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a b s t r a c t 

Carnitine palmitoyl transferase 2 (CPT-2) is a key enzyme in the mitochondrial fatty acid metabolism. The 

active site is comprised of a Y-shaped tunnel with distinct binding sites for the substrate acylcarnitine 

and the cofactor CoA. We investigated the thermodynamics of binding of four inhibitors directed against 

either the CoA or the acylcarnitine binding sites using isothermal titration calorimetry (ITC). CPT-2 is a 

monotopic membrane protein and was solubilized by β-octylglucoside ( β-OG) above its critical micellar 

concentration (CMC) to perform inhibitor titrations in solutions containing detergent micelles. The CMC 

of β-OG in the presence of inhibitors was measured with ITC and small variations were observed. The 

inhibitors bound to rat CPT-2 (rCPT-2) with 1:1 stoichiometry and the dissociation constants were 

in the range of K D = 2–20 μM. New X-ray structures and docking models of rCPT-2 in complex with

inhibitors enable an analysis of the thermodynamic data in the context of the interaction observed for 

the individual binding sites of the ligands. For all ligands the binding enthalpy was exothermic, and 

enthalpy as well as entropy contributed to the binding reaction, with the exception of ST1326 for which 

binding was solely enthalpy-driven. The substrate analog ST1326 binds to the acylcarnitine binding site 

and a heat capacity change close to zero suggests a balance of electrostatic and hydrophobic interactions. 

An excellent correlation of the thermodynamic (ITC) and structural (X-ray crystallography, models) data 

was observed suggesting that ITC measurements provide valuable information for optimizing inhibitor 

binding in drug discovery. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical 

Societies. All rights reserved. 
. Introduction 

The carnitine palmitoyltransferase system (CPT) plays an essential 

ole in the β-oxidation of long-chain fatty acids. This transport system 

onsists of three separate proteins. Carnitine palmitoyltransferase 1 

CPT-1), located on the mitochondrial outer membrane, catalyzes the 

onversion of long-chain fatty acid-CoA esters to acylcarnitine esters 

 1 –3 ]. Carnitine acylcarnitine translocase (CACT), an integral protein 

f the mitochondrial inner membrane, facilitates the transport of the 

cylcarnitine esters from the cytosol into the mitochondrial matrix. 
� This is an open-access article distributed under the terms of the Creative Com- 

ons Attribution-NonCommercial-No Derivative Works License, which permits non- 

ommercial use, distribution, and reproduction in any medium, provided the original 

uthor and source are credited. 
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On the luminal side of the mitochondrial inner membrane carnitine 

palmitoyltransferase 2 (CPT-2) converts the carnitine esters back to 

CoA esters [ 4 ]. Once regenerated, the CoA esters can be oxidized in 

the β-oxidation pathway. Impaired activity of the CPT-enzymes due 

to inherited gene mutations is the cause of CPT-deficiency, which can 

manifest itself in various degrees of clinical severity [ 2 , 5 ]. Metabolic 

abnormalities of the CPT system may result in different human dis- 

eases such as diabetes, obesity or myocardial ischemia and the CPT 

acyl-carnitine shuttle has hence attracted attention as a target for 

therapeutic intervention [ 4 , 5 ]. 

The discovery of a novel class of sulfonamide CPT inhibitors was 

recently reported [ 6 ]. Here, we characterize for selected compounds 

the binding mode of these inhibitors in comparison to another class 

of piperidine-based CoA-site binders and also to the established CPT 

inhibitor ST1326 by calorimetric and crystallographic studies. We 

focus on interaction with full-length CPT-2 from rat that was ex- 

pressed in Escherichia coli (rCPT-2) because its crystal structure has 

been solved in contrast to CPT-1, for which no experimental structure 

of the catalytic domain is available. Solubilization and purification 
f European Biochemical Societies. All rights reserved. 

http://dx.doi.org/10.1016/j.fob.2013.04.003
http://www.elsevier.com/locate/febsopenbio
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.fob.2013.04.003&domain=pdf
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http://dx.doi.org/10.1016/j.fob.2013.04.003
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Table 1 

Molecular weights, structures, IC 50 values and binding sites for inhibitors 1–4. 

MW (Da) Structure IC 50 
a ( μM) 

rCPT-2 (binding 

site) 

Inhibitor 1 423 .5 2 .8 CoA site 

Inhibitor 2 449 .5 0 .15 CoA site 

Inhibitor 3 518 .9 0 .78 CoA site 

Inhibitor 4 

(ST1326) 

399 .6 0 .38 Acylcarnitine 

site 

a IC 50 values were measured by a spectrophotometric assay as described in Section 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the monotopic membrane protein rCPT-2 in presence of the de-

tergent β-octyl glucoside ( β-OG) yielded homogeneous and active

enzyme [ 7 , 8 ]. X-ray crytallographic data of rCPT-2 and its complex

with the substrate analog and inhibitor ST1326 showed that the ac-

tive site of the protein is located in a Y shaped tunnel and that this

tripartite tunnel comprises binding sites for acyl, carnitine and CoA

moieties [ 7 –10 ]. As rCPT-2 is not soluble in aqueous buffer without

addition of detergents, one goal of the present work was to investigate

whether isothermal titration calorimetry (ITC) can be used to quan-

titate the interactions between rCPT-2 and inhibitors in presence of

micellar detergent. We previously studied the interaction of a small

hydrophobic peptide, cynnamycin, with a phospholipid in buffer that

contains β-OG above its critical micellar concentration (CMC) and

demonstrated that the binding reaction of the hydrophobic peptide

and phospholipid could indeed be measured with ITC [ 11 , 12 ]. 

