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Abstract
Purpose  Although renal failure is a major healthcare burden globally and the cornerstone for preventing its irreversible pro-
gression is an early diagnosis, an adequate and noninvasive tool to screen renal impairment (RI) reliably and economically 
does not exist. We developed an interpretable deep learning model (DLM) using electrocardiography (ECG) and validated 
its performance.
Methods  This retrospective cohort study included two hospitals. We included 115,361 patients who had at least one ECG 
taken with an estimated glomerular filtration rate measurement within 30 min of the index ECG. A DLM was developed 
using 96,549 ECGs of 55,222 patients. The internal validation included 22,949 ECGs of 22,949 patients. Furthermore, we 
conducted an external validation with 37,190 ECGs of 37,190 patients from another hospital. The endpoint was to detect a 
moderate to severe RI (estimated glomerular filtration rate < 45 ml/min/1.73m2).
Results  The area under the receiver operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting 
RI during the internal and external validation was 0.858 (95% confidence interval 0.851–0.866) and 0.906 (0.900–0.912), 
respectively. In the initial evaluation of 25,536 individuals without RI patients whose DLM was defined as having a higher 
risk had a significantly higher chance of developing RI than those in the low-risk group (17.2% vs. 2.4%, p < 0.001). The 
sensitivity map indicated that the DLM focused on the QRS complex and T-wave for detecting RI.
Conclusion  The DLM demonstrated high performance for RI detection and prediction using 12-, 6-, single-lead ECGs.

Keywords  Renal insufficiency · Deep learning · Electrocardiography · Artificial intelligence
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DLM	� Deep learning model
ECG	� Electrocardiography
eGFR	� Estimated glomerular filtration rate
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NPV	� Negative predictive value
PPV	� Positive predictive value
RI	� Renal impairment
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Introduction

Renal impairment (RI), including chronic kidney disease and 
acute kidney injury, is an important contributor to morbid-
ity and mortality. Globally, in 2017, over 1.2 million people 
died from RI [1]. The treatment cost for RI increases with 
the availability of renal replacement techniques, resulting 
in a life-saving but expensive treatment in the long term 
for patients with end-stage kidney disease [1]. The num-
ber of people currently receiving renal replacement therapy 
exceeds 2.5 million and is projected to double to approxi-
mately 5.4 million by 2030 [2]. RI is emerging as a major 
healthcare burden worldwide, and 2.3–7.1 million adults die 
from a lack of access to renal replacement therapy [2]. The 
cornerstone to prevent irreversible progression of RI and ini-
tiate appropriate treatment is the early detection of RI [3, 4].

However, most cases of mild kidney function decline 
are asymptomatic, and the symptoms for the progression 
of the disease are vague and nonspecific [5]. A diagnostic 
test for renal failure includes a laboratory examination to 
measure the creatinine and blood urea nitrogen and calcu-
late the glomerular filtration rate [6]. Laboratory tests are 
invasive, expensive, and require specialized equipment and 
infrastructure, such as trained medical staff for blood sam-
pling and a hematologic analysis machine for assessment 
with biochemical reagents. Therefore, detecting RI in daily 
living is impossible, and screening for RI is difficult in low-
income countries [7].

RI is associated with electrolyte imbalance, volume over-
load, and hypertension and also affects cardiac function 
[8–10]. RI is a known cause of diastolic dysfunction, left 
ventricular hypertrophy, arrhythmia, and heart failure and 
is associated with increased cardiovascular mortality [11, 
12]. In several studies, RI was shown to change the morphol-
ogy of an electrocardiogram (ECG), and researchers sug-
gested that the alteration of cardiac function and electrolyte 
imbalance affects an ECG [13–15]. However, it is not easy 
to detect such subtle and non-linear ECG changes; hence, 
the current state of the ECG is not useful for detecting RI. 
Screening and detecting RI with an ECG would be useful 
because patients suspected to have RI could be referred for 
confirmatory laboratory tests.

