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Positional dependence of transcriptional inhibition
by DNA torsional stress in yeast chromosomes
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How DNA helical tension is constrained along the linear

chromosomes of eukaryotic cells is poorly understood.

In this study, we induced the accumulation of DNA (þ )

helical tension in Saccharomyces cerevisiae cells and

examined how DNA transcription was affected along

yeast chromosomes. The results revealed that, whereas

the overwinding of DNA produced a general impairment of

transcription initiation, genes situated at o100 kb from

the chromosomal ends gradually escaped from the trans-

cription stall. This novel positional effect seemed to be

a simple function of the gene distance to the telomere:

It occurred evenly in all 32 chromosome extremities and

was independent of the atypical structure and transcrip-

tion activity of subtelomeric chromatin. These results

suggest that DNA helical tension dissipates at chromoso-

mal ends and, therefore, provides a functional indication

that yeast chromosome extremities are topologically open.

The gradual escape from the transcription stall along the

chromosomal flanks also indicates that friction restric-

tions to DNA twist diffusion, rather than tight topological

boundaries, might suffice to confine DNA helical tension

along eukaryotic chromatin.

The EMBO Journal (2010) 29, 740–748. doi:10.1038/

emboj.2009.391; Published online 7 January 2010

Subject Categories: chromatin & transcription; genome

stability & dynamics

Keywords: DNA supercoiling; DNA twist; telomere; topo-

isomerase; transcription

Introduction

The helical tension of DNA has deep implications in most

genome transactions. This condition of altered twist facil-

itates or hinders the melting of the duplex as well as its

interactions with structural and regulatory factors (Wang

et al, 1983; Vologodskii and Cozzarelli, 1994). DNA helical

tension also promotes the formation of supercoils that con-

tribute to the juxtaposition of distant DNA sites and to the

global folding of DNA (Huang et al, 2001). In bacteria,

chromosomes are circular and DNA seems to be organized

into independent topological domains (Delius and Worcel,

1974; Sinden and Pettijohn, 1981; Postow et al, 2004), in

which different levels of helical tension can be modulated. In

eukaryotic cells, however, chromosomes are linear and DNA

is folded into more complex chromatin fibres. Therefore, the

issue of whether DNA is organized into closed topological

domains in which helical tension is constrained is less clear

and remains controversial (Eissenberg et al, 1985; Esposito

and Sinden, 1988; Freeman and Garrard, 1992). Addressing

this issue will require better tools to examine the helical state

of chromosomal DNA, as well as a better understanding on

the multiplicity of factors that determine the generation,

transmission, and dissipation of DNA twisting forces in

vivo. Thus far, DNA tracking processes (such as transcription

and replication) (Liu and Wang, 1987; Brill and Sternglanz,

1988; Giaever and Wang, 1988) and the activity of different

topoisomerases (Salceda et al, 2006) are the main factors

known to be involved in the generation and relaxation of

DNA helical tension in eukaryotic cells.

DNA transcription enforces axial rotation of the duplex

relative to the large RNA polymerase complex. This rotation

is quickly hindered by nearby interactions that anchor DNA

to other structures or, simply, by the large rotational drag of

DNA folded in chromatin. Consequently, positive (þ ) DNA

helical tension increases in front of an advancing polymerase

and negative (�) DNA helical tension arises behind it (Liu

and Wang, 1987). Analogously, (þ ) DNA helical tension also

builds up in front of DNA replication forks (Schvartzman and

Stasiak, 2004). DNA topoisomerases relax this helical stress

by producing temporary single- or double-strand DNA breaks

(Champoux, 2001; Wang, 2002). In eukaryotic cells, topoi-

somerase I (encoded by TOP1) cleaves one strand of the

duplex allowing the DNA to rotate in either direction around

the uncleaved strand; and topoisomerase II (encoded by

TOP2) removes supercoil crossings by transporting one seg-

ment of duplex DNA through a transient double-strand break

in another (Champoux, 2001; Wang, 2002).

In the yeast Saccharomyces cerevisiae, as both topoisome-

rase I and II can relax (þ ) and (�) helical tension, the

presence of either one of the two enzymes suffices for

transcription to proceed (Kim and Wang, 1989).