In the present study we have first investigated the influence of

four different rCPT-2 inhibitors on the CMC of β-OG. Secondly, the

binding of the inhibitors to rCPT-2 was measured with ITC in the

same micellar environment. The calorimetric titration provided the

reaction enthalpy, �H 

0 , and the dissociation constant K D , from which

the changes in free energy, �G 

0 , and entropy, �S 0 , were calculated.

For one inhibitor we also measured the change in heat capacity, �C 

0 
p ,

by performing ITC experiments at different temperatures, because

�C 

0 
p provides insight into the hydrophobic / hydrophilic balance of

inhibitor binding. Finally, we used crystal structures and docking

models of rCPT-2 with bound inhibitors for the interpretation of the

thermodynamic parameters. 

2. Materials and methods 

2.1. Protein preparation 

Full-length rCPT-2 (658 aa; MW 73.5 kDa) with an amino-terminal

His 6 -tag was expressed in E. coli as described [ 8 ]. The protein

was stored in 25 mM Tris / HCl pH 8, 150 mM NaCl, 2 mM tris-(2-

carboxylethyl)-phosphine–HCl (TCEP) supplemented with 1% (w / v)

β-OG ( ∼34 mM). Under these conditions rCPT-2 was found to be

monomeric and monodisperse, as determined by analytical ultracen-

trifugation [ 7 ]. Variation of the β-OG concentration to lower or higher

values caused protein aggregation or competitive binding of β-OG to

the acylcanitine site of rCPT-2, respectively. This precluded a titration

of the detergent and extrapolation of the binding data to zero β-OG

concentration. 

2.2. Inhibitors 

The structures of inhibitors 1–4 are given in Table 1 . Details about

the synthesis, structure–activity relationship (SAR) and pharmacol-

ogy of these compounds are reported in [ 6 ]. 
2.3. Dependency of β-OG critical micellar concentration (CMC) on 

inhibitor concentration 

For ITC experiments the inhibitors were first dissolved in

dimethylsulfoxide (DMSO) at a concentration of 10 mM and aliquots

of the stock solutions were diluted into the measurement buffer to a

final concentration of 100 μM in the presence of 1% DMSO (v / v). Demi-

cellization experiments of β-OG with and without co-dissolved in-
hibitor were performed with either Omega-ITC or VP-ITC instruments

(MicroCal / GE Healthcare, Northampton, MA, USA) using 300 mM β-
OG solution containing 1% (v / v) or 7.5% (v / v) DMSO and inhibitors 1–4

at concentrations of 0.75 mM. The solutions were freshly prepared in
25 mM Tris / HCl pH 8, 150 mM NaCl, 2 mM TCEP and were degassed

under vacuum for 10 min. The syringe was filled with the micellar β-

OG solution and 8 μL aliquots were injected into the calorimeter cell
( V cell = 1.4037 ml) containing buffer. During the first few injections

the micelles disintegrated completely. The heats of demicellization,

δh i , were recorded and the initial constant δh i ’s were used to calculate
the heat of demicellization, �H 

0 
demic . The heat of micelle formation

had the opposite sign, i.e., �H 

0 
mic = −�H 

0 
demic . Depending on tem-

perature, 20–30 injections were needed until the CMC of 23–35 mM
was reached in the calorimeter cell and the heat of demicellization

approached zero. The demicellization curves were simulated with a

cooperative association model [ 13 ]. The critical micellar concentra-

tion (CMC) was defined as the midpoint of the titration curve [ 14 , 15 ].
The free energy of micellization followed from 

�G  

0 
mic = RT ln CMC (1)

where RT is the thermal energy and the CMC is expressed in molar

units. 

2.4. Isothermal titration calorimetry (ITC) of inhibitor binding 

Binding experiments of rCPT-2 with inhibitors were performed

with a VP-ITC calorimeter ( V cell = 1.4037 ml; MicroCal / GE Healthcare,

Northampton, MA, USA). rCPT-2 was diluted to 10 μM final concen-

tration in 25 mM Tris / HCl pH 8, 150 mM NaCl, 2 mM TCEP, 1% (w / v)

β-OG. In order to avoid problems with signal stability during ITC mea-

surements DMSO was also added to the protein solution in the cell at

a final concentration of 1% (v / v). The inhibitor solution (ca. 100 μM in

buffer with 1% (v / v) DMSO and 1% (w / v) β-OG) was injected in 10 μL

steps into a 10 μM rCPT-2 solution in identical buffer. The enthalpy of

reaction, �H 

0 , the binding constant, K , and the stoichiometry value,

n , were calculated from the measured heat changes, δH i , upon asso-

ciation of the inhibitor with the rCPT-2 target protein. To examine

proton transfer upon binding, titrations with inhibitor 3 were per-

formed in buffers (pH 8) of different ionization enthalpies: HEPES /

NaOH ( �H diss = 3.92 kcal / mol), Bicine / HCl ( �H diss = 6.27 kcal / mol),

Tris / HCl ( �H diss = 11.52 kcal / mol). 

