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The precise control of cytokine production by innate lymphoid cells (ILCs) and their T cell
adaptive system counterparts is critical to mounting a proper host defense immune
response without inducing collateral damage and autoimmunity. Unlike T cells that
differentiate into functionally divergent subsets upon antigen recognition, ILCs are
developmentally programmed to rapidly respond to environmental signals in a polarized
manner, without the need of T cell receptor (TCR) signaling. The specification of cytokine
production relies on dynamic regulation of cis-regulatory elements that involve multi-
dimensional epigenetic mechanisms, including DNA methylation, transcription factor
binding, histone modification and DNA-DNA interactions that form chromatin loops.
How these different layers of gene regulation coordinate with each other to fine tune
cytokine production, and whether ILCs and their T cell analogs utilize the same regulatory
strategy, remain largely unknown. Herein, we review the molecular mechanisms that
underlie cell identity and functionality of helper T cells and ILCs, focusing on networks of
transcription factors and cis-regulatory elements. We discuss how higher-order chromatin
architecture orchestrates these components to construct lineage- and state-specific
regulomes that support ordered immunoregulation.

Keywords: signal-regulated transcription factors, lineage-determining transcription factors, de novo enhancers,
poised enhancers, ATAC-seq and chromatin accessibility, innate lymphoid cell (ILC), histone modifications
Abbreviations: 3C, chromatin conformation capture; ATAC-seq, Assay for Transposase-Accessible Chromatin
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REGULOMES DEFINE DIVERGENT
LYMPHOCYTE TRANSCRIPTIONAL
PROGRAMS

Each nucleus contains six billion nucleotides compacted into
nucleosomes as basic units of chromatin that are orderly
compacted and compartmentalized for precise gene regulation
(1, 2). Residing among 98% of non-coding mammalian genomes
are nearly three million regulatory elements (REs) that control
the expression of approximately 20,000 genes in a cell-specific
manner upon developmental and environmental cues (3). In
lymphocytes, large networks of REs and transcription factors
(TFs) orchestrate transcriptional and phenotypic diversity (4–6).
The majority of REs are enhancers that remotely modulate
transcription from a distance. However, the mechanisms of
how intrinsic and extrinsic cues control enhancer activities to
coordinate cell type- and state-specific gene expression profiles
are yet to be understood.

Innate lymphoid cells (ILCs) play critical roles in tissue
homeostasis, barrier integrity and primary host defense and
mirror the functionalities of their effector counterparts in the
adaptive immune compartment, CD4+ helper T (Th) and CD8+

cytotoxic T lymphocytes (CTL) (7–10). The similarities between
innate and adaptive lymphocyte programming have dramatically
accelerated our understanding of ILC regulation using the
knowledge accumulated from studies of T cells (11–14). Other
innate-like T cells, such as NKT cells, that mirror their functional T
cell analogs also reveal similar lineage programming during
development at both transcriptomic and epigenomic levels, which
is beyond the scope of this review (15, 16). Here, we will focus on
how cell identity and function are epigenetically imprinted during
ILCmaturation and how environmental signals activate or maintain
ILC regulomes that define their transcriptomes.
REGULOMES OF ILCS AND THEIR T CELL
DOPPELGÄNGERS

Immune responses mounted against pathogens can be categorized
into three main programs (17). Type 1 immunity is manifested by
IFN-g production in natural killer (NK) cells, CTLs, type 1 ILC
(ILC1) and type 1 Th cells (Th1) to control intracellular pathogens.
Type 2 immunity is characterized by interleukin (IL)-4, IL-5, IL-9
and IL-13 production from ILC2 and Th2 cells in defense against
extracellular helminths. Finally, type 3 immunity is defined by the
production of IL-17 and IL-22 in ILC3 and Th17/22 cells to
constrain extracellular fungi and bacteria (10, 18–20).