Inactivation of both topoisomerases in Dtop1 top2ts double

mutants alters rRNA and polyAþ RNA synthesis (Brill et al,

1987; Yamagishi and Nomura, 1988), although transcription

is not broadly reduced, as concurrent (þ ) and (�) super-

coiled domains can eventually cancel each other out (Stupina

and Wang, 2004). However, a large reduction of global RNA

synthesis occurs when the inactivation of topoisomerases

I and II is combined with the ectopic expression of the
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TopA gene that encodes Escherichia coli topoisomerase I

(Gartenberg and Wang, 1992). This bacterial enzyme oper-

ates only on underwound DNA and yields, therefore, an

asymmetric relaxation of (þ ) and (�) supercoils (Giaever

and Wang, 1988). As a result, (þ ) helical tension accumu-

lates along intracellular DNA up to specific linking number

differences of about 4% (Salceda et al, 2006). This threshold

value is likely to reflect the point at which the increasing

overwinding of the duplex precludes DNA transcription, either

at the initiation or elongation steps (Salceda et al, 2006).

In this study, we induced the accumulation of (þ ) DNA

helical stress in yeast and used microarray analysis to exam-

ine how transcriptome alterations spread throughout the

yeast chromosomes. The results exposed a striking positional

effect in all 32 yeast chromosomal arms: whereas most genes

reduced their transcript levels by several fold, genes situated

at o100 kb from the chromosomal ends gradually escaped

from the transcription stall.

These results are consistent with a dissipation of DNA

helical tension at the chromosomal ends and provide, thus, a

functional indication that yeast chromosome extremities are

topologically open. The gradual escape from the transcription

stall observed along all chromosomal flanks also denotes that

tight topological boundaries are scarce in yeast chromatin.

Results

Functional response of the yeast transcriptome to the

induction of DNA helical stress

We induced (þ ) helical stress of DNA in S. cerevisiae Dtop1

top2ts mutant cells that constitutively expressed the E. coli

TopA gene by thermal inactivation of the topoisomerase II

temperature-sensitive allele. We monitored the accumulation

of helical tension at different time points of thermal shift (0,

30, and 120 min at 351C) by analysing the supercoiling of

DNA in yeast circular minichromosomes (Figure 1A, left).

After 30 min, DNA topology was not significantly altered.

However, after 120 min of topoisomerase II inactivation, most

minichromosome molecules seemed highly positively super-

coiled. We conducted the same thermal shift with the control

strain, Dtop1 TOP2 that also expressed the E. coli TopA gene,

and no trace of positively supercoiled molecules was obse-

rved (Figure 1A, right).

We extracted total RNA from the above top2ts and TOP2

cells after 0, 30, and 120 min of topoisomerase II inactivation

and used microarrays to compare transcript levels between

both strains. The microarray data exposed apparently modest

changes in the transcriptome of top2ts cells as compared with

that of TOP2 cells (Supplementary Table I). At the 30 min time

point, about 5% of genes increased the relative abundance of

their transcripts by a factor of two or more, and about 5.2%

decreased it by a similar factor. At the 120 min time point, the

fractions of relatively increased and decreased transcripts

changed to 8.8 and 6.4%, respectively. Analysis of the func-

tional categories of the affected genes revealed that, at the

30 min time point, the main traits were a severe reduction in

the transcription of ribosomal genes and an increase in that of

carbohydrate metabolism genes. This response is typical for

many forms of cellular stress (Gasch et al, 2000; Rojas et al,

2008). However, when (þ ) supercoiling of DNA was evident

at the 120 min time point (Figure 1A), the functional chara-

cteristics of altered genes changed and Ty-related transcripts

became the predominant over-represented category (Supple-

mentary Table I).

Physical clustering of altered genes on accumulation

of DNA helical stress

To examine how transcriptome alterations between the above

top2ts and TOP2 strains spread throughout the yeast chromo-

somes after the accumulation of DNA (þ ) helical stress, we

plotted the relative transcript variations (after 0, 30 and

120 min of topoisomerase II inactivation) versus the respec-

tive gene distance from the telomere (Figure 1B). At the 0 and

30 min time points, the overall transcript variations did not

expose any deviation with respect to gene position. However,

a striking asymmetry occurred at the 120 min time point.