2.5. Measurements of protein stability by thermal unfolding 

Differential scanning calorimetry (DSC) measurements for char-

acterization of thermal protein denaturation were performed on a

MicroCal VP-DSC calorimeter ( V cell = 0.517; MicroCal / GE Healthcare,

Northampton, MA, USA). A scan rate of 30 ◦C / h was used. The protein

concentration was 14 μM ( ± 100 μM inhibitor 4) in 25 mM HEPES /

NaOH pH 8.0, 150 mM NaCl, 2 mM TCEP and 30 mM β-OG. The refer-

ence compartment contained buffer only. A blank measurement with

buffer in both compartments was used as baseline. Protein and buffer

solutions were degassed to avoid formation of air bubbles. 

2.6. Fluorescence quenching experiments 

Fluorescence measurements were performed at 20 ◦C with an

SLM-Aminco 8100 double-grating spectrofluorometer. The protein

concentration was 2 μM in 25 mM Tris / HCl pH 8, 150 mM NaCl, TCEP
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nd 1% (w / v) β-OG. The excitation wavelength was 280 nm and pro- 

ein tryptophan fluorescence was recorded at 340 nm. Small aliquots 

f known concentration of inhibitors, dissolved in DMSO, were added 

o the protein solution and each time the fluorescence intensity was 

easured. These fluorescence intensities were corrected for dilution 

nd ligand absorbance [ 16 ], plotted against ligand concentration and 

tted for K D with a single site model as described [ 17 ]. 

.7. Activity assay 

The activity of rCPT-2 (crude lysate from Pichia pastoris expression 

ith 30 nM enzyme concentration) was measured at 30 ◦C for the re- 

erse reaction with a spectrophotometric assay by using 5-5 ′ -dithio- 

is-(2-nitrobenzoic acid), DTNB [ 18 , 19 ]. The HS-CoA released on the 

ormation of acylcarnitine from carnitine (500 μM) and palmitoyl- 

oA (80 μM) reacted with DTNB (300 mM). The resulting 5-mercapto- 

2-nitrobenzoic acid) absorbs at 410 nm with a molar extinction coef- 

cient of 13,600 M 

−1 cm 

−1 . The assay buffer contained 25 mM Tris–

Cl pH 7.4, 120 mM KCl and 1 mM EDTA (and no additional β-OG). 

nhibitors 1–4 were titrated from 10 mM DMSO stock solutions. The 

nzyme activity was not measured in the presence of 1% (w / v) β-OG 

ecause in one of the crystal structures a β-OG molecule was bound to 

he acylcarnitine site (see Supplementary data ). β-OG was identified 

s competitive inhibitor of rCPT-2: with octanoyl-CoA as substrate 

-OG had a K i of 15 mM, which is half the CMC of β-OG [ 19 , 20 ]. In

ddition, Johnson et al. observed “abnormal non-saturation kinetics 

ith respect to palmitoyl-CoA” (presumably due to self-association 

f palmitoyl-CoA at high concentrations) [ 21 ]. These observations led 

s to refrain from determining K i values for inhibitors 1–4. 

.8. X-ray crystallography 

rCPT-2 at 12–18 mg / ml was incubated with a 10-fold molar excess 

f inhibitors (surrogate for inhibitors 1 and 2: [( R )-2-(3,4-dihydro-1H- 

soquinoline-2-carbonyl)-peridin-1-yl]-2-phenoxy-ethanone; surro- 

ates for inhibitor 3: 4- { [1-(5-Chloro-2-methoxy-benzenesulfonyl)- 

-methyl-2,3-dihydro-1H-indole-6-carbonyl]-amino } -benzoic acid 

nd 2-chloro-4- { [1-(5-chloro-2-methoxy-benzenesulfonyl)-4- 

ethyl-2,3-dihydro-1H-indole-6-carbonyl]-amino } -benzoic acid; 

ee Supplementary Data ) and subsequently co-crystallized by vapor 

iffusion. Crystals for the surrogate of inhibitors 1 and 2 were 

btained with 0.1 M bis–Tris pH 6.5, 20% (w / v) PEG–MME 5000 

Index 46, Hampton Research) and 0.05 M magnesium chloride, 0.1 M 

EPES pH 7.5, 30% (v / v) PEGMME 550 (Index 55, Hampton Research) 

nd 0.15 M DL-malic acid pH 7.0, 20% (w / v) PEG 3,350 (Index 91, 

ampton Research); PEG 200 was used in the cryo-buffer. Crystals for 

he surrogates of inhibitors 3 were obtained with 0.2 M ammonium 

ulfate, 0.1 M TRIS / HCl pH 8.5 and 25% (w / v) PEG 3350 (Index 69, 

ampton Research) and 0.2 M lithium sulfate, 0.1 M HEPES pH 7.5, 

5% (w / v) PEG 3,350 (Index 76, Hampton Research). These crystals 

ere flash frozen in liquid nitrogen after exchanging excess mother 

iquor against 100% (v / v) paraffin oil. Crystals with inhibitor 4 were 

btained as described [ 8 ]. Data were collected at 100 K at beamline 

10SA of SLS, Villigen, Switzerland, and the crystal structures were 

olved as described [ 7 , 8 ]. 