These distinct, but sometimes overlapping, programs are
specified by key lineage-determining transcription factors
(LDTFs) that shape regulomes by acting as master regulators
to control lymphocyte development and differentiation (21–
23). EOMES, a T-box family TF, oversees initial NK cell
development and CTL differentiation into effector and
memory stages (24–31). T-bet, another T-box family TF
encoded by Tbx21, also directs the type 1 immune response
by coordinating with EOMES for CTL memory establishment
Frontiers in Immunology | www.frontiersin.org 2
and maintenance and enforcing NK cell maturation. T-bet
expression is exclusively essential for both lineage specification
and function in ILC1 and Th1 cells, as these lymphocytes do
not express EOMES (32, 33). High level expression of GATA-
binding protein 3 (GATA-3, encoded by the Gata3 gene) plays
a key role in ILC2 and Th2 cell differentiation and cytokine
production (34–36). Finally, type 3 immunity is governed by
RAR-related orphan receptor gamma, RORgt (encoded by the
Rorc gene), which controls ILC3 and Th17 lineage specification
and cytokine secretion (37, 38). These LDTFs epigenetically
activate and stabilize function-related gene expression and, at
the same time, inhibit transcription of genes that contribute to
alternative cell fates (8, 39).

REs are typically characterized as conserved non-coding
DNA sequences that become nucleosome-depleted to permit
TF binding. For many years, identification and characterization
of functional REs required extraordinary but often imprecise
efforts. Use of computational prediction of REs through sequence
conservation provided candidates that required further
validation by assessment of chromatin accessibility by a DNase
hypersensitivity assay or chromatin immunoprecipitation
(ChIP) assays using antibodies directed at acetylated histone
marks (40, 41). Similarly, the crosstalk between REs, such as
enhancer-promoter interactions, has been measured by
chromatin conformation capture (3C) or 3C-based assays (42).
However, the development of massively parallel genomic DNA
sequencing incorporating with conventional assays (e.g. DNase-
seq, ChIP-seq, Hi-C) ushered in a new era of epigenomic
research (43–46). These methods have been applied to map the
regulomes of a wide range of immune cell populations, including
T cells, B cells and macrophages (6, 47–52). CD4+ naïve T cells,
for instance, establish lineage-specific regulomes during terminal
differentiation that underlie Th cell identity and effector function
(53–58). The improvement of relevant molecular biology
techniques, including single cell RNA-seq (59), assay of
transposase-accessible chromatin using sequencing (ATAC-
seq) (60), ultra-low-input native ChIP-seq (61) and indexing
first ChIP (iChIP) (62), further allows for the systematic
interrogation of global transcriptomes and regulomes in low
cell and rarer populations, including ILCs. Similar to their Th
analogs, ILC subsets revealed cell-type restricted regulomes that
define their lineage and effector competence (38, 63–66). These
pre-programmed epigenomic configurations prime the REs at
both TF and cytokine loci to maintain cell identity and enable
rapid innate immune responses.

In contrast to Th cells that reshape naïve T-cell chromatin
landscapes into divergent Th regulomes in response to
combinational TCR and cytokine stimulation (54–56, 67), ILCs
gradually construct lineage-specific, function-related regulomes
during development prior to activation (38, 64). Un-supervised
hierarchical clustering of murine immune cell regulomes clearly
segregates ILCs from T lymphocytes (64). Similar results were
obtained in humans when comparing type 1 and type 3 innate
and adaptive lymphocytes from pediatric tonsils (63), consistent
with the finding that regulomes are highly conserved across
species (68).
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Interestingly, while encountering challenges such as infection,
innate and adaptive lymphocyte analogs converge their
regulomes to execute overlapped effector activities to synergize
host defense (64, 69). For example, upon Nippostrongylus
brasiliensis infection in mice, naïve T cell regulomes are
transformed into Th2 regulomes that resemble ILC2
regulomes, while ILC2 regulomes were minimally altered (64).
Similarly, in mouse cytomegalovirus infection, effector NK cells
and CD8+ T cells exhibit higher epigenomic commonality
compared to naïve NK and CD8+ cells (69). Also, global DNA
methylation patterns of adaptive NK cells in human
cytomegalovirus were highly similar to the profile observed in
CD8+ T cells (70). The convergence of ILC and T cell regulomes
indicates a conservation of intrinsic regulatory networks in
innate and adaptive compartments along with the impact of
extrinsic signals.