When DNA helical stress was evident, the relative abundance

of transcripts of most genes closer than 100 kb from the

telomere increased gradually towards the chromosomal

end. At this time point, about half of the over-represented

transcripts (445% of total, P¼ 1.4�10�95, w2 test) were

from genes located at o50 kb from the telomere, a compart-

ment that confines about 15% of yeast genes. Conversely,

decreased transcripts in the same section were strongly

under-represented (o5% of total, P¼ 4�10�9, w2 test).

Although the differential response of the chromosome

flanking genes seemed associated to the accumulation of

DNA (þ ) helical stress at the 120 min time point, we had

to discard that this positional effect could be simply conse-

quent to the prolonged lack of topoisomerase II activity. We

conducted, therefore, a control experiment by comparing the

transcriptome of cells with wild type and thermo-sensitive

topoisomerase II, but no TopA expression and thus no (þ )

DNA supercoiling. After 120 min of topoisomerase II inacti-

vation, relative abundance of transcripts from genes at the

chromosomal flanks were not significantly increased

(Figure 1C, right), in sharp contrast to that observed on

accumulation of DNA (þ ) helical stress (Figure 1C, left).

Chromosomal flanks escape from the transcription stall

produced by DNA helical stress

As a global reduction of RNA synthesis was expected on

accumulation of DNA (þ ) helical stress (Gartenberg and

Wang, 1992), we used qRT–PCR to determine the absolute

value of transcript levels in our strains, as well as to validate

the differential response of the chromosome flanks un-

covered by the microarray data. Notice that, because micro-

array data are routinely normalized against average values,

changes affecting a majority of genes would seem as the

opposite effect in the minority of non-affected ones. In

contrast, qRT–PCR data correspond to straight changes in

Ct values, with no standard reference, except for the amount

of cDNA loaded in each reaction.

To conduct the qRT–PCR analysis, we selected a subset of

genes from different chromosomes and distances from the

telomeres (Supplementary Table 2). The PCR data exposed a

clear gradient of transcript ratios between top2ts and TOP2

strains as genes vary their distance to the chromosomal ends,

with a similar slope to that observed in the microarray dataset

(Figure 2A). However, the transcript levels obtained from

qRT–PCR were approximately one log2 lower than the corre-

sponding values obtained from microarrays. The qRT–PCR

results indicated, therefore, that DNA (þ ) helical stress

reduces by two- to six-fold transcription of most yeast
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genes (over 80% of the genome). Then, the relative increase

of transcripts from genes located at chromosomal flanks

exposed by the microarray data was indeed reflecting a lesser

reduction or nearly no effect of the induced DNA helical

stress, as genes get closer to the chromosomal ends

(Figure 2B).

All chromosomal flanks show the same positional

response to DNA helical stress

Next, we inspected whether the differential response of

chromosome flanking genes to DNA helical stress was con-

sistent in all yeast chromosomes. We plotted the relative

transcript variations versus the gene distances from the

telomere for the individual 32 chromosomal arms

(Figure 3A). In all cases, relative transcript levels gradually

increased, as genes got closer to the chromosomal end.

Moreover, regardless of the respective chromosomal length,

all flanks followed similar slopes starting around 100 kb from

the telomere. By this circumstance, in short chromosomes

(such as Chr. I, 225 kb) the positional effect covered nearly

the entire chromosome (Figure 3B). In longer chromosomes

(such as Chr. XIII, 915kb), only the flanks exposed the

differential response, without similar deviations of the tran-

script levels at more internal or core regions (Figure 3B). We

also observed that the positional effect equally affected genes

transcribed in the direction towards and away from the

Figure 1 DNA positive helical stress alters the yeast transcriptome according to the chromosomal position of the genes. (A) Two-dimensional
agarose gel electrophoresis of DNA extracted from Dtop1 top2ts TopA (left) and Dtop1 TOP2 TopA (right) yeast strains after 0, 30, and 120 min of
heat inactivation (351C) of topoisomerase II. The gel-blot shows the conformers of the 2m circular minichromosome. (�), negatively
supercoiled DNA circles; (þ ), positively supercoiled DNA circles; N, nicked DNA circles; L, linear DNA. (B) The variation of transcript levels
(log2 ratio top2ts/TOP2) after 0, 30, and 120 min of topoisomerase II inactivation is plotted for all analysed genes against their distance (bp)
from the telomere. (C) Comparison of the variation of transcript levels (log2 ratio top2ts/TOP2) after 120 min of topoisomerase II inactivation
with (left) and without (right) the expression of the E. coli TopA gene. Both graphs show averaged values for genes situated to a similar distance
from the telomere in all the S. cerevisiae chromosomal arms (each point averages 20 genes). Data were adjusted to obtain an average ratio of 1
for all genes analysed.