.9. Binding mode investigation through manual docking of ligands 

Manual modeling and energy minimization of inhibitors 1 and 2 

as carried out with the modeling package Moloc (Gerber Molecu- 

ar Design, Basel, Switzerland). The phenoxy moiety of inhibitors 1 

nd 2 was matched on the phenoxy part of complex structure PDB: 

EYW (inhibitor 1-[( R )-2-(3,4-dihydro-1H-isoquinoline-2-carbonyl)- 

iperidin-1-yl]-2-phenoxy-ethanone, see Supplementary Data ). As in 

he X-ray complex structure, the phenoxyacetamid part of inhibitors 

 and 2 was modeled in a fully planar conformation to the binding 
tunnel. This is a low energy conformation and in agreement with 

conformational analysis of phenoxyacetyls found in the CSD [ 22 ]. In 

this conformation and orientation in the binding tunnel the phenoxy- 

acetyl carbonyle oxygen is able to form a hydrogen bond to a backbone 

N–H of Ser490. Flexibility of inhibitors 1 and 2 is limited due the num- 

ber of ring systems and sp2-centers. This restriction only allows for 

a conformation where the terminal piperidine / piperazine including 

fragments bind to an exposed binding pocket. After energy minimiza- 

tion of the ligand with constrained protein atoms the ligands were in 

an overall low energy conformation with good interactions (hydrogen 

bonding, VdW) to protein atoms. 

3. Results 

3.1. Thermodynamics of micelle formation 

The chemical structure of the inhibitors investigated is given in 

Table 1 . Fig. 1 summarizes the influence of DMSO and inhibitors 1–4 

on the critical micellar concentration (CMC) of β-OG. Fig. 1 A displays 

the critical CMC of β-OG in buffer with and without addition of DMSO 

as a function of temperature. The data in absence of DMSO are very 

similar to those of previous reports [ 15 , 23 ]. Addition of 1% (v / v) DMSO

shifts the CMC to higher values by about 2–3 mM, and increasing the 

concentration of DMSO to 7.5% (v / v) has an even larger effect with a 6–

8 mM increase of the CMC. The addition of DMSO shields hydrophobic 

interactions of detergent molecules and thus makes micelle formation 

more difficult, which results in an increase of the CMC. 

Fig. 1 B compares micelle formation upon addition of inhibitors 

1–4. The starting solution of the demicellization experiment was typ- 

ically 300 mM β-OG with 0.75 mM inhibitor and 7.5% (v / v) DMSO. 

Diluting this solution to 40 mM β-OG produces an inhibitor concen- 

tration of 100 μM. This corresponds approximately to the standard 

solution used in the protein binding experiments. Inspection of Fig. 

1 B reveals different inhibitor effects on the CMC. The presence of in- 

hibitor 3 has no effect on the CMC of β-OG when compared to β-OG 

alone. Inhibitors 2 and 4 slightly increase the CMC of β-OG. In contrast, 

inhibitor 1 reverses completely the effect of 7.5% DMSO and the CMC 

becomes close to that of pure β-OG without DMSO. The only differ- 

ence between inhibitors 1 and 2 is the polar nitro-group of inhibitor 

1, which could have a specific interaction with DMSO. 

Fig. 1 C summarizes the temperature dependence of the enthalpy 

of micelle formation, �H 

0 
mic . From the slopes of the linear fits the 

molar heat capacity change of micelle formation can be calculated 

as �C 

0 
p = −60 to −90 cal / mol K, which is typical for a hydrophobic 

aggregation reaction of molecules of the size of β-OG. Van’t Hoff’s 

law was used to calculate the temperature dependence of the CMC 

as shown by the solid lines in Fig. 1 A and B. All thermodynamic data 

are summarized in Table 2 . As a general conclusion it follows that the 

addition of DMSO or inhibitors 1–4 has a small influence on the CMC 

of β-OG but does not induce significant changes of micelle structure 

or micelle–solvent interactions. 

3.2. Inhibitor binding to rCPT-2 measured by isothermal titration 

calorimetry 

Inhibitors were dissolved in micellar β-OG at concentrations of 

100–300 μM and were titrated into 10 μM rCPT-2. A typical titration 

experiment is shown in Fig. 2 A. After an initial exothermic reaction 

the heats of reaction reached a constant value. The heat flows were 

integrated to yield the heats of reaction, δh i , ( Fig. 2 B). The heat of dilu- 

tion towards the end of the reaction was subtracted before evaluating 

the data. The solid line in Fig. 2 B corresponds to a binding model with 

a 1:1 stoichiometry and was calculated with �H 

0 = −4.7 kcal / mol and 

a binding constant K = 8 × 10 5 M 

−1 . 