In this study, we aimed to develop and validate a deep 
learning-based artificial intelligence model (DLM) for 
detecting RI using ECG. Deep learning has previously 
been used in the medical field to identify lesions and is 
currently used to analyze ECGs to diagnose heart failure, 
valvular heart disease, anemia, and coronary artery dis-
ease [16–24]. We hypothesized that a DLM could effec-
tively screen for RI.

Methods

Study design and population

We conducted a retrospective, multicenter, diagnos-
tic study in which a DLM was developed using ECGs, 
and then, it was internally and externally validated. We 
excluded individuals with missing demographic, ECG, 
and laboratory examination information. Data from Sejong 
General Hospital (SGH) were used for development and 
internal validation. In SGH, we identified patients with at 
least one standard digital 10-s 12-lead ECG acquired in 
the supine position within the study period (October 1, 
2016 to August 31, 2020) and at least one renal labora-
tory panel for serum creatinine and blood urea nitrogen 
obtained within 30 min of the index ECG. The individu-
als who visited SGH for inpatient, outpatient, emergency, 
and health checkup clinic were the study population for 
the development and internal validation datasets of the 
DLM. As shown in Supplementary Figure S1, patients 
who underwent a follow-up laboratory examination after 
an initial evaluation were assigned to an internal valida-
tion dataset. Patients who had no follow-up laboratory 
exam were assigned to a development dataset that was 
used to develop the DLM. Subsequently, we evaluated the 
accuracy of the DLM using the internal validation dataset. 
Data from Mediplex Sejong Hospital (MSH) were used for 
external validation. We identified the patients who were 
admitted to MSH during the study period (March 1, 2017 
to August 31, 2020) and who had at least one ECG and at 
least one renal laboratory panel for serum creatinine and 
blood urea nitrogen obtained within 30 min of the index 
ECG. Because the purpose of the validation data was to 
assess the accuracy of the algorithm, we used only one 
ECG of each patient for the internal and external valida-
tion datasets, i.e., the ECG obtained closest to the patient’s 
laboratory exam during the study period.

This study was approved by the institutional review 
boards of the SGH and MSH. Clinical data, including 
digitally stored ECGs, the laboratory examination results 
of the renal panel, age, and sex of patients were obtained 
from both hospitals. Both institutional review boards 
waived the need for informed consent because of the retro-
spective nature of the study using fully anonymized ECG 
and health data and causing minimal harm.

Procedures

The predictor variables used were ECG, age, and sex. Dig-
itally stored 12-lead ECG data, amounting to 5000 data 
points for each lead, were recorded for 10 s (500 Hz). We 
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removed 1 s each at the beginning and end of each ECG 
because they had more artifacts than other parts. There-
fore, the length of each ECG was 8 s (4000 data points). 
We created a dataset using the entire 12-lead ECG data. In 
addition, we used partial datasets from 12-lead ECG data, 
such as limb six-lead and single lead (I). We selected the 
sets of leads because these leads could easily be recorded 
by wearable and pad devices in contact with the hands 
and legs. Consequently, when we developed and validated 
an DLM using 12-lead ECGs, we used a dataset of two-
dimensional (2D) data of 12 × 4000 data points. When 
we developed and validated an algorithm using six-lead 
ECGs, we used datasets of 6 × 4000 data points, and when 
using single-lead ECGs, we used datasets of 1 × 4000 data 
points.

The primary endpoint of this study was a moderate to 
severe RI, which was defined as the estimated glomerular 
filtration rate (eGFR) under 45 ml/min per 1.73 m2. The 
eGFR was calculated using the modification of diet in the 
renal disease study equation (eGFR = 175 × (serum creati-
nine)−1.154 × (age)−0.203 × 0.742 [if female] × 1.212 [if Black]) 
[25, 26]. The secondary endpoint was a mild to severe RI, 
which was defined as an eGFR under 60 ml/min per 1.73 m2.