DNA torsional stress in yeast chromosomes
RS Joshi et al

The EMBO Journal VOL 29 | NO 4 | 2010 &2010 European Molecular Biology Organization742



chromosomal end (Figure 3C), and that the different response

of chromosome flanking genes to DNA helical stress was

independent of their respective transcript length (Figure 3D).

Differential response of chromosomal flanks to DNA

helical stress is not related to a reduced transcription

activity of subtelomeric genes

It is well documented that genes close to the telomere (up to

20 kb from chromosomal ends) tend to be transcriptionally

inefficient (Gottschling et al, 1990; Vegas-Palas et al, 1997; for

review, see Ottaviani et al, 2008). This silencing effect varies

substantially from telomere to telomere and affects individual

genes distinctively (Pryde and Louis, 1999; Mondoux and

Zakian, 2007). Therefore, although the escape from the

transcription stall was evenly observed in all chromosomal

flanks on accumulation of helical stress, we discarded that

this outcome could be simply a consequence of the low

transcript abundance of some subtelomeric genes. To test

whether the extent of transcript reduction was biased because

of the initial mRNA abundance, we classified all yeast genes

by their starting mRNA abundance in 10 equal groups (decile

classes). We then compared, in each group, the effect of (þ )

helical tension between genes located at o50 kb from the

telomere (flank genes) and the rest (core genes). The result of

this analysis visibly indicated that flank genes behave always

differently from core genes, irrespective of their initial mRNA

abundance (Figure 4A).

We also considered that, because gene activity and gene

density in subtelomeric regions could be lower than the

chromosomal average, these regions could have less potential

to generate DNA helical tension, leading to little change in

their transcription output. To examine this possibility, we

compared the capacity to generate transcription-driven super-

coils per unit length between the flank (up to 50 kb from the

telomere) and core regions (the rest) of each chromosomal

arm. As the potential to generate DNA helical tension de-

pends on the amount of transcribed DNA (bp) per time unit,

we estimated this parameter as the transcript length times

gene transcription rate (Garcı́a-Martı́nez et al, 2004). This

analysis revealed that 9 of the 32 chromosomal flank regions

had a capacity to generate transcription-driven supercoils

higher than their respective core regions (Figure 4B). We

then compared the flank/core ratios of supercoiling potential

with the corresponding flank/core ratios of transcript reduc-

tion observed after accumulation of (þ ) helical stress. The

resulting plot clearly illustrated that both parameters are

independent (Figure 4B). All the above analyses led us to

conclude, hence, that the differential response of chromoso-

mal flanking genes to the accumulation of (þ ) helical

tension is not consequent to the atypical transcription activity

of subtelomeric regions. Thus far, the effect simply seems to

be a function of the gene distance to the telomere, which

applies equally to all chromosomal arms and spreads up to

100 kb inwards.

Differential response of chromosomal flanks to DNA

helical stress occurs independently of the subtelomeric

chromatin structure

It is well established that telomeric silencing, as regarded

above, is determined by the interaction of SIR complexes

along subtelomeric chromatin (for review, see Rusche et al,

2003). A heterochromatin-like structure originates at the

telomere and spreads inwards a few kb, with the distance

of spread determined by the concentration of available Sir3

protein (Renauld et al, 1993; Maillet et al, 1996; Fourel et al,

1999) and the activity of other cofactors (Pryde and Louis,

1999). We then considered that, if subtelomeric chromatin

were spreading far inwards in all chromosomal arms, this

structural change could cause the differential response of

chromosomal flanks to the accumulation of DNA (þ ) helical

tension. For instance, subtelomeric chromatin could preclude

the activity of E. coli topoisomerase I during transcription and

thus (þ ) helical tension could not built up; or subtelomeric

chromatin could constrain (þ ) helical tension in a way that

allowed transcription to proceed close to normal rates.

