds number
ReH Reynolds number
T temperature (K)
u velocity vector (m/s)
u, v velocity components (m/s)
W foam width (m)
x, y, z Cartesian coordinates (m)
Greek letters
ε porosity
ρ density (kg/m3)
µ dynamic viscosity (kg/m s)



Materials 2022, 15, 968 19 of 21

Subscripts
c cell
eff effective
f fluid
i inlet
ref reference
s solid
unif uniform
Superscripts
* dimensionless
f fluid
s solid
Other symbols
<> porous media volume average
___ x and/or y directions average
Acronyms
GA Genetic Algorithm
PEC Performance Evaluation Criterion
PPI Pores Per Inch

References
1. Mahjoob, S.; Vafai, K. A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Tran.

2008, 51, 3701–3711. [CrossRef]
2. Avila-Marin, A.L. Volumetric receivers in solar thermal power plants with central receiver system technology: A review. Sol.

Energy 2011, 85, 891–910. [CrossRef]
3. Chen, J.; Yang, D.; Jiang, J.; Ma, A.; Song, D. Research progress of phase change materials (PCMs) embedded with metal foam

(a review). Proc. Mat. Sci. 2014, 4, 389–394. [CrossRef]
4. Lotfizadeh, H.; Mehrizi, A.A.; Motlagh, M.S.; Rezazadeh, S. Thermal performance of an innovative heat sink using metallic foams

and aluminum nanoparticles—Experimental study. Int. Comm. Heat Mass Tran. 2015, 66, 226–232. [CrossRef]
5. Ortona, A.; D’Angelo, C.; Gianella, S.; Gaia, D. Cellular ceramics produced by rapid prototyping and replication. Mater. Lett.

2012, 80, 95–98. [CrossRef]
6. Ge, C.; Priyadarshini, L.; Cormier, D.; Pan, L.; Tuber, J. A preliminary study of cushion properties of a 3D printed thermoplastic

polyurethane Kelvin foam. Packag. Technol. Sci. 2018, 31, 361–368. [CrossRef]
7. Xu, Z.G.; Zhao, C.Y. Experimental study on pool boiling heat transfer in gradient metal foams. Int. J. Heat Mass Tran. 2015, 85,

824–829. [CrossRef]
8. Yang, X.; Wang, W.; Yang, C.; Jin, L.; Lu, T.J. Solidification of fluid saturated in open-cell metallic foams with graded morphologies.

Int. J. Heat Mass Tran. 2016, 98, 60–69. [CrossRef]
9. Udupa, G.; Rao, S.S.; Gangadharan, K.V. Functionally graded composite materials: An overview. Proc. Mat. Sci. 2014, 5, 1291–1299.

[CrossRef]
10. Xu, F.; Zhang, X.; Zhang, H. A review on functionally graded structures and materials for energy absorption. Eng. Struct. 2018,

171, 309–325. [CrossRef]
11. Stanev, L.; Kolev, M.; Drenchev, B.; Drenchev, L. Open-cell metallic porous materials obtained through space holders-Part I:

Production methods. A review. J. Manuf. Sci. E-T ASME 2014, 139, 050801. [CrossRef]
12. Yang, J.; Yang, L.; Xu, C.; Du, X. Numerical analysis on thermal behavior of solid–liquid phase change within copper foam with

varying porosity. Int. J. Heat Mass Tran. 2015, 84, 1008–1018. [CrossRef]
13. Chen, X.; Xia, X.L.; Meng, X.L.; Dong, X.H. Thermal performance analysis on a volumetric solar receiver with double-layer

ceramic foam. Energy Convers. Manag. 2015, 97, 282–289. [CrossRef]
14. Wang, P.; Vafai, K. Modeling and analysis of an efficient porous media for a solar porous absorber with a variable pore structure.

J. Sol. Energ.-T ASME 2017, 139, 0510051. [CrossRef]
15. Zaragoza, G.; Goodall, R. Metal foams with graded pore size for heat transfer applications. Adv. Eng. Mater. 2013, 15, 123–128.