The DLM was developed using several hidden layers of 
neurons to learn complex hierarchical non-linear representa-
tions from the data. A residual block with six stages included 
two convolution layers, two batch normalizations, one max-
pooling, and one dropout layer repeated, as shown in Fig. 1. 
We used 1 × 4 max-pooling layers between blocks 1 and 4 
and 2 × 4 max-pooling layers between blocks 4 and 6. The 
last convolutional layer of the residual block was connected 
to a flattened layer, which was fully connected to the one-
dimensional (1D) layer composed of 256 nodes. The input 
layer of epidemiology data (age and sex) was concatenated 
with the 1D layer. Two fully connected 1D layers were con-
nected to the output node, which was composed of one node. 
The output node used a softmax function as an activation 
function because the output of the softmax function was 
between 0 and 1. The architecture of the DLM was evaluated 
and verified using a grid search. We developed additional 
DLM using limb six-lead and single-lead (I) ECGs.

Statistical analysis

Continuous variables were presented as mean values (stand-
ard deviation, SD) and compared using the unpaired Stu-
dent’s t-test or Mann–Whitney U test (if variables were found 
to be not normally distributed). We checked the homogene-
ity of the variance when using the unpaired Student’s t-test. 
Categorical variables were expressed as frequencies and 
percentages and compared using the χ2 test. At each input 
(ECG) of validation data, the DLM calculated the possibility 
of a primary endpoint in the range from 0 (a non-moderate 

to severe RI) to 1 (a moderate to severe RI). To verify the 
DLM performance, we compared the possibility calculated 
by the DLM with the presence of a moderate to severe RI in 
the internal and external validation datasets. To achieve this, 
we used the area under the receiver operating characteristic 
curve (AUC). The performance of the DLM for detecting the 
secondary endpoint, i.e., a mild to severe RI, was similarly 
verified using AUC. We applied the cutoff point to internal 
and external validation data to calculate sensitivity, specific-
ity, positive predictive value (PPV), and negative predictive 
value (NPV). Sensitivity, specificity, PPV, and NPV were 
confirmed at the operating point from Youden J statistics in 
the development data [27]. Exact 95% confidence intervals 
(CIs) were used for all measures of diagnostic performances, 
except for AUC. The CIs for AUC were determined based on 
the Sun and Su optimization of the De-long method using 
the pROC package in R (The R Foundation for Statistical 
Computing, Vienna, Austria). We evaluated the p-value of 
the difference between the AUCs using the bootstrap meth-
ods. The bootstrap operation for p-value was performed with 
non-parametric resampling and the percentile method. The 
number of bootstrap replicates was 2000, which was recom-
mended by Carpenter and Bithell [28]. A significant differ-
ence in patient characteristics was defined as a two-sided p 
value of less than 0.001. We also calculated effect size of 
results. The effect size was calculated using the bootstrap 
method. We defined effect sizes of 0.2, 0.5, 0.8 as indicative 
of small, moderate, and large clinical changes [29]. Statisti-
cal analyses were computed using R software, version 3.4 In 
addition, we used PyTorch’s open-source software library as 
the backend and Python (version 3.6) for the analysis.

Visualizing developed XDM for interpretation

To understand the developed model and compare it to exist-
ing medical knowledge, it was necessary to identify a region 
that had a significant effect on the decision of the devel-
oped DLM. We employed a sensitivity map using a saliency 
method [30, 31]. The map was computed using the first-
order gradients of the classifier probabilities with respect 
to the input signals; if the probability of a classifier was 
sensitive to a specific region of the signal, the region would 
be considered as significant in the model. In other words, 
we verified the region of ECG that was associated with RI 
using a sensitivity map. We used a gradient class activa-
tion map as a sensitivity map, and we guided the gradient 
backpropagation method. Further, we verified the variable 
importance of ECG features, age, and sex in logistic regres-
sion, random forest, and deep learning using the deviance 
difference, mean decreased Gini, and relative importance 
based on Garson’s algorithm, respectively [32]. A logistic 
regression model was derived using the maximum likelihood 
method to calculate coefficients via “glmulti” packages in 
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R (R Development Core Team, Vienna, Austria). We used 
iteratively reweighted least squares (IWLS) to fit the final 
model. In logistic regression, R-squared was calculated 

using the Cox and Snell method. The random forest model 
consisted of 20,000 decision trees using the “randomFor-
est” package in R. Additionally, the AUROC between the 