During the course of mouse cytomegalovirus infection, NK
cells acquire an adaptive-like phenotype that provides memory
responses similarly to those of T cells (71). This process involves
acquisition of both stable and transient epigenetic changes,
Frontiers in Immunology | www.frontiersin.org 3
although the majority of accessible sites return to the naïve state
(Figure 1) (69). Notably, naïve and memory CD8+ T cell
regulomes are clustered in proximity in the un-supervised
hierarchical clustering analysis, suggesting a naïve-like
chromatin landscape in memory T cells (64). Upon NK cell
activation, REs associated with Socs3, Cish, Pdcd1, Dnmt3a,
and Il10 gene loci acquire stable DNA-accessibility, while REs
near Tbx21, Klrg1, Ifng, and Zbtb32 are associated with transient
modifications (69). Interferon-stimulated response element-like
sequences were enriched in peaks remaining accessible over time,
while motifs for TCF–LEF and NF-kB family members were
enriched in regions becoming less accessible and undergoing
epigenetic poising (69). Nevertheless, in contrast to naïve and
infected ILC regulomes that are clustered in close proximity,
terminally differentiated effector Th cells are clustered distally
from naïve T cells (64). A recent study indicates that
environmental challenges like microbes in gut heavily contribute
to the continuous effector Th cell distribution of both
transcriptomes and epigenomes (73). This finding suggests that
adaptive T cells bear a more plastic character as compared to ILCs.
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FIGURE 1 | Dynamics of NK cell regulomes during infection. (A) Dynamic regulomes during infection. Innate immune response occurs along with changes in gene
expression as well as chromatin accessibility. (B) High-magnitude gene upregulation during NK cell activation relies on recruitment of signal-regulated transcription
factors (SRTFs) to poised enhancers that are developmentally acquired in a lineage-determining transcription factors (LDTFs) manner for chromatin remodeling (top)
(72). High-magnitude gene induction also forms de novo enhancers through a process involving sequence-specific binding of SRTFs to inaccessible chromatin
regions, followed by LDTF recruitment and enhancer activation (bottom) (72). (C) Formation of new accessible sites rapidly occurs in vivo upon mouse
cytomegalovirus or Toxoplasma gondii infection until a peak of the response is reached (69). (D) At the end of viral infection, majority of these rapidly opened
chromatins return to resting state, while part of them undergo stable epigenetic poising that maintains NK cell adaptive-like or memory phenotype (69, 70).
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TRANSCRIPTION FACTORS SHAPE
LYMPHOCYTE SUBSET REGULOMES

During development, inaccessible REs are recognized by pioneer
TFs in a sequence-specific manner. This is followed by chromatin
remodeling, which propagates heritable epigenetic information that
instructs cell identity (74). LDTFs are often considered as pioneer
TFs, specifying lymphocyte lineage fates by targeting selective REs.
In macrophages and B cells, PU.1 is an LDTF that occupies the
majority of the active enhancers and is required for nucleosome
remodeling and histone 3 lysine 4 methylation of these REs (75).
The enrichment of T-bet, GATA-3 and RORgt motifs in type 1, 2
and 3 ILC-specific accessible chromatins, respectively, leads to the
question whether LDTFs can directly open the chromatin or
cooperate with other factors to shape ILC regulomes during
development (23, 63, 64). More recently, the integration of
transcriptomic analysis and TF motif analysis, obtained by
chromatin accessibility data, has been applied to predict the role
for almost one hundred TFs in the regulation of ILC identity, in
mice. These data reveal the ability of TFs to both activate or repress
gene expression corresponding to alternative ILC fates (23).

Several LDTFs involved in T lymphocyte development also
control ILC development in mice, likely controlling this process
by shaping their regulomes. These LDTFs include TCF-1
(encoded by the Tcf7 gene) (76–78), TOX (79–81), Bcl11b (82–
84), Runx (85, 86) and GATA-3 (87–91). During early T cell
development in the thymus, TCF1 and Bcl11b sequentially
switch T cell regulomes to a fate-committed configuration that
possess lineage-specific accessible chromatin and nuclear
organization (92, 93). Notably, in different lineages the same
LDTFs can bind divergent sites in a context-dependent manner
(85, 91, 94). Bcl11b, for example, targets different genomic
locations in T cell progenitors and ILC2s, mediating lineage-
specific gene regulation (94). Therefore, in depth experimental
evaluation is required to map out complete ILC lineage- and
state-specific transcriptional networks.