Table 3 summarizes the thermodynamic data derived from ITC 

measurements. The dissociation constants K D = 1 / K determined by 

http://www.rcsb.org/pdb/explore.do?structureId=4EYW
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Table 2 

Effect of inhibitors 1–4 on micelle formation of β-OG (values measured in absence of rCPT-2). 

Temp. ( ◦C) CMC (mM) �H 0 mic (kcal / mol) �G 

0 
mic (kcal / mol) T �S 0 mic (kcal / mol) 

β-OG + no inhibitor 

14 32.8 1 .33 −1.94 3.27 

30 27.8 0 .60 −2.15 2.75 

37 28.6 0 .16 −2.18 2.34 

45 – −0 .54 – –

β-OG + inhibitor 1 

14 24.1 1 .24 −2.12 3.36 

25 23.3 0 .30 −2.22 2.51 

37 24.1 −0 .88 −2.29 1.40 

β-OG + inhibitor 2 

14 34.5 1 .03 −1.91 2.94 

45 33.3 −0 .74 −2.14 1.40 

β-OG + inhibitor 3 

14 32.3 1 .28 −1.95 3.23 

45 29.0 −0 .59 −2.23 1.64 

β-OG + inhibitor 4 

14 35.1 2 .36 −1.90 3.26 

25 31.3 0 .88 −2.04 2.92 

30 31.0 0 .57 −2.08 2.66 

45 31.0 −0 .45 −2.19 1.74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ITC are supported by the results of fluorescence titrations, which

yielded similar affinities for inhibitors 1–3. The binding reactions of

all four inhibitors followed a 1:1 stoichiometry. Inhibitors 1, 2 and 4

showed exothermic reaction enthalpies in Tris / HCl pH 8 buffer while

the reaction of inhibitor 3 was endothermic under the same condi-

tions. 

The interaction of inhibitors 1 and 2, which according to our mod-

els bind to the CoA-site of rCPT-2 ( Fig. 3 ), was driven to almost equal

extent by enthalpy and entropy. Inhibitor 4 to binds to the acylcarni-

tine binding site of rCPT-2 and this interaction was enthalpy driven.

The entropy term even counteracted the binding because the con-

formational flexibility of the acyl-moiety is frozen upon binding. For

inhibitor 3, which – according to our crystal structures and docking

models – binds to the CoA binding site but with a different bind-

ing mode than inhibitors 1 and 2, binding to rCPT-2 appeared to be

purely entropy-driven in Tris / HCl pH 8.0. Among the tested com-

pounds inhibitor 3 was the only molecule which carried a carboxylic

acid group. Inspection of the crystal structure of rCPT-2 in complex

with inhibitor 3 shows the carboxy-group at a distance of ∼2.8 ̊A from

the side chain of the catalytic His372 ( Fig. 3 ), suggesting that the

endothermic �H could have been caused by a proton transfer (see

paragraph on protonation reaction below). This is supported by our

observation that a change to buffers with different dissociation en-

thalpies led to exothermic binding reactions for this compound. 

3.3. Protonation reaction 

Inhibitor 3 carries a carboxylic acid group with a calculated pK a

= 3.5 [ 24 , 25 ], which is deprotonated in the Tris / HCl pH 8 buffer. To in-

vestigate whether proton transfer can occur between the carboxylic

acid group and the catalytic His372, we have measured the bind-

ing of inhibitor 3 to rCPT-2 at pH 8 in buffers with different disso-

ciation enthalpies (25 mM HEPES / NaOH, �H diss = 3.92 and 25 mM

Bicine / NaOH, �H diss = 6.28). The measured reaction enthalpy, �H obs ,

is composed of the intrinsic binding enthalpy, �H 1 , of inhibitor 3 to

rCPT-2 plus the additional enthalpies of inhibitor protonation, �H 2 ,

and buffer dissociation, �H diss . 

�H obs = �H 1 + n ( �H di s s − �H 2 ) (2)

where n is the number of protons transferred from buffer to inhibitor.

In Fig. 4 the measured �H obs is plotted versus the dissociation en-

thalpies of 3 different buffers. A straight line with n = 0.83 ± 0.17 is

obtained, indicating that the binding of inhibitor 3 to rCPT-2 induces
a protonation of inhibitor 3 by 0.8 H 

+ . The intercept with the ordi-

nate is �H 1 – n �H 2 = −7.14 kcal / mol. As the dissociation enthalpy of

acetic acid is �H 2 = −0.1 kcal / mol [ 26 ] and assuming the same value

for the carboxylate group of inhibitor 3 we find an intrinsic binding

enthalpy of �H 1 = −7.8 ± 1.3 kcal / mol for inhibitor 3. The binding

of inhibitor 3 to the CoA site is thus driven by a change in enthalpy,

suggesting strong van-der-Waals interactions. 