Fig. 1   Architecture of deep learning based model for detecting renal impairment. Legend: 1D denotes 1-dimension and Conv convolution neural 
network
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prognostic score and classification of RI in logistic regres-
sion and random forest in the test dataset were also con-
firmed. In logistic regression model, residual standard error 
and adjusted R-squared were 0.2366 and 0.0654.

Verifying DLM performance to predict RI 
development as subgroup analysis

We hypothesized that the ECGs would display subtle abnor-
mal patterns in the pre-RI phase and that the developed 
DLM would classify certain cases as abnormal, yielding a 
false positive test (a study subject classified as having RI but 
considered as non-RF) as the initial result. We conducted 
a subgroup analysis of patients who underwent follow-up 
laboratory examinations in the internal and external valida-
tion datasets. The difference in date between the initial and 
follow-up echocardiography data was over 14 days. Among 
those patients, we verified the development of RI in patients 
who were initially considered non-RI, whose eGFR was 
60 ml/min per 1.73 m2 or over. The DLM was categorized 
into high- and low-risk groups based on the risk score using 
cutoff values, which were determined using the Youden’s 
J statistic with the development dataset [27]. We used the 
Kaplan–Meier method to analyze the RI development over 
24 months.

Results

The eligible population included 78,188 and 37,201 patients 
from SGH and MSH, respectively. We excluded 17 and 11 
patients (from SGH and MSH, respectively) because of 
missing clinical information (age and sex), laboratory evalu-
ation information, or ECG data (Supplementary Figure S1). 
The study included a total of 115,361 patients, of which 
7362 patients had a moderate to severe RI. The DLM was 
developed using a development dataset of 96,549 ECGs of 
55,222 patients from SGH (47.9%). Then, the performance 
of the algorithm was verified using 22,949 ECGs of 22,949 
patients from SGH (19.9%) in the internal validation dataset 
and 37,190 ECGs of 37,190 patients from MSH (32.2%) in 
the external validation dataset. In moderate to severe RI, the 

ECGs had prolonged QRS duration, prolonged QTc, right-
ward T-wave axis, prolonged PR interval, and tachycardia 
(Table 1).

During internal and external validations, the AUC of 
the DLM for detecting a moderate to severe RI as the pri-
mary endpoint using 12-lead ECGs was 0.858 (95% CI 
0.851–0.866) and 0.906 (95% CI 0.900–0.912), respectively 
(Fig. 2). The AUC of the DLM for detecting a moderate to 
severe RI using six-lead ECGs during internal and exter-
nal validations was 0.852 (95% CI 0.845–0.859) and 0.901 
(95% CI 0.895–0.908), respectively. The AUC of the DLM 
using single-lead ECGs during internal and external valida-
tions were 0.842 (95% CI 0.834–0.850) and 0.892 (95% CI 
0.886–0.899), respectively. During internal and external val-
idation, the p-values for differences of AUC of the DLM for 
detecting a moderated to severe RI using 12 leads ECG and 
other leads ECG were <0.001. During internal and external 
validation, the effect size between AUCs of the DLM for 
detecting a moderated to severe RI between the 12-lead ECG 
model and 6-lead ECG model was 0.014 and 0.008, respec-
tively. During internal and external validation, the effect size 
between AUCs of the DLM for detecting a moderated to 
severe RI between the 12-lead ECG model and 6-lead ECG 
model was 0.026 and 0.023, respectively. During internal 
and external validations, the AUC of the DLM for detecting 
a mild to severe RI as the secondary endpoint using 12-lead 
ECGs was 0.846 (95% CI 0.840–0.852) and 0.901 (95% CI 
0.896–0.906), respectively (Fig. 2).