By contrast, some LDTFs bifurcate T and ILC development
and contribute to initial steps in ILC regulome formation. NFIL3,
for example, is essential for multiple stages of ILC lineage
commitment and differentiation, but is dispensable in T cell
development (95–98). High expression of NFIL3 in common ILC
progenitors activates the NFIL3-TOX-TCF-1 cascade to permit
differentiation of NK and ILC lineages from T cells and endorses
NK and ILC lineage commitment (81, 96). NFIL3 is also required
for the expression of ID2 (95, 99, 100); the latter is a key
repressor that suppresses B and T cell fates to ensure ILC and
NK cell specification (101–103). Depletion of ID2 enforces NK
cells to acquire naïve T lymphocyte transcriptomic and
epigenomic programs (102). Transient expression of PLZF
(encoded at Zbtb16), another key LDTF associated with NKT
cell development, plays an essential role in the commitment of
ILC1, ILC2 and NCR+ ILC3 subsets and the exclusion of NK cell
and LTi fates during early ILC development (104, 105). However,
the potential of ILC precursors has been recently redefined by the
generation of Id2RFPZbtb16GFPcreBcl11btdTomato mice, showing
that Id2+Zbtb16+ ILC precursors are able to give rise to NK
Frontiers in Immunology | www.frontiersin.org 4
cells, while Zbtb16 and Bcl11b control the late fates of ILC3 and
ILC2 precursors (106).

In addition to LDTFs, signal-regulated transcription factors
(SRTFs) activated by external signals can also lead to regulome
transformation. In effector Th cells, activation-induced SRTFs (AP-1,
IRF4 and BACH2) have a higher impact on the segregation of T cell
populations than LDTFs do (T-bet, EOMES, RORg, and RORa)
(73). Interestingly, the signaling pathways that dominate lymphocyte
development and activation are in common at a significant level (39,
107). Polarization of distinct Th subsets requires activation of TCR-
dependent SRTFs, including NF-kB, AP-1 and NFAT, as well as
cytokine-mediated SRTFs like STATs and SMADs (108). Activation
of STATs is essential for promoting differentiation of the Th lineages,
as well as activation of ILCs and NK cells (109–112). The LDTFs T-
bet and GATA-3 occupy lineage-specific REs in Th1 and Th2 cells,
respectively; however, the absence of STAT4 and STAT6, which
respectively shape Th1 and Th2 active enhancer landscapes, cannot
be overcome by forced expression of LDTFs (56, 113). Additionally,
polarization of Th17 cells relies on STAT3 and SMAD2/3 signaling
pathways, which also promote activation of ILC3 and trans-
differentiation of ILC1 or ILC2 lymphocytes to an ILC3-like
phenotype (109, 114, 115). Other agonists, including cytokines and
alarmins like IL-25, IL-33 and IL-18, along with leukotrienes,
prostaglandin 2, and the neuropeptide neuromedin U can lead to
NF-kB, AP-1 and NFAT activation (116–121).

ILC regulomes are hard-wired to prime cytokines and other key
effector genes for rapid responses. The paradigmatic view is that
SRTFs facilitate rapid gene induction by activating enhancers
primed during ILC development. For example, the SRTF STAT5
represents a central node in ILC development and acquisition of
cell identity (122–124). However, rapid ILC activation relies on
abilities of SRTFs to remodel de novo or latent enhancer landscapes
for LDTF binding to their cognate DNA motifs in a sequence-
specific manner (50, 125, 126). ILCs can further undergo
chromatin remodeling in the context of infection or
inflammation (127, 128), a process involving sequence-specific
recognition of SRTFs (69, 72, 129). Interestingly, SRTF-activated
de novo enhancer landscapes can further recruit LDTFs through a
sequence-independent mechanism (72). Recent evidence indicates
that TFs and co-activators with intrinsically disordered regions can
form non-membrane bound condensates through weak
multivalent protein-protein interactions, a dynamic process
called phase separation (Figure 2A) (136–139). It remains to be
determined whether the stimulation-dependent redistribution of
LDTFs results from SRTF-mediated reorganization of phase
separation, which contributes to biased loading of transcriptional
machinery at super-enhancers (130–132).
SUPER-ENHANCERS, A RESERVOIR OF
TRANSCRIPTIONAL MACHINERY

