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ABSTRACT

Depth measures the extent of atom/residue burial
within a protein. It correlates with properties such as
protein stability, hydrogen exchange rate, protein–
protein interaction hot spots, post-translational
modification sites and sequence variability. Our
server, DEPTH, accurately computes depth and
solvent-accessible surface area (SASA) values. We
show that depth can be used to predict small
molecule ligand binding cavities in proteins. Often,
some of the residues lining a ligand binding cavity
are both deep and solvent exposed. Using the
depth-SASA pair values for a residue, its likelihood
to form part of a small molecule binding cavity is
estimated. The parameters of the method were
calibrated over a training set of 900 high-resolution
X-ray crystal structures of single-domain proteins
bound to small molecules (molecular weight
<1.5 KDa). The prediction accuracy of DEPTH is
comparable to that of other geometry-based predic-
tion methods including LIGSITE, SURFNET and
Pocket-Finder (all with Matthew’s correlation coef-
ficient of �0.4) over a testing set of 225 single and
multi-chain protein structures. Users have the option
of tuning several parameters to detect cavities of
different sizes, for example, geometrically flat
binding sites. The input to the server is a protein
3D structure in PDB format. The users have the
option of tuning the values of four parameters
associated with the computation of residue depth
and the prediction of binding cavities. The
computed depths, SASA and binding cavity predic-
tions are displayed in 2D plots and mapped onto 3D
representations of the protein structure using Jmol.
Links are provided to download the outputs. Our

server is useful for all structural analysis based on
residue depth and SASA, such as guiding
site-directed mutagenesis experiments and small
molecule docking exercises, in the context of
protein functional annotation and drug discovery.

INTRODUCTION

Depth is the distance of an atom of a biomolecule (in this
study, we restrict ourselves to protein molecules) to its
nearest water molecule from bulk solvent (1). In
proteins, amino acid residue depth is defined as the average
of the depths of its constituent atoms. Residue depth meas-
ures the degree of burial of a residue from bulk solvent.
Another more commonly used measure of burial is residue
solvent-accessible surface area (SASA) (2). Residue-wise
SASA values depend on the orientation of the atoms of
the residue and not necessarily on its distance from the
surface of the protein. Using this measure, residues in the
protein core cannot always be distinguished from solvent
inaccessible residues that are close to the surface. In
contrast, residue depth increases monotonically from
protein surface to interior, and exhibits a wider dynamic
range of burial than SASA. As depth allows a finer de-
scription of residue burial, it has been shown to be better
suited than SASA to characterize and predict properties of
proteins such as hydrogen/deuterium amide proton ex-
change rates (1,3), structural stability (1), sizes of globular
domains (1,4) and identification of protein–protein inter-
action hot spots (1). In addition, it has been shown that
depth and a closely related variant (4) correlate well with
hydrophobicity (1,4,5) and residue conservation (5). The
measure is also useful in the detection of phophorylation
sites (5) and location of folding nucleation sites (5,6).

In this study, we describe a web server that computes
residue depth. As an application of the depth measure, we
explore its utility in detecting small molecule binding
cavities on proteins. Knowledge of such binding cavities
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often helps in protein functional annotation and serves as
a starting point to guide ligand docking and targeted mu-
tational studies. Over the years, several geometry-based
computational search methods have been proposed to
detect such cavities (7–25). Most of these methods focus
on the exact geometry or shape of the binding sites. Our
cavity prediction only uses residue depth and SASA
values. The method is based on the observation that
some of the residues in most binding concavities are sim-
ultaneously deep and exposed to solvent. All residues that
belong to the same concavity are annotated as binding
cavity residues. Our binding cavity prediction method
does not consider the geometry of the binding site in
fine detail and is an effective coarse-grained computation.

We demonstrate the utility of our server by first desc-
ribing the computation of residue depth and its observed
distribution for different amino acids. We then describe
the training, optimization and testing of the binding cavity
prediction and benchmark it against several other popular
methods. Finally, using a case study of West Nile Virus
NS2B/NS3 protease, we illustrate the capability of the
server to compute residue depth and make binding site
predictions.