The DLM described the important ECG region for RI 
detection. As shown in Fig. 3, the DLM focused on the QRS 
complex and T wave for detecting RI. As shown in Table 2, 
the variable importance differed for each prognostic model. 
The logistic regression and random forest used the T-wave 
axis and the DLM used the QT interval as an important 
predictive variable. In the logistic regression model, the 
residual standard error and adjusted R-squared were 0.2366 
and 0.0654, respectively.

Our study comprised 30,865 patients (22,949 and 7916 
patients in the internal and external validation datasets, 
respectively) with follow-up laboratory results. Among 
them, 25,536 patients were normal (non-RI) at initial labo-
ratory examination. We conducted a subgroup analysis 
of RI development after initial laboratory examination in 
these 25,536 patients, of whom 1,826 developed RI within 
24 months. The high-risk group of the DLM demonstrated 
a significantly higher hazard (Fig. 4) and higher develop-
ment rate of RI than the low-risk group (17.2% vs. 2.4%, 
respectively, p < 0.001). 

Fig. 2   Performances of deep learning-based model for detecting renal 
impairment. Legend: †The alternative hypothesis for this p value was 
that there was a difference of AUC between the 12-lead ECG model 
and others. AUC denotes area under the receiver operating character-
istic curve, ECG electrocardiography, EGFR estimated glomerular fil-
tration rate, NPV negative predictive value, PPV positive predictive 
value, SEN sensitivity, and SPE specificity

◂
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Discussion

We developed and validated a DLM based on an ensem-
ble network for RI detection using 12-, six-, and single-lead 
ECGs and demonstrated reasonable performance. Subse-
quently, we visualized our DLM to determine the regions 
and characteristics of the ECG that were used for RI detec-
tion and verified the important variable for the decision in 
diverse statistical methods, such as logistic regression, ran-
dom forest, and DLM. We conducted a subgroup analysis 
for patients with non-RI (normal) at the initial laboratory 
examination; it was demonstrated that the DLM could pre-
dict the development of RI. To our knowledge, this study is 
the first to develop a DLM for detecting and predicting RI 

and demonstrating interpretable patterns of decision making 
using the DLM. In a previous study, Rahman et al. showed 
the possibility that cardio-renal syndrome patients could be 
detected using ECG with a machine learning model (support 
vector machine). However, this study used data from a small 
population with renal disease. In our study, we developed a 
deep learning model (DLM) using big data and confirmed 
the accuracy using both internal and external validation 
datasets.

Developing a reliable screening tool for detecting and 
predicting RI is the cornerstone for early diagnosis of RI 
and preventing irreversible disease progression for end stage 
renal disease, which requires renal replacement treatment. 
Most RI patients were asymptomatic and had nonspecific 

Fig. 3   Sensitivity map of deep 
learning based model for detect-
ing renal impairment
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symptoms. Diagnostic examinations are laboratory tests that 
require invasive blood sampling and cannot be conducted 
in daily living and low-income countries. Therefore, a new 
technology is required for detecting RI with simple and 
noninvasive methods that could be adopted in daily living. 
As ECG is a non-invasive test and is changed with RI, we 
developed a DLM for detecting RI using ECG.

The most important aspect of deep learning is its abil-
ity to extract features and develop an algorithm using vari-
ous types of data, such as images, 2D data, and waveforms 
[33]. In previous studies, Attia and colleagues and our study 
group developed a DLM to screen for heart failure, arrhyth-
mia, valvular heart disease, left ventricular hypertrophy, 
electrolyte imbalance, and anemia [16–24]. Deep learning 
is criticized for its unreliable outcomes because of the low 
transparency of the process, the so-called black box. There-
fore, we adopted a sensitivity map to describe the abnormal 
findings that affected the decision of the DLM for detecting 
RI and describing the variable importance of ECG features. 
Using this method, we verified an ECG region and features 
that were associated with RI. In conventional methods, the 
research process began based on the hypothesis of research-
ers. For example, in the association between RI and ECG, 
researchers hypothesized based on their experience of dictat-
ing the ECG of RI. This method limited the opportunity to 
discover knowledge in human perception. In deep learning 
methods, such as DLM and sensitivity mapping in this study, 