Super-enhancers or stretch-enhancers (SEs), in contrast to
typical enhancers, denote complex REs marked by high density
deposition of transcription factors and enhancer marks (Figure
2B); these features are often indicative of key cell identity and
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disease-associated genes (57, 130, 140–145). The construction of
SEs involves remodeling chromatin landscapes induced by both
intrinsic and extrinsic signals to recruit large numbers of TFs and
transcriptional apparatus that contains co-activators including
Mediator (Figures 2A, B) (136, 140). Along with the formation
of multi-loop hubs, the result is that regulatory elements and
their target genes are brought into close proximity (130, 146).

Delineation of SEs in Th cells using the active enhancer-
associated protein histone acetyltransferase p300, revealed that
the majority of Th lineage- and function-defining genes,
including cytokines (Ifng, Il4, Il10, Il17a and Il17f) and key
transcription factors (Tbx21, Gata3, Rorc and Rora), form SE
structures during Th differentiation (57). These findings are
consistent with multiple REs or locus control regions
previously identified to be in close proximity to cytokine genes,
including Ifng, Th2 cytokines (Il4-Il13-Il5) and the Il17a-Il17f
locus (67, 147). Profiling SEs in human tonsillar ILCs and T cells
by active enhancer mark histone 3 lysine 27 acetylation
(H3K27Ac) clearly differentiates ILCs from Th cells (63).

Recent studies revealed that SE structures also are indicative of
a high magnitude of gene induction. Within hours of cytokine
stimulation, SRTFs such as NF-kB and STATs rapidly establish
SEs at effector gene loci in innate immune cells (macrophages and
Frontiers in Immunology | www.frontiersin.org 5
NK cells) to quickly provoke pro-inflammatory transcriptomes
(72, 148–150). This process involves the recruitment of p300 to
catalyze H3K27Ac histone modification to both primed and de
novo enhancers for prompt gene induction. In activated NK cells,
de novo SEs are linked to highly-inducible genes, suggesting the
rapid construction of SE structures boosts the magnitude of
immediate transcriptional activity (Figure 2) (72).
SOLUTION FOR PHYSICAL DISTANCING
—NUCLEAR COMPARTMENTALIZATION
AND HIGHER-ORDER CHROMATIN
ARCHITECTURE

Within the nucleus, the stretch of one-meter long DNA is
segregated into act ive (euchromatin) and inact ive
(heterochromatin) territories, which are spatially organized into
individual regulatory domains, designated topologically associating
domains (TADs) (5, 151, 152). TADs are formed via an extrusion
process mediated by a cohesin ring and blocked by two
convergently orientated CCCTC-binding factor (CTCF) sites
(Figures 2A, C) (2, 133, 134, 153–158). CTCF is a chromatin
FIGURE 2 | A model of rapid gene induction in NK cells through higher-order chromatin architecture and remodeling. Many inducible genes in NK cells are
associated with super-enhancers (SEs) that can be orderly modulated by multi-dimensional epigenetic mechanisms (72). (A) Phase separation. Phase separation
occurs as a dynamic process in which transcription factors (TFs) and co-activators form non-membrane bound condensates through weak multivalent protein-
protein interactions of their intrinsically disordered region (130). Multi-loop hubs bring TF-bound regulatory elements (REs) and their target genes into close proximity
to finetune gene expression. (B) Super-enhancers (SEs). SEs differ from typical enhancers as they recruit large numbers of TFs and transcriptional apparatus,
including co-activators, to drive high magnitude of gene induction (130–132). (C) Topologically associating domains (TADs). Hi-C plots allow for visualization of three-
dimensional TADs and sub-TADs, which form during the cohesin-mediated loop extrusion process. Looping can occur between two convergently oriented CCCTC-
binding factor (CTCF) sites, using a cohesin ring that extrudes DNAs as shown in (A) (2, 133–135).
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organizer that dominates higher-order chromatin architecture and
a multifunctional zinc finger TF that functions as an activator, a
repressor or an insulator depending on co-localized molecules and
how the chromatins are looped (135, 159).