Figure 2 Chromosomal flanks escape from the global reduction of
transcript levels. (A) Correlation between microarray and qRT–PCR
data. Microarray data of selected genes are given as ratios (log2)
between top2ts and TOP2 strains after 120 min of topoisomerase II
inactivation (red dots). The respective qRT–PCR values correspond
to differences in Ct values at time 0 and 120 min after topoisomerase
II inactivation in the top2ts strain (blue dots). Note that Ct values are
linearly correlated to the log2 of the concentration of mRNA for
each specific gene. Regression lines for both sets of data are shown.
(B) The microarray data ([top2-ts/TOP2]120 min/[top2-ts)/TOP2]0 min)
is represented by fitting the fold reduction values of the above
selected genes according to qRT–PCR data. The graph plots (log2) a
sliding mean and standard deviation (black and grey, respectively)
of 20 consecutive genes against the gene distance (bp) from the
chromosomal end.
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Although these scenarios do not seem likely, we formally

discarded them by repeating the above transcriptome ana-

lyses in Dsir3 backgrounds.

We replaced the SIR3 gene by the selectable marker NAT1

in both Dtop1 TOP2 and Dtop1 top2ts strains. After 120 min of

heat inactivation of topoisomerase II, DNA (þ ) helical ten-

sion accumulated in Dtop1 top2ts Dsir3 cells expressing the

E. coli TopA gene (Figure 5A). In the different replicates of the

experiment, the amount of plasmid becoming highly super-

coiled in the Dsir3 cells at the 120 min time point was

comparable with that of SIR3 cells. We evaluated transcrip-

tome alterations associated to DNA helical stress from the

transcript ratios of the sir3 strains as above (top2ts versus

TOP2). The microarray data clearly denoted that disruption of

subtelomeric chromatin does not alter the differential beha-

viour of genes located at chromosomal flanks (Figure 5B).

The gradual decrease of transcript levels as genes become

more distant from the chromosomal ends was alike in both

SIR3 and Dsir3 backgrounds.

Discussion

Accumulation of (þ ) helical tension of intracellular DNA

produces a striking pattern of changes in the yeast transcrip-

tome. Transcript levels of different genes are not determined

by their function or regulatory pathways, but rather by the

gene distance to the chromosomal end. Whereas the bulk of

genes reduce their transcript levels by two- to six-fold, genes

located at o100 kb from the telomere escape gradually from

the transcription shutdown. The overall reduction of tran-

script levels essentially corroborates the observations of

Gartenberg and Wang (1992), who reported that transcription

is greatly diminished in highly positively supercoiled yeast

circular minichromosomes. Gartenberg and Wang concluded

that overwinding of DNA after a critical threshold of (þ )

helical tension should stall transcription at the initiation or

elongation steps. On that respect, our data reveal that the

reduction extent of individual transcripts is not dependent on

transcript length (Figure 3D), thus suggesting a general

impairment of transcription initiation rather than elongation.

The intriguing question here is why all chromosomal

flanks escape from the global transcription stall. The simplest

explanation for this neat positional effect is that DNA helical

stress cannot build up in the chromosome flanking regions

because DNA is torsionally unconstrained at the chromoso-

mal ends. Still, our results could have alternative explana-

tions related to other structural and functional traits that are

known to characterize subtelomeric regions. These traits vary

substantially from telomere to telomere and are responsible

for transcriptional silencing of genes located at o10–20 kb

from chromosomal ends (Gottschling et al, 1990; Renauld

et al, 1993; Pryde and Louis, 1999). We found, however, that

the positional response discovered here is independent of the

reduced transcription activity of subtelomeric genes or to the

distinctive structure of subtelomeric chromatin. The observed

effect seems to be a simple physical function of the gene

distance to the telomere. In contrast to telomere silencing

effects, this functionality occurs just after accumulation of

DNA (þ ) helical tension, applies evenly to all 32 chromoso-

mal extremities, and spreads up to 100 kb inwards. We

conclude, therefore, that the dissipation of DNA helical stress

at the chromosomal ends is the most likely cause for the

differential response of chromosomal flanking genes reported

here (Figure 6A).

Our inference that DNA is torsionally unconstrained at

the chromosomal ends has relevant implications on the

nature of the anchoring of telomeres to subnuclear structures.