the findings were not based on previous medical knowledge 
of humans, but on the data itself. Therefore, we had the 
opportunity to discover new knowledge from the data itself 
without human prejudice. Deep learning could discover the 
complex hierarchical non-linear representation that could 
not be discovered using conventional statistical methods, 
such as logistic regression. In this study, we verified the 
important ECG region for detecting RI from waveform data. 
We verified that RI could be detected and predicted using 
ECG based on a DLM. Further, we verified that specific 
ECG features, such as the QRS duration, T-wave axis, and 
corrected QT interval, were correlated with detecting RI. 
These findings were in agreement with the results of previ-
ous studies. Bignotto et al. and Stewart et al. demonstrated 
that left ventricular hypertrophy was identified in 50–80% of 
the RI population [34, 35]. Shafi et al. demonstrated that a 
widening of the QRS complex and prolonged QTc was iden-
tified in RI populations [36]. Deo et al. verified that ECG 
metrics, such as the PR interval, QRS duration, and QTc, 
were independent risk markers for cardiovascular death [13].

We developed and experimented DLMs using diverse 
format of ECG, such as 12, 6, and single lead ECG. We also 
showed the differences of AUC of the DLM for detecting RI 
using 12 lead ECG and other lead ECG during internal and 
external validation. Although the p-values for differences 
of AUC of the DLM for detecting a moderated to severe RI 
using 12 lead ECG and other leads ECG were <0.001, the 
effect sizes were 0.008–0.023. In medical big data research, 
since the p-value could be significant due to the large sample 
size, it is important to interpret results in consideration of 
the effect size.

There were several limitations to this study. First, we vali-
dated the DLM using retrospective data; however, it is neces-
sary to validate DLM with prospective studies and data from 
daily living. Studies related to the clinical significance of the 
new technology are required for application in clinical prac-
tice. In our next study, we will verify DLM performance and 
significance with a prospective study in daily clinical prac-
tice. Second, this study was conducted only in two hospitals 
in Korea; hence, it is necessary to validate the DLM with 
patients in other countries. Third, although we compared 
the variable importance ranking in several machine learning 
and DLMs, we could not confirm the exact statistics between 
the importance results due to the lack of machine learning 
and deep learning statistical methods. Several improvements 
in the machine learning area helped find new methods for 
comparing the importance results more precisely.

Table 2   Variable importance for detecting renal impairment

Rank Logistic regression 
(defiance differ-
ence)

Random forest
(mean decrease 
Gini)

Deep learning
(relative impor-
tance)

1 Age (−4789) Age (1587.1) Age (0.173)
2 Heart rate (−854) T wave axis 

(1411.1)
QT interval (0.141)

3 T-wave axis 
(−366)

R wave axis 
(1216.6)

Heart rate (0.134)

4 QT interval (−286) P wave axis 
(1211.1)

T wave axis (0.104)

5 PR interval (−109) QT interval 
(1192.7)

P wave axis (0.097)

6 P wave axis (−7) PR interval 
(1136.5)

QRS duration 
(0.094)

7 QRS duration (−5) QRS duration 
(1093.1)

PR interval (0.093)

8 R wave axis (−4) Heart rate (1068.8) Sex (0.088)
9 Sex (−2) Sex (147.1) R wave axis (0.075)
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Conclusion

The DLM demonstrated accurate performance in detecting 
RI using ECG. The DLM successfully demonstrated the 
abnormality of ECG, which was correlated with RI. The 
application of artificial intelligence technologies based on 
the DLM to ECG could enable screening for RI and predict 
the development of RI.
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