3.4. Protein stability and ligand binding 

We used differential scanning calorimetry (DSC) to investigate to

which extent ligand binding could stabilize the protein structure. We

measured the thermal unfolding of rCPT-2 both in absence and pres-

ence of inhibitor 4 ( Fig. 5 ). In both experiments a plot of C 

0 
p versus

temperature showed a broad, asymmetric transition, extending from

30 to 55 ◦C. The midpoints of the transition were at 47.2 ◦C for the

pure protein and at 49.8 ◦C for rCPT-2 bound with inhibitor 4. The

midpoint of unfolding as seen by DSC for the protein without in-

hibitor is in good agreement with a fluorescent-based thermal shift

assay and circular dichroism spectroscopy which determined melting

points as T m 

= 47.6 ◦C and 47.0 ◦C, respectively [ 7 ]. The integration of

the C 

0 
p versus temperature curve in the interval 30–55 ◦C yields a total

unfolding enthalpy of 970 kcal / mol for the protein without inhibitor

and 1270 kcal / mol for the protein in excess of inhibitor 4. The rCPT-

2 unfolding does not follow a simple N(ative) �U(nfolded) 2-state

transition. Nevertheless, it can be estimated that the observed stabil-

ity increases of ∼3 ◦C together with the measured �H -values leads to

a binding constant in broad agreement with that observed by ITC. 

4. Discussion 

rCPT-2 is a 658 amino acid peripheral membrane protein which is

located at the matrix side of the inner mitochondrial membrane. It be-

longs to a class of enzymes where both hydrophobic and hydrophilic

interactions are important. Potential mechanisms to overcome the

phospholipid / water boundaries have been reviewed [ 27 ]. Based on

the crystal structure of rCPT-2 it was suggested that two helices with

hydrophobic residues are submerged by 4–5 Å into the core of the

membrane [ 7 ]. The present study explored the potential to perform

thermodynamic binding studies in the micellar detergent environ-

ment necessary for solubilization of active rCPT-2. It was expected

that hydrophobic interactions were reduced in a non-polar environ-

ment whereas electrostatic interactions were increased due to the
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Table 3 

Results of A , ITC and B , fluorescence as well as activity measurements for inhibitors 1–4. See Section 2 for IC 50 and minimum / maximum K i values. 

A 

Inhibitor T ( ◦C) K D ( μM) �G 0 (kcal / mol) �H 0 (kcal / mol) T �S 0 (kcal / mol) Comment 

1 10 1.6 ± 0.4 −7.5 ± 0.1 −3.9 ± 0.9 3.7 ± 0.8 Average ± SEM of two 

replicates 

17 6.6 −6.8 −1.6 5.2 –

2 10 2.0 −7.4 −3.0 4.4 –

17 2.0 −7.5 −5 5.0 –

3 10 5.0 −6.8 −5.0 1.8 25 mM HEPES / NaOH pH 

8 

( �H diss = 3.92 kcal / mol) 

10 5.0 −6.8 −1.8 5.0 25 mM Bicine / NaOH pH 

8 

( �H diss = 6.28 kcal / mol) 

10 3.3 −7.1 1.6 8.7 �C 0 P = 69 cal mol −1 K −1 

17 3.5 −7.2 2.2 9.4 

25 2.9 −7.5 2.6 10.1 

37 5.0 −7.5 3.5 11 

4 10 10.5 ± 3.3 −6.5 ± 0.3 −9.8 ± 0.7 −3.3 ± 0.5 Average ± SEM of three 

replicates 

37 20.0 −5.9 −9.5 −3.7 –

B 

Inhibitor K D ( μM) IC 50 ( μM) 

Fluorescence (20 ◦C) Diluted lysate 

(30 ◦C) 

1 16.2 2.8 

2 15.5 0.15 

3 5.2 0.78 

4 n.d. 0.38 
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ower dielectric constant of the solvent. So far, there is only limited 

alorimetric data available for ligands binding to detergent solubilized 

embrane proteins [ 28 , 29 ], or the interaction of small molecules or 

eptides with phospholipids [ 11 , 12 ]. 

Fig. 3 shows the superposition of inhibitors 1–4 (or analogs thereof, 

ee Supplementary Data ) on the rCPT-2 active site. Inhibitors 1–3 bind 

o the CoA binding site, while inhibitor 4 (ST1326) binds to the acyl- 

arnitine site. Two different modes of interaction were found for CoA 

ite binders. The piperidine derivatives (inhibitors 1 and 2) inter- 

ct with residues of β-strand 13 (Ser490) and a pocket created by 

he subsequent loop (Ala492, Ala493) and β-strand 2 (Phe176). In- 

ibitor 3 of the sulfonamide class interacts directly with the catalytic 

is372 via its carboxy-group as well as with residues of the loop 

hat connects β-strands 15 and 16 (Thr 591, Leu 592, Asn 593). In 

he presence of inhibitors of the sulfonamide class the peptide bond 

etween Asp376 and Gly377 adopts a conformation such that the 

mide nitrogen atom of Gly377 points towards the carboxyl-group 

f the inhibitors. Thereby a hydrogen-bond network between the 

atalytic loop (Glu371–Gly377) and the inhibitor is established, for 

hich direct evidence is provided by the protonation of the inhibitor 

arboxy-group observed in the ITC experiments. We have previously 

ecognized the peptide flip between residues Asp376 and Gly377 and 

ts potential utilization as anchor-point for CPT inhibitors targeted 

gainst the CoA site [ 7 ]. With inhibitor 3 of the sulfonamide class of 

PT-2 inhibitors we provide a first example. In the case of inhibitor 

, the C14 alkyl-chain occupies an essentially hydrophobic tunnel 

panning from the active site of the protein to its surface [ 7 ], while 

he hydrophilic carnitine head-group is bound in a hydrogen network 

omprising residues of the catalytic loop, α-helix 5 (Tyr120) and β- 

trands 15 and 16 and an additional cation- π interaction with Phe602. 