Although most TADs are largely invariant across cell types,
TADs and nested sub-TADs may also be cell-type specific, and
thus underlie cell identity and discrete functions (151, 160). Even
though CTCF is ubiquitously expressed and constitutively
occupies TAD boundaries across different cell types (135),
dynamic enhancer-promoter interactions and selective CTCF
deposition at cell type-specific genes does occur. The CTCF-
cohesin-mediated 3D chromatin architecture dominates many
biological processes including regulation of key cytokines. Global
CTCF deficiency leads to impaired IFN-g and Th2 cytokine
production in Th1 and Th2 cells, respectively (161, 162).

Other TFs also actively control chromatin topology. In Th1
cells, T-bet coordinates with CTCF to regulate Ifng locus 3D
structure and full expression capacity (161). Crystal structure
studies indicate that the T-bet DNA binding domain forms a
dimer that allows T-bet to bind two independent DNA motifs
distal from each other, suggesting the role of T-bet in loop
formation (163). IL-2-mediated STAT5 activation also
reconstruct T cell regulomes by remodeling SE landscapes and
3D regulatory domains that facilitate induction of IL-2 target
genes (164). Dissecting the specific and dynamic roles of LDTFs
and SDTFs in higher-order chromatin architecture in resting and
activated ILCs will have important implications for
understanding ILC gene regulation in health and disease.
NON-CODING RNAS IN LYMPHOCYTE
REGULATION

Short non-coding RNAs, including microRNAs (miRNAs), as
well as long non-coding RNAs (lncRNAs), including circular
RNAs (circRNAs), are key players in post-transcriptional
regulation and chromatin remodeling in innate and adaptive
lymphocytes (165, 166). Mechanistically, lineage-specific
miRNAs and lncRNAs are linked to super-enhancers and can
control target genes in cis or in trans (167–170). For example,
miR-29 directly regulates IFN-g production in NK, CD4+ and
CD8+ T cells by targeting IFN-g mRNA or indirectly via
suppression of LDTFs EOMES and T-bet (171, 172). Other
miRNAs including miR-155 and miR-17~92 promote Th1
immunity (173–176). Interestingly, miR-17~92 also promotes
Th2 immunity in asthma affected airways (177), pointing to
complex, less well-understood functions. In ILC1s, miR-142
plays a central role in IL-15-mediated NK cell survival,
trafficking, homeostasis and defense against viral infection
(178). Deficiency of miR-142 led to aberrant ILC1-like cell
accumulation, potentially driven by TGF-b.

lncRNAs are critical for CD8+ (179, 180) and CD4+ T cell
differentiation (181, 182). The Ifng locus itself is positively
regulated by the lncRNA Ifng-as1 (also known as NeST or
Tmevpg1) as a mechanism to enhance Ifng expression in Th1
cells (183–186). The expression of Ifng-as1 is dependent on
Frontiers in Immunology | www.frontiersin.org 6
remodeling of the proximal and distal enhancers by T-bet,
recruiting TFs NF-kB and Ets1 to drive Ifng-as1 transcription
(187). Ifng-as1 is capable of engaging the chromatin modifying
enzyme WDR5 that alters histone 3 methylation at the Ifng locus
(184). Deletion of Ifng-as1, within the Ifng extended locus, led to
disruption of chromatin organization and reduced Ifng expression,
indicating its role in maintenance of the chromatin architecture of
the Ifng extended locus. This was in part due to the deletion of a
critical CTCF site that acted as a functional insulator (183).

lncRNAs can also modulate ILC development and function.
For instance, the ILC1-specific lncRNA Rroid promotes the
expression of Id2, a transcription regulator that represses
adaptive lymphocyte cell fate, and is essential for ILC1
development (188). The lncRNA lncKdm2b is highly expressed
in ILC3s and plays a key role in ILC3 maintenance through
activation of the TF Zfp292 (189). On the other hand, the
circRNA circKcnt2 inhibits Batf expression, which results in
inhibition of ILC3 activation and IL-17 expression (190).
Exactly how these IncRNAs precisely exert their effects and
whether these mechanisms are conserved between innate and
adaptive lymphocytes, however, remains unclear.
CONCLUDING REMARKS