In principle, the rotation of chromosomal DNA ends might

seem hampered by the complex folding of telomeric DNA

(Rhodes et al, 2002; Neidle and Parkinson, 2003) and the

tethering of telomeres to the nuclear envelope (Heun et al,

2001; Taddei et al, 2004). Our findings denote, however, that

Figure 3 Positional response to DNA helical stress occurs similarly in all chromosomal flanks and independently of chromosome length,
transcript length, and transcript direction. (A) The variation of transcript levels (log2) on the accumulation of DNA (þ ) helical stress is plotted
in each of the 32 yeast chromosomal arms against the corresponding gene distance (bp) from the telomere. Coloured splines average values for
nine consecutive genes. Distances from telomeres correspond to the central gene. (B) The relative variation of individual transcript levels (log2)
is plotted along the physical length of yeast chromosomes I (225 kb) and XIII (915 kb). Polynomial tendency lanes are shown. (C) The relative
variation of inwards and outwards transcripts plotted against their gene distance (kb) from the corresponding telomere. Values are calculated as
in Figure 2B. (D) The relative variations of transcript level (log2) of the genes located at o100 kb from the telomere is plotted against their
respective transcript length (kb).
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these structural traits are compatible with the dissipation of

DNA helical stress. To that regard, we should realize that

helical tension can dissipate at chromosomal ends not only

by the spinning of discontinued DNA strands around the

duplex axis, but also by the rotation of the entire macro-

molecular ensemble in which the telomeric DNA strands are

embedded. We should also notice that tethering of telomeres

to subnuclear structures does not necessarily preclude the

axial rotation of nearby DNA or chromatin. For instance, DNA

could rotate inside the anchoring complex or, simply, the

anchoring complex itself could have freedom to rotate at its

interface with the nuclear envelope. Finally, axial rotation of

chromosomal ends would be fully impeded only if telomere

anchorages were stiff and permanent. In vivo imaging studies

had shown, however, that this is not the case. Although yeast

telomeres seem confined to specific areas adjacent to the

nuclear envelope, they are highly dynamic within a restricted

volume (Hediger et al, 2002). These movements could reflect

a fluid attachment (Rosa et al, 2006), which could provide the

telomere freedom to rotate while remaining anchored to the

nuclear envelope. Alternatively, telomere motions could re-

flect sporadic detachments, during which spinning bursts

could relieve DNA helical stress.

If DNA helical stress can dissipate at chromosomal ends,

an obvious question is why DNA is relaxed only at the

chromosomal flanks and not along the entire chromosome.

One possible answer is that helical tension is constrained

within topologically closed DNA domains all along each

linear chromosome, with the sole exception of their terminal

compartments that are topologically open (Figure 6B). Such

terminal compartments should be delimited by a topological

boundary at some distance from the telomere. The transcrip-

tion stall would then sharply disappear at such boundary, the

location of which could vary from chromosome to chromo-

some. This architecture, however, does not fit in with our

experimental data, which show a transcription stall gradually

fading in all 32 chromosomal flanks.

A more plausible scenario to explain the regular response

of flanking regions is that, with chromosome extremities

being topologically open, the accumulation of DNA helical

tension depends on restrictions to DNA twist diffusion that do

not necessarily invoke tight domain boundaries (Figure 6B).

Figure 4 The positional response to DNA helical stress is not
consequent to different levels of transcription activity between
chromosomal core and flanking genes. (A) Comparison between
the effect of DNA (þ ) helical stress in chromosome flanking genes
(at o50 kb form the telomere) and chromosome core genes (the
rest), which are classified by their transcript levels before accumu-
lation of helical stress. The classes are deciles (10 equal groups of
about 480 genes) of genes with similar mRNA abundance at time 0
(yellow dots indicate averaged fluorescence units). The resulting
graph illustrates that flanking genes (blue) behave always different
from core genes (pink), irrespectively of their initial transcript
levels. (B) Comparison of the capacity to generate transcription-
driven supercoils between chromosomal core and flanking regions.
Each of the 32 spheres corresponds to an individual chromosomal
arm, being the sphere area proportional to the arm length. The
horizontal axis plots the core/flank ratio (log2) of supercoiling
potential for each individual arm (see text for details). Note how
some flanks can generate more transcription-driven supercoils than
their respective core regions. The vertical axis plots the core/flank
ratio of transcript level change (log2) for each individual arm after
the accumulation of DNA helical stress.