he reduction of the conformational flexibility of the alkyl-chain and 

he formation of the hydrogen network upon binding of ST1326 to 

CPT-2 explains both the negative entropy and the large exothermic 

nthalpy of the binding reaction observed in ITC experiments. 

In the present study we investigated which thermodynamic forces 

overn the interaction between rCPT-2 and its substrates. Isothermal 

itration calorimetry measures the reaction enthalpy, �H 

0 , but also 
provides the dissociation constant K D from the shape of the titration 

curve. The dissociation constants determined by ITC are in the range 

of 2 μM (inhibitor 1) to 20 μM (inhibitor 4) and values of the same 

order of magnitude were measured with fluorescence titrations. The 

differences in K D values between ITC and fluorescence spectroscopy 

must be attributed to the different assay conditions. In addition, β-OG 

can bind to the acylcarnitine binding site of rCPT-2 and inhibit its ac- 

tivity (see Section 2 and Supplementary data ). When compared to the 

ITC experiments, lower protein concentrations have to be used and 

the inhibitors are added from DMSO stock solutions for our standard 

fluorescence spectroscopy protocol. A lower ratio of rCPT-2 to β-OG 

and thus a higher fraction of β-OG micelles without rCPT-2 inser- 

tion could reduce the apparent affinity of the inhibitors for rCPT-2 in 

the fluorescence titrations, especially with regard to partition of in- 

hibitors 1 and 2 into β-OG micelles ( Fig. 1 , Table 2 ). Along these lines, 

the similar K D values of the ITC and fluorescence titration results in 

the case of inhibitor 3 agrees with the observation that inhibitor 3 

had no effect on the CMC of β-OG. 

In contrast to the binding assays the enzymatic activity measure- 

ments were made with diluted rCPT-2 extracts without additional 

detergent and, thus, the hydrophobic solvent effects were strong. The 

non-polar reaction partners were hydrated and water molecules were 

released upon binding, leading to a strong positive entropy contribu- 

tion to binding. In contrast, 1% (w / v) β-OG was used in the ITC ex- 

periments and consequently rCPT-2 and the inhibitors were already 

embedded in a hydrophobic, micellar environment and the molecules 

were hydrated to lesser extent. The hydrophobic effect was accord- 

ingly reduced. The solvent effect was particularly pronounced for 

inhibitor 4 which carries a C14 aliphatic chain. In the aqueous phase 

the hydrophobic effect of this residue was dominant, whereas the 

hydrophobic effect was essentially eliminated in the presence of mi- 

cellar β-OG and the entropy contribution became negative. 

As mentioned in Section 1 , the binding of cynnamycin, a 19 aa 

tetra-cyclic peptide, to phospholipids with the phosphoethanolamine 

(PE) headgroup was compared in water and in micellar phase [ 11 , 12 ]. 

The free energy of binding, �G 

0 , was by 1–2.5 kcal / mol less negative 

in β-OG micelles than in the aqueous phase. The binding constants of 
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Fig. 1. Critical micellar concentration (CMC) of β-octyl glucoside ( β-OG) in the pres- 

ence of DMSO and rCPT-2 inhibitors 1–4. (A) Influence of DMSO on CMC of β-OG in 

absence of inhibitors. ( �) β-OG without DMSO, ( � ) β-OG + 1% (v / v) DMSO, ( •) β-OG 

+ 7.5% (v / v) DMSO. (B) Influence of 7.5% (v / v) DMSO on CMC of β-OG in presence of 

inhibitors. The inhibitor concentration at the CMC varies between ca. 70–100 μM. ( •) 

β-OG only, ( � ) β-OG + inhibitor 1, ( � ) β-OG + inhibitor 2, ( � ) β-OG + inhibitor 3, 

( �) β-OG + inhibitor 4. (C) Enthalpy of micelle formation as a function of temperature. 

( •) β-OG, ( � ) β-OG + inhibitor 1, ( � ) β-OG + inhibitor 2 ( � ) β-OG + inhibitor 3, ( �) 

β-OG + inhibitor 4. 

 

 

Fig. 2. Calorimetric titration of rCPT-2 with inhibitor 1 at 10 ◦C. The inhibitor (140 μM) 

was injected with 25 steps of 10 μl into the calorimetric sample cell containing 11 μM 

of rCPT-2. (A) Heat flow as a function of time. (B) Reaction enthalpy, δh i , of inhibitor 1 

versus injection number. The solid line corresponds to the theoretical model assuming 

a 1:1 binding stoichiometry, a reaction enthalpy of �H 0 = −4.7 kcal / mol and a binding 

constant of K = 8 × 10 5 M 

−1 . Buffer composition: 25 mM Tris / HCl pH 8, 150 mM NaCl, 

2 mM TCEP, 1% (w / v) β-OG, 1% (v / v) DMSO. 