Regulation of key cell identity and cytokine genes in lymphocytes
requires carefully orchestrated epigenetic mechanisms and
remodeling of the chromatin landscape by transcription factors
(LDTFs and SRTFs), super-enhancers, TAD formation, CTCF-
anchored loops and non-coding RNAs. Exploration of these
avenues in both local tissue and systemic environments holds
promise in furthering our understanding of ILC and T cell
regulomes. Several fundamental questions remain: how are
nuclear compartmentalization and phase separation altered
during lymphocyte development and activation? How do LDTFs
and other co-activators developmentally shape and maintain
immune cell regulomes? How do divergent chromatin landscapes
respond to distinct pathogen invasion?What are the roles of SRTFs
in the redistribution of transcriptional apparatus to mount an
adequate immune response? How do super-enhancers coordinate
different TFs and co-activators in the 3D space to direct final
transcriptional output?

The rapid improvement in genome-wide epigenomic and
single-cell transcriptomic profiling has provided a new angle to
view global chromatin landscapes and transcriptional networks,
even in rare populations such as ILCs. However, we are still yet to
fully understand how novel key factors (DNAs, RNAs and
proteins) asymmetrically distribute in the nuclei and physically
interplay with each other in a context-dependent manner. The
potential of newly developed techniques in the fields of molecular
biology, fixed-cell microscopy, live-cell imaging, cryo-EM and
genome editing may help to further our understanding. We are
rapidly emerging into an era of epigenomic research that will allow
us to decipher the mechanisms for lineage commitment and
cytokine regulation in detail. Ultimately, we seek to identify key
factors, signaling pathways or epigenetic modulations that can be
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GLOSSARY

Regulatory elements (REs) Non-coding sequences that control gene expression
through physical interactions and recruitment of
transcription factors and transcriptional apparatus.
REs can be functionally classified as promoters,
enhancers, silencers and insulators depending on
their genomic locations and bound molecules.

Regulomes The whole set of regulatory components that control
cell identity and functionality. These components
include transcription factors and their co-activators/
co-repressors that modulate gene expression levels
through chromatin remodeling.

Innate lymphoid cells
(ILCs)

Innate immune cells that execute effector functions
as T lymphocytes without the expression of T cell
receptors or the need of T cell receptor signaling for
activation. ILCs are enriched at barrier surfaces and
play critical roles in tissue integrity, homeostasis and
the primary immune response.

Pioneer transcription
factors (TFs)

TFs that bind specific DNA sequences among
compacted chromatin regions that are tightly
wrapped by nucleosomes. Pioneer TFs then initiate
stepwise chromatin remodeling to “open” the
chromatin and recruit other non-pioneer TFs for
gene regulation.

Lineage-determining
transcription factors
(LDTFs)

Also called master regulators. Transcription factors
that are expressed at specific developmental stages
for cell fate decisions and lineage commitment.
LDTFs are often recognized as pioneer TFs.

Signal-regulated
transcription factors
(SRTFs)

Transcription factors that are activated by external
stimuli and bind to REs to convert environmental
inputs to transcriptional outputs.

Poised enhancers Enhancers that have been recognized and opened
by pioneer TFs (often LDTFs) during development
and can be further activated by SRTFs upon
stimulation.

De novo enhancers Closed, inactive enhancer loci that can be rewired
by SRTFs upon stimulation.

Phase separation A physicochemical process by which molecules
segregate into a dense phase and a dilute phase.
Recent studies revealed that transcription factors
and co-factors can utilize the interaction of their
intrinsically disordered regions to induce phase
separation and form biomolecular condensates for
enhancer complex assembly.

Topologically associating
domains (TADs)

Megabase-sized genomic loci in proximity that form
an interacting chromatin hub in three-dimensional
nuclear space. The boundaries of TADs often define
enhancer targets and the genes that are co-regulated.
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