MATERIALS AND METHODS

Computation of residue depth

Removal of clashing and cavity waters. To compute residue
depth, the protein molecule of interest is placed at the
center of a pre-equilibrated box of SPC216 model water
(26,27). The box is sized such that all residues of the
protein are submerged below a minimum of two hydration
shells. Water molecules that clash with atoms of the
protein, i.e. those that are within 2.6 Å of protein atoms,
are removed from the box. Water molecules in cavities
that are isolated from bulk water are also removed from
the box. These non-bulk waters are detected by inspecting
the number of water molecules in their immediate neigh-
borhoods. The neighborhood of a water molecule is a
spherical volume described by a specified solvent neigh-
borhood radius. This radius is user-tunable with a default
value of 4.2 Å (1.5 hydration shell). A water molecule is
considered non-bulk, if there are less than a user-specified
minimum number of neighborhood waters (default
value=4) within this spherical volume. Note that the
removal of a cavity water causes its immediately neighbor-
ing waters to lose one neighborhood water molecule. For
this reason, the check and removal of non-bulk waters is
iterated until there is no further removal of water from the
solvent box.

Mimicking solvent dynamics. Residue depth is the distance
of the residue to the closest molecule of bulk water, but
the bulk water surrounding a protein is freely diffusing.
To accurately estimate depth, the dynamics of bulk water
has to be considered. In our method, this is approximated
by repeatedly solvating the protein, each time in a differ-
ent orientation. New orientations are generated by rotating
the protein by a random angle about an axis passing
through its center of mass, and translating it along the

X-axis to an arbitrary distance <2.8 Å (the average dis-
tance between neighboring water molecule in the box).
Each solvation of the protein is considered to represent
a snapshot of the dynamics of bulk-water. With sufficient
number of repeated solvations (default=25), water mol-
ecules can explore all regions accessible to bulk solvent
water, hence mimicking bulk-water dynamics. Depth is
finally reported as the average depth over all solvation
iterations.

Computation of SASA

SASA of a residue was computed using the ‘rolling-ball’
algorithm (28). The accessibility of each residue was
normalized against theoretically calculated values of ac-
cessible surface area for an extended conformation of an
Ala-X-Ala tripeptide (29).

Binding cavity prediction

Estimating binding cavity probabilities for amino
acids. The depth algorithm removes non-bulk waters
from within protein cavities. Residues lining these cavities,
on the one hand, are likely to have high depth values, on
the other hand, to have high SASA values since they are
surface exposed. Hence, residues with both high depth and
SASA values are likely to line ligand binding cavities.
To estimate the probability of individual amino acid

residue to form part of the binding site, residue depth
and SASA values were computed for all residues of all
structures in the calibration set. The calibration set consists
of 900 high resolution (X-ray crystallization resolution
<2 Å, Rfree< 0.25), globular, single chain, ligand-bound
proteins between 150 and 200 amino acid residues in
length, extracted from the PDB (30). Residue depth and
SASA values were segmented into discrete bins of size 0.1
Å and 1%, respectively. To compensate for sparseness
of data, Gaussian blurring technique was utilized. Every
depth and SASA measurement is treated as a Gaussian
probability distribution (parameterized by its mean and
standard deviation) rather than a single point. This
ensures that neighboring bins are also filled. Gaussian
blurring with standard deviations of 1 Å and 10% was
applied to depth and SASA, respectively. The probability,
Pb, of an amino acid R to form part of a binding cavity
was then parameterized by the residue depth D and SASA
S using the relationship

Pb ¼
Rbound

S,D

Rtotal
S,D

where the numerator is the number of observed occur-
rences of residue R bound to a ligand in the training set.
It is normalized by the total number of such residues
found in the same depth-SASA category.

Identifying binding cavities. When predicting binding
cavities on a protein, its residue-wise SASA and depth
are first computed. Probability values are assigned corres-
ponding to its residue depth and SASA categories. All
residues with probability values above a threshold are
selected as binding cavity residues. The protein is then
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resolvated (25 cycles by default). This time only clashing
waters are removed. Water molecules that are within 4.2 Å
from any of the selected residues are inspected. An in-
spected water molecule is retained if there is at least one
other water molecule within 4.2 Å of it. The rest of the
waters are not considered. All protein residues that are
within a distance of 4.2 Å from the retained water mol-
ecules are also considered as residues lining the binding
cavity. A continuous patch of these residues constitutes an
independent binding cavity linings prediction.