Figure 5 The differential response of chromosomal flanks to DNA
helical stress also occurs in Dsir3 backgrounds. (A) DNA extracted
from Dtop1 TOP2 sir3 and Dtop1 top2ts Dsir3 yeast strains after 0
and 120 min of thermal inactivation (351C) of topoisomerase II.
Both strains constitutively expressed a plasmid borne E. coli TopA
gene. The gel-blot shows the conformers of the yeast 2m circular
minichromosome. (�), negatively supercoiled DNA circles; (þ ),
positively supercoiled DNA. (B) The variation of transcript levels
(log2) induced by (þ ) helical tension (120 min of topoisomerase II
inactivation) in sir3 strains. The graph is constructed as those in
Figure 1C.
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In short linear DNA molecules (o2 kb), axial spinning of the

duplex allows very quick twist diffusion. However, in chro-

matin fibres confining several kb of DNA, such spinning

motion is severely hindered by the huge rotational drag

inflicted by the many bends and interactions of DNA

(Nelson, 1999; Stupina and Wang, 2004). Diffusion of helical

stress thus relies on the rotation of the chromatin fibre; and

such a regime will be feasible as long as the torque affected

by DNA helical tension overcomes the viscous rotational drag

of the revolving volume. We infer, therefore, that at internal

regions of the chromosome, the levels of DNA helical tension

needed to overpower the chromatin rotational drag must be

above the threshold levels that stall transcription. So, even

though some twist diffusion may occur, transcription can

hardly re-initiate. However, at the chromosomal flanks, the

revolving volume lessens and twist diffusion can take place

with lower levels of torque. Consequently, helical tension

builds up to lower values towards the telomere. The prob-

ability of transcription initiation should then improve beyond

some point and reach quasi-normal levels close to the chro-

mosomal end, as observed in our experimental data.

As the dissipation of helical stress by overpowering the

chromatin rotational drag relies on a general property of the

chromatin fibre, this effect should spread a similar distance in

all the chromosomal arms, thus in good agreement with our

results. A further inference on how DNA twist diffuses along

yeast chromatin is difficult to attain from our data. We can

anticipate, however, that twist diffusion is a slow process. If

dissipation of helical stress near the chromosomal ends was

fast enough to instantly counteract the (þ ) helical tension

generated ahead of the transcribing RNA polymerase, we

would observe also a different response between chromo-

some flanking genes transcribed towards and away from the

telomere. Yet, the escape of these genes occurs equally

regardless of their outwards or inwards direction of transcrip-

tion (Figure 2C). Finally, we expect that the positional

dependence associated to DNA torsional stress reported

here might apply also to other DNA transactions. Future

studies can examine, for instance, how DNA replication is

altered in the proximity of yeast chromosomal ends.

In summary, the results of our study propose two novel

traits regarding the architecture and the dynamic behaviour

of yeast chromosomes. First, they suggest that DNA is not

torsionally constrained at the chromosomal ends. This trait

has relevant implications for the nature of the anchoring of

telomeres to subnuclear structures; and also for the relevance

of DNA helical tension to modulate genome transactions,

which may be distinct at telomere-proximal and telomere-

distal regions. Second, our results suggest that frictional

restrictions to DNA twist diffusion might be an important

determinant for constraining helical tension along eukaryotic

chromatin. This trait invites to revise our simple view of the

organization of chromosomal DNA as a steady succession of

DNA domains separated by tight topological boundaries.