[CrossRef]
16. Wang, B.; Hong, Y.; Hou, X.; Xu, Z.; Wang, P.; Fang, X.; Ruan, X. Numerical configuration design and investigation of heat transfer

enhancement in pipes filled with gradient porous materials. Energy Convers. Manag. 2015, 105, 206–215. [CrossRef]
17. Xu, Z.G.; Gong, Q. Numerical investigation on forced convection of tubes partially filled with composite metal foams under local

thermal non-equilibrium condition. Int. J. Therm. Sci. 2018, 133, 1–12. [CrossRef]
18. Bai, X.; Kuwahara, F.; Mobedi, M.; Nakayama, A. Forced convective heat transfer in a channel filled with a functionally graded

metal foam matrix. J. Heat Trans.-T ASME 2018, 140, 111702. [CrossRef]

http://doi.org/10.1016/j.ijheatmasstransfer.2007.12.012
http://doi.org/10.1016/j.solener.2011.02.002
http://doi.org/10.1016/j.mspro.2014.07.579
http://doi.org/10.1016/j.icheatmasstransfer.2015.06.007
http://doi.org/10.1016/j.matlet.2012.04.050
http://doi.org/10.1002/pts.2330
http://doi.org/10.1016/j.ijheatmasstransfer.2015.02.017
http://doi.org/10.1016/j.ijheatmasstransfer.2016.03.023
http://doi.org/10.1016/j.mspro.2014.07.442
http://doi.org/10.1016/j.engstruct.2018.05.094
http://doi.org/10.1115/1.4034439
http://doi.org/10.1016/j.ijheatmasstransfer.2015.01.088
http://doi.org/10.1016/j.enconman.2015.03.066
http://doi.org/10.1115/1.4037161
http://doi.org/10.1002/adem.201200166
http://doi.org/10.1016/j.enconman.2015.07.064
http://doi.org/10.1016/j.ijthermalsci.2018.06.014
http://doi.org/10.1115/1.4040613


Materials 2022, 15, 968 20 of 21

19. Chen, X.; Xia, X.; Sun, C.; Wang, F.; Liu, R. Performance evaluation of a double-pipe heat exchanger with uniform and graded
metal foams. Heat Mass Transf. 2020, 56, 291–302. [CrossRef]

20. Iasiello, M.; Bianco, N.; Chiu, W.K.S.; Naso, V. The effects of variable porosity and cell size on the thermal performance of
functionally-graded foams. Int. J. Therm. Sci. 2021, 160, 106696. [CrossRef]

21. Safikhani, H.; Eiamsa-ard, S. Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated
tubes. Appl. Therm. Eng. 2016, 95, 275–280. [CrossRef]

22. Chamoli, S.; Yu, P.; Yu, S. Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts. Appl. Therm.
Eng. 2017, 117, 708–724. [CrossRef]

23. Liu, C.; Bu, W.; Xu, D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic
algorithm. Int. J. Heat Mass Tran. 2017, 111, 65–82. [CrossRef]

24. Du, S.; He, Y.L.; Yang, W.W.; Liu, Z.B. Optimization method for the porous volumetric solar receiver coupling genetic algorithm
and heat transfer analysis. Int. J. Heat Mass Tran. 2018, 122, 383–390. [CrossRef]

25. Du, S.; Ren, Q.; He, Y.L. Optical and radiative properties analysis and optimization study of the gradually-varied volumetric
solar receiver. Appl. Energy 2017, 207, 27–35. [CrossRef]

26. Zheng, Z.J.; Li, M.J.; He, Y.L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on
genetic algorithm and CFD. Int. J. Heat Mass Tran. 2015, 87, 376–379. [CrossRef]

27. Siavashi, M.; Bahrami, H.R.T.; Aminian, E. Optimization of heat transfer enhancement and pumping power of a heat exchanger
tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 2018, 138, 465–474. [CrossRef]

28. Bianco, N.; Iasiello, M.; Mauro, G.M.; Pagano, L. Multi-objective optimization of finned metal foam heat sinks: Tradeoff between
heat transfer and pressure drop. Appl. Therm. Eng. 2021, 182, 116058.