Training and testing sets. Three hundred and twenty-five
structures of single and multi-chain proteins listed in
LigASite v7.0 (31) holo structure (bound to small molecule
ligands) data set were obtained from the Protein
Quaternary Structure (PQS) server (32). These structures
were randomly bifurcated into a training set of 100 and a
testing set of 225 with average chain lengths of 282 and
245, respectively. The training and testing sets consisted of
62 and 133 multi-chain PDB files, respectively. Details
of the training and testing sets can be found in
Supplementary Data (http://mspc.bii.a-star.edu.sg/tankp/
stat_files/train-set_and_ligand).

Parameter optimization. Predictions of residues that line
the binding cavity were made using DEPTH by varying
the minimum number of neighborhood waters (n) in the
range (2–5) in steps of one and the binding probability
threshold (P) in the range 0.10–0.80 in steps of 0.05 over
the training set. Residues were classified as belonging to
binding site or non-binding site. The set of parameters
(n=4 and P=0.50) that gave us the best Matthews cor-
relation coefficient (MCC) (33) were chosen as the optimal
values for our method and are the default values on the
server. The MCC was computed as

MCC ¼
TP � TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þ

p

where TP, TN, FP and FN represent the numbers of true
positive, true negative, false positive and false negative,
respectively.

RESULTS

Residue depth preference of the different amino acids

The depth profiles of the 20 amino acid types correlate
strongly with their biochemical properties. The depth
values of all residues in a set of 1457 structures (see
Supplementary Data—http://mspc.bii.a-star.edu.sg/
depth/stats.html for details) were computed. All amino
acid residues show a peak in the distribution at low
depth values (3–4 Å). Hydrophobic amino acids (ALA,
ILE, LEU, MET, PHE, VAL, TRP and TYR) and CYS
showed a higher tolerance for deep environments than
other residues, with a second peak in the distribution at
around 7 Å. In contrast, charged and large polar groups of
amino acids (ARG, ASN, ASP, GLU, GLN, HIS and
LYS) have a lower propensity to be in deep environments.
The same trend was noticed for PRO. Smaller polar amino
acids SER and THR along with GLY exhibit a similar

trend albeit with a relatively larger tail of the distribution
at deep environments.

Applications of residue depth

Residue depth values are useful in computing and esti-
mating several important physical properties related to
the structure of proteins. The deepest residues usually, un-
ambiguously, identify the protein core. Residue depth has
been earlier shown to correlate well with hydrogen
exchange rates (1,3) and thermal stability under mutagen-
esis (1). Depth can hence be a useful measure in the pre-
diction of protein–protein interaction hot spots (1),
detecting sites for post-translational modification (5,6)
and predicting the effect of point mutations on protein
stability and function (1,4,5). Given that the depth com-
putation is simple and rapid, it may also be an attractive
tool to analyze molecular dynamics trajectories and to
evaluate the accuracy of protein structure models. In the
next section, we illustrate the utility of the depth measure
with an application to predict small molecule ligand
binding sites on proteins.

Prediction of small molecule ligand binding sites

We showcase one application of the depth measure by
predicting the protein residues that would interact with
ligands. We have compared the results from DEPTH to
LIGSITE (12), Pocket-Finder (7), SURFNET (15) and
ConCavity (9). ConCavity incorporates both structural
and evolutionary information while the other methods
rely only on structural geometry of the proteins. In our
tests, ConCavity was run using LIGSITE for structural
geometry and evolutionary information for the queries
were taken from the ConCavity web site (http://
compbio.cs.princeton.edu/concavity/pqs/jsd/). The prob-
ability value threshold for ConCavity for binary classifi-
cation was set at 0.085. LIGSITE, Pocket-Finder and
SURFNET were also run from within the ConCavity
program, with all parameters set to their default values,
and without the use of evolutionary information. For
DEPTH, the minimum number of neighborhood waters
and threshold probability values were set to 4 and 0.50,
respectively, which are our recommended values for
multi-chain protein binding site prediction.