Fig. 3. Structures of rCPT-2 with bound inhibitors 1–4 as determined by X-ray crys- 

tallography and computational modeling. (A) Superposition of crystallographic and 

modeled structures of complexes of rCPT-2 with inhibitors 1 and 2 (blue and yellow, 

respectively, both modeled based on the crystal structure of a related piperidine class 

inhibitor, see Supplementary Data ), the two isosteric surrogates of inhibitor 3 (cyan 

and green) and inhibitor 4 (ST1326, magenta). The solvent accessible surface of the 

carboxy-terminal domain of rCPT-2 (off-white, L441-I656) is shown with hydrophobic 

residues depicted in green and polar residues shown in orange. The amino terminal 

domain was removed for clarity. (B) Detail of the complex structure of rCPT-2 (green) 

with a surrogate of inhibitor 3 (cyan) that shows the interaction of the benzoic acid 

head group of this inhibitor class with the catalytic residue His372. The minimum 

distance is 2.8 Å. The final 2FoFc electron density of the structure is shown as gray 

mesh. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

the PE–cinnamycin complex were thus 10–100 times smaller in the

β-OG environment [ 12 ] supporting the above conclusion of reduced

hydrophobic interactions in the presence of β-OG. 
Electrostatic interactions are increased in a non-polar micellar en-

vironment because of the lower dielectric constant. Charge neutral-

ization reactions are then characterized by substantial positive heat

capacity changes, �C 

0 
p [ 30 ]. Electrostatic effects were revealed by the

temperature dependence of the reaction enthalpy, �H 

0 . Inhibitor 3

in Tris / HCl pH 8 buffer showed a linear dependence on temperature

with a positive molar heat capacity change of �C 

0 
p = 69 cal / mol K
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Fig. 4. Proton transfer upon binding of inhibitor 3. The measured binding en- 

thalpy for the interaction of inhibitor 3 with rCPT-2, �H obs , is plotted ver- 

sus the ionization enthalpies of different buffers. Measurements were made in 

HEPES / NaOH ( �H diss = 3.9 kcal / mol), Bicine / NaOH ( �H diss = 6.3 kcal / mol) and Tris / 

HCl ( �H diss = 11.5 kcal / mol) at pH 8 and 10 ◦C. The solid line is the linear regression 

analysis of the data. 

Fig. 5. Experimental DSC scans on rCPT-2 with and without inhibitor 4. Black line: 

rCPT-2, no inhibitor, Red line: rCPT-2 in the presence of inhibitor 4. rCPT-2 concen- 

tration 14 μM, inhibitor 4 concentration 100 μM; buffer conditions as in Fig. 2 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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 Table 3 ). For the other inhibitors only two temperatures were mea- 

ured. The �C 

0 
p values ranged from 314 cal / molK of inhibitor 1 to 

nly 11 cal / mol K of inhibitor 4. The very small �C 

0 
p of inhibitor 4 

ndicates that electrostatic interactions ( �C 

0 
p > 0) were almost com- 

letely compensated by hydrophobic interactions ( �C 

0 
p < 0). 

Table 3 contains the enthalpic and entropic components to the 

ree energy change, �G 

0 . For inhibitors 1 and 2 enthalpy and en- 

ropy contribute to equal extent to the binding affinity. For inhibitor 

 the free energy is exclusively enthalpic and the entropy term close 

o zero if the protonation reaction is neglected. The binding of in- 

ibitor 4 is also enthalpy-driven and shows the most negative �H 

0 

f ∼−10 kcal / mol while the entropy is even counteracting binding. 

evertheless, the binding constants and the free energies of bind- 

ng of the 4 inhibitors are rather similar in spite of quite different 

ontributions of �H 

0 and T �S 0 . The binding of the four inhibitors is 

hus another example of the enthalpy–entropy compensation effect. 

he interpretation of �H 

0 and T �S 0 in terms of molecular structures 

s difficult, but it is common to associate �H 

0 with van-der-Waals 
and electrostatic interactions. However, as these are increased, the 

molecular structure of the ligand–protein complex rigidifies and the 

loss in conformational freedom produces a negative T �S 0 term which 

reduces the gain in enthalpy. 

In summary, measuring the ligand affinities with ITC has added 

valuable information on binding modes that can be reconciled with 

the crystallographic data and docking models. However, the absolute 

values for binding constants from orthogonal binding assays need to 

be evaluated regarding the sample composition that is required for 

each of the methods. 

The micromolar K D -values of inhibitors 1–4 are not sufficient for 

pharmaceutical purposes and should be reduced to the nanomolar 

range to increase the potency of the compounds. The challenge there- 

fore is to optimize both �H 

0 and T �S 0 . Calorimetric measurements 

will be helpful in verifying different synthetic concepts. 
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