29. Feng, S.S.; Kuang, J.J.; Wen, T.; Lu, T.J.; Ichimiya, K. An experimental and numerical study of finned metal foam heat sinks under
impinging air jet cooling. Int. J. Heat Mass Tran. 2014, 77, 1063–1074. [CrossRef]

30. Shi, C.; Wang, M.; Yang, J.; Liu, W.; Liu, Z. Performance analysis and multi-objective optimization for tubes partially filled with
gradient porous media. Appl. Therm. Eng. 2021, 188, 116530. [CrossRef]

31. Kan, K.; Chen, H.; Zheng, Y.; Zhou, D.; Binama, M.; Dai, J. Transient characteristics during power-off process in a shaft extension
tubular pump by using a suitable numerical model. Renew. Energy 2021, 164, 109–121. [CrossRef]

32. Kan, K.; Yang, Z.; Lyu, P.; Zheng, Y.; Shen, L. Numerical study of turbulent flow past a rotating axial-flow pump based on a
level-set immersed boundary method. Renew. Energy 2021, 168, 960–971. [CrossRef]

33. Whitaker, S. Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 1969, 61, 14–28. [CrossRef]
34. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Physics Solids 1963, 11, 357–372. [CrossRef]
35. Vafai, K.; Tien, C.L. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Tran. 1981, 24,

195–203. [CrossRef]
36. Vafai, K. Convective flow and heat transfer in variable-porosity media. J. Fluid. Mech. 1984, 147, 233–259. [CrossRef]
37. Amiri, A.; Vafai, K. Analysis of dispersion effect and non-thermal equilibrium, non-Darcian, variable porosity incompressible

flow through porous media. Int. J. Heat Mass Tran. 1994, 37, 939–954. [CrossRef]
38. Kurtbas, I.; Celik, N. Experimental investigation of forced and mixed convection heat transfer in a foam-filled horizontal

rectangular channel. Int. J. Heat Mass Tran. 2009, 52, 1313–1325. [CrossRef]
39. Hutter, C.; Büchi, D.; Zuber, V.; von Rohr, P.R. Heat transfer in metal foams and designed porous media. Chem. Eng. Sci. 2011, 66,

3806–3814. [CrossRef]
40. Celik, H.; Mobedi, M.; Manca, O.; Ozkol, U. A pore scale analysis for determination of interfacial convective heat transfer

coefficient for thin periodic porous media under mixed convection. Int. J. Num. Meth. Heat Fluid Flow. 2017, 27, 2775–2798.
[CrossRef]

41. Ataei-Dadavi, I.; Chakkingal, M.; Kenjeres, S.; Kleijn, C.R.; Tummers, M.J. Experiments on mixed convection in a vented
differentially side-heated cavity filled with a coarse porous medium. Int. J. Heat Mass Tran. 2020, 149, 119238. [CrossRef]

42. Seguin, D.; Montillet, A.; Comiti, J.; Huet, F. Experimental characterization of flow regimes in various porous media—II: Transition
to turbulent regime. Chem. Eng. Sci. 1998, 53, 3897–3909. [CrossRef]

43. Della Torre, A.; Montenegro, G.; Tabor, G.R.; Wears, M.L. CFD characterization of flow regimes inside open cell foam substrates.
Int. J. Heat Fluid Flow 2014, 50, 72–82. [CrossRef]

44. Wu, Z.; Caliot, C.; Flamant, G.; Wang, Z. Numerical simulation of convective heat transfer between air flow and ceramic foams to
optimise volumetric solar air receiver performances. Int. J. Heat Mass Tran. 2011, 54, 1527–1537. [CrossRef]

45. Della Torre, A.; Montenegro, G.; Onorati, A.; Tabor, G. CFD characterization of pressure drop and heat transfer inside porous
substrates. Energy Procedia 2015, 81, 836–845. [CrossRef]

46. Calmidi, V. Transport Phenomena in High Porosity Fibrous Metal Foams. Ph.D. Thesis, University of Colorado, Boulder,
CO, USA, 1998.

47. Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V. Natural convection in a vertical channel with open-cell foams. J. Phys. Conf. Ser.
2020, 1599, 012013. [CrossRef]

48. Iasiello, M.; Bianco, N.; Chiu, W.K.S.; Naso, V. Thermal conduction in open-cell metal foams: Anisotropy and Representative
Volume Element. Int. J. Therm. Sci. 2019, 137, 399–409. [CrossRef]

http://doi.org/10.1007/s00231-019-02700-3
http://doi.org/10.1016/j.ijthermalsci.2020.106696
http://doi.org/10.1016/j.applthermaleng.2015.11.033
http://doi.org/10.1016/j.applthermaleng.2017.02.047
http://doi.org/10.1016/j.ijheatmasstransfer.2017.03.066
http://doi.org/10.1016/j.ijheatmasstransfer.2018.01.120
http://doi.org/10.1016/j.apenergy.2017.05.165
http://doi.org/10.1016/j.ijheatmasstransfer.2015.04.016
http://doi.org/10.1016/j.applthermaleng.2018.04.066
http://doi.org/10.1016/j.ijheatmasstransfer.2014.05.053
http://doi.org/10.1016/j.applthermaleng.2020.116530
http://doi.org/10.1016/j.renene.2020.09.001
http://doi.org/10.1016/j.renene.2020.12.103
http://doi.org/10.1021/ie50720a004
http://doi.org/10.1016/0022-5096(63)90036-X
http://doi.org/10.1016/0017-9310(81)90027-2
http://doi.org/10.1017/S002211208400207X
http://doi.org/10.1016/0017-9310(94)90219-4
http://doi.org/10.1016/j.ijheatmasstransfer.2008.07.050
http://doi.org/10.1016/j.ces.2011.05.005
http://doi.org/10.1108/HFF-01-2017-0036
http://doi.org/10.1016/j.ijheatmasstransfer.2019.119238
http://doi.org/10.1016/S0009-2509(98)80003-1
http://doi.org/10.1016/j.ijheatfluidflow.2014.05.005
http://doi.org/10.1016/j.ijheatmasstransfer.2010.11.037
http://doi.org/10.1016/j.egypro.2015.12.093
http://doi.org/10.1088/1742-6596/1599/1/012013
http://doi.org/10.1016/j.ijthermalsci.2018.12.002


Materials 2022, 15, 968 21 of 21

49. Iasiello, M.; Cunsolo, S.; Bianco, N.; Chiu, W.K.S.; Naso, V. Developing thermal flow in open-cell foams. Int. J. Therm. Sci. 2017,
111, 129–137. [CrossRef]

50. Kornev, N.; Samarbakhsh, S. Large eddy simulation with direct resolution of subgrid motion using a grid free vortex particle. Int.
J. Heat Fluid Flow 2019, 75, 86–102. [CrossRef]

51. Alcântara Pereira, L.A.; Oliveira, M.A.; Moraes, P.G.; Bimbato, A.M. Numerical experiments of the flow around a bluff body with
and without roughness model near a moving wall. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 129. [CrossRef]

52. Dukhan, N.; Chen, K.C. Heat transfer measurements in metal foam subjected to constant heat flux. Exp. Therm. Fluid Sci. 2007, 32,
624–631. [CrossRef]

53. Webb, R.L.; Eckert, E.R.G. Application of rough surfaces to heat exchanger design. Int. J. Heat Mass Tran. 1972, 15, 1647–1658.
[CrossRef]

54. Kim, S.Y.; Kang, B.H.; Kim, J.H. Forced convection from aluminum foam materials in an asymmetrically heated channel. Int. J.
Heat Mass Tran. 2001, 44, 1451–1454. [CrossRef]

http://doi.org/10.1016/j.ijthermalsci.2016.08.013
http://doi.org/10.1016/j.ijheatfluidflow.2018.11.014
http://doi.org/10.1007/s40430-020-2217-6
http://doi.org/10.1016/j.expthermflusci.2007.08.004
http://doi.org/10.1016/0017-9310(72)90095-6
http://doi.org/10.1016/S0017-9310(00)00187-3

	Introduction 
	Mathematical Modeling 
	Governing Equations 
	Closure Coefficients, Boundary Conditions and Numerical Modeling 
	Optimization Procedure and Data Reduction 

	Results and Comments 
	Mono-Objective Optimization 
	Multi-Objective Optimization 

	Conclusions 
	References