MCC was computed for DEPTH and the other
methods over the testing set data. While ConCavity out-
performs all other methods, the overall performance of
DEPTH is comparable to that of the structure based
methods (Table 1). DEPTH outperforms the structure-
based methods when tested over multi-chain proteins.
However, DEPTH is marginally poorer (MCC=0.44)
than the other structure-based programs (MCC values in
the range 0.46–0.53) when tested over single-chain
proteins.

DEPTH overpredicts the number of binding residues.
On average, the size of binding site in the testing set is
65 residues per structure. On an average, DEPTH predicts
105 while ConCavity, LIGSITE, POCKET and
SURFNET predict 98, 94, 93 and 103 residues, respect-
ively. These overpredictions contribute significantly to the
number of false positives.
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Software and web server adjustable parameters

Our program computes depth at the atomic/residue level
and as an application, predicts the location of small mol-
ecule binding sites. The web server (Figure 1) is freely ac-
cessible without login requirements at http://mspc.bii
.a-star.edu.sg/depth. Users specify the four-letter PDB
code of a protein or upload a file in PDB format. Users

are also given the option to tune several parameters. For
residue depth computation, the minimum number of
neighborhood waters, solvent neighborhood radius and
the number of solvation cycles can all be tuned to cater
for different accuracies. For binding cavity predictions,
the default values of minimum number of neighboring
waters and threshold probability were set to 4 and 0.50,
respectively. Users can override these values, for instance,
when predicting binding sites in single- or multi-domain
proteins. Help pages provide information on the program,
server and the different parameters with their optimal
values and limits.

Server output. For residue depth computation, a summary
of residue depth computation parameters is displayed on
the output page. By default, the query protein 3D struc-
ture is displayed in a Jmol viewer and rainbow-colored by
residue-wise depth. The bluer a residue the more buried it

Figure 1. Snapshots of the input and output pages of the server (http://mspc.bii.a-star.edu.sg/tankp/). (A) The input page showing all the tunable
parameters. (B) The output associated with residue depth computation, including a 2D plot of residue-wise depth and a surface representation of the
query protein (PDB 2FP7) rainbow-colored according to depth. The deeper is a residue the bluer it is colored. (C) Modified snapshot of the output
of the binding cavity prediction for PDB 2FP7. The 2D plot shows the residue-wise probability values and the probability threshold. The predicted
binding site residues are listed below the plot. The accompanying surface representation of the protein has the predicted binding cavity residues
colored in red while the rest of the protein is colored blue. The inhibitor is shown in white stick representation to highlight the flat geometry of the
binding site.

Table 1. The Matthew’s correlation values for the DEPTHa (bold

face), LIGSITEb, Pocket-Finderc, SURFNETd and ConCavitye over

the testing data set of 225 single (92) and multi-chain (133) proteins

Single-chain

PDBs (92)

Multi-chain

PDBs (133)

Entire testing

set (225)

Da Lb Pc Sd Ce D L P S C D L P S C

0.44 0.53 0.48 0.47 0.50 0.39 0.37 0.37 0.38 0.48 0.39 0.40 0.39 0.39 0.49
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is in the structure. Plots of residue depths of selected
groups of atoms of a residue (main chain, side chain,
polar and non-polar) can also be displayed according to
user specification. Users have the option to download the
output of atomic/residue depth and SASA values in tab
delimited and/or PDB format. All results will be stored for
30 days before they are cleared. For binding cavity pre-
diction, a residue binding cavity probability plot with
user-defined and recommended threshold is displayed.
The 3D structure of the query protein is displayed in a
Jmol viewer with predicted binding cavity residues colored
in red. The Jmol menu can be used to render the output as
desired. Residue-wise probability values are downloadable
in tab delimited or PDB format. A stand-alone version of
the depth and SASA programs is available for download if
users wish to use it locally.

Case study: West Nile Virus NS2B/NS3 protease

We illustrate the use of our server by running the depth
calculation and ligand binding site prediction on West
Nile Virus NS2B/NS3 protease (PDB:2FP7). The

protease is a protein complex of two chains (chain
A:NS2B and chain B:NS3), 47 and 148 amino acid
residues long, respectively. The substrate binding site of
the protease is located at the interface between the two
chains and consists of amino acid residues from both
chains (D82:A, G83:A, N84:A, F85:A, Q86:A and
H51:B, D75:B, D129:B, Y130:B, P131:B, T132:B,
Y150:B, G151:B, N152:B, G153:B, Y161:B) (34).

Residue depth computation. Four sets of depth results
were obtained by varying the minimum number of neigh-
borhood waters from two to five. The solvent neighbor-
hood radius was retained at its default value 4.2 Å.
Increasing the number of minimum neighborhood
waters increases the mean and maximum of residue
depths monotonically, from 5.25 and 11.79 to 6.76 Å
and 14.17 Å, respectively. This happens because an
increase in the minimum number of neighborhood
waters excludes a larger number of cavity solvent mol-
ecules, resulting in greater depth values. The depth
values increased the most at two regions on the protein,
centered around V166:B (6.87–12.74 Å) and N152:B

Figure 1. Continued.
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(5.22–8.98 Å). Such transitions are usually indicative of
shallow cavities that are difficult to detect using methods
that rely on structural geometry alone.

Binding site residue prediction. The probability threshold
value controls the stringency of the prediction. Usually,
the higher is the probability threshold value the fewer are
the binding cavities detected. Increasing the number of
minimum neighborhood waters (this number is recom-
mended not to exceed five) usually results in a prediction
of a larger number of binding site residues. In addition, it
also facilitates the detection of geometrically flatter
binding cavities.

In the case of the West Nile Virus protease, no binding
sites were predicted at the default values of number of
neighborhood waters (n=4) and probability threshold
(P=0.50). Increasing the minimum number of neighbor-
hood waters to 5 and decreasing the probability threshold
to 0.45 resulted in the detection of a relatively flat binding
site centered around residue N152:B (Figure 1C). Our pre-
diction correctly identifies 9 of the 16 binding site residues.
Except for ConCavity, none of the other methods tested
here were able to correctly identify this binding site.

CONCLUSIONS

In this study, we present a program to compute atomic/
residue depths quickly and accurately. The web server
associated with the program also computes SASA
values. Residue depth provides a gradually stratified
profile of residue/atomic burial with an appreciably
larger dynamic range of burial as compared to SASA.
Generally, residue depth values show a trend that is the
inverse of SASA values. The solvent exposed residues
usually have low depth values while the less exposed
residues are deeper in the protein.

Exceptions to this trend appear in most protein struc-
tures when solvent exposed residues have large depth
values. Our investigation, over a set of 900 proteins,
revealed that such residues are often part of small
molecule ligand binding cavities. From this set of 900
proteins, we have estimated the likelihood of the 20 dif-
ferent amino acids to be part of the binding cavity given
their depth and SASA values. These likelihood values are
then used to predict residues that line binding site cavities.
After we identify one or more residues in a cavity, we
include its closest solvent exposed neighbors to increase
coverage.

We tested the performance of our predictions against
other popular methods including ConCavity, LIGSITE,
Pocket-Finder and SURFNET over a set of 225 single
and multi-chain structures of proteins known to bind
small molecule ligands. With optimal parameters,
DEPTH performs on par with all the other methods
except ConCavity. ConCavity uses evolutionary informa-
tion in addition to protein structure geometry and outper-
forms all other methods. It is likely that DEPTH too
could benefit from evolutionary information.

We have demonstrated the effects of changing the par-
ameters of the algorithm and how binding cavities of dif-
ferent sizes and properties can be detected. One of the

benefits of cavity detection with DEPTH is its ability to
pick out shallow binding pockets, as exemplified in the
case of the West Nile Virus Protease.
Residue depth has been shown earlier to have many

potential applications. This server has been setup primar-
ily to provide accurate depth values that users could use
for several applications, some of which have been listed on
the server. In addition, we showcased the usefulness of
depth values with one application—predicting small
molecule binding sites. The prediction method is coarse
grained and yet performs comparably to other more es-
tablished and sophisticated structure based methods. This
encourages us to explore other applications, which we
hope to add to the server in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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