Figure 6 Summary model. (A) Generation and diffusion of DNA helical stress. In the absence of cellular topoisomerase I and II activities and
the presence of E. coli topoisomerase I, (þ ) helical tension is generated all along the yeast chromosomes because of unbalanced relaxation of
the DNA supercoils produced during DNA transcription. In internal regions of the chromosome (core), DNA (þ ) helical tension cannot diffuse
and accumulates until over-twisting of the duplex precludes transcription re-initiation. However, (þ ) helical tension can dissipate at the
chromosomal ends, so allowing transcription to re-initiate at nearby regions of the chromosome (flanks). (B) DNA topological constrains along
yeast chromosomes. (a) If DNA (þ ) helical stress could not dissipate at chromosome ends, a general stall of transcription would be expected
throughout the entire chromosome. Our results discard this model. (b) If DNA (þ ) helical stress could dissipate at chromosome ends, but
chromosomal DNA were organized as a succession of tight topological domains, a sharp transcription stall would be observed between the
relaxed terminal domains and the rest of the chromosome. Our results do not support this model, unless distal topological boundaries were
located beyond 100 kb from the telomere in all chromosomal arms. (c) If DNA (þ ) helical stress can dissipate at chromosome ends, but DNA
twist diffusion is mainly restricted by the large rotational drag of chromatin, a gradual escape from the transcription stall would be expected in
all chromosomal flanks, alike the observed in our results. As less DNA torque is needed in the chromosomal flanks to overcome the rotational
drag of chromatin, the probability of transcription initiation is gradually restored towards the chromosomal ends.
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Materials and methods

Yeast strains and growth conditions
S. cerevisiae strains JCW27 (Dtop1 TOP2) and JCW28 (Dtop1 top2ts),
carrying the null mutation Dtop1 or the thermo-sensitive mutation
top2–4, are derivatives of FY251 (Roca et al, 1992). Disruption of the
SIR3 gene was carried out by gene replacement with the dominant
selectable marker NAT1. PCR analyses of the Dsir3:NAT1 loci
confirmed the resulting strains JCW27-Dsir3 and JCW28-Dsir3.
Plasmid JRW13, a derivative of YEp13, carries the E. coli TopA gene
under constitutive pGPD yeast promoter. Yeast strains transformed
with JRW13 were grown at 261C to logarithmic phase in an
appropriate synthetic drop out medium containing 2% glucose. At
time 0 min, aliquots of the cultures were taken. The rest of the
cultures were placed at 351C and samples were taken after 30 and
120 min. Cells were pelleted and immediately stored at �801C.

Two-dimensional agarose gel electrophoresis
Total DNA extracted from yeast cells was loaded into a 0.6%
agarose gel containing TBE plus 0.6mg/ml chloroquine. The
electrophoresis was run for 20 h at 48V in the first dimension.
The gel slab was then equilibrated with TBE plus 3 mg/ml
chloroquine and electrophoresis in the orthogonal second dimen-
sion was run for 6 h at 66V. Gel-blot hybridization was carried out
using 32P-labelled DNA probes.

RNA preparation
Yeast cells were washed twice with 5 ml MilliQ water by means of
centrifugation (5000 g at 41C). Total RNA was extracted with the
RiboPure Yeast kit (Ambion, Austin, TX) and then treated with
DNase I (F Hoffmann-La Roche, Basel Switzerland) to remove
contaminating genomic DNA. The resulting total RNA was
quantified by spectrophotometry in a NanoDrop ND-1000 (Nano-
Drop Technologies, Wilmintong DE) and its integrity checked by gel
electrophoresis. Purified RNA aliquots were kept at �801C.

DNA microarray hybridization and analysis
Microarrays were provided by the Genomics Unit of the Scientific
Park of Madrid (Spain). They consist of 13 824 spots, each one
corresponding to a synthetic oligonucleotide (70-mer, Yeast Genome
Oligo Set, OPERON, Cologne, Germany) encompassing the com-
plete set of 6306 ORFs coded by the S. cerevisiae genome. Each ORF
was printed twice; 600 spots were used as negative controls, either
void or printed with random oligonucleotides; a small subset of
genes (ACT1, HSP104, NUP159, NUP82, RPL32, RPS6B, SWI1,
TDH1, TDH2, TUB4, and UBI1) were printed between 6 and 12
times for testing reproducibility; 15 mg of total RNA were used for
cDNA synthesis and labelling with Cy3-dUTP and Cy5-dUTP
fluorescent nucleotides, after indirect labelling protocol (CyScribe
post-labelling kit, GE-Healthcare, New York, NY). Labelling
efficiency was evaluated by measuring Cy3 or Cy5 absorbance in
Nanodrop Spectrophotometer. Microarray prehybridization was
performed in 5� SSC (SSC: 150 mM NaCl, 15 mM Na-citrate, pH
7.0), 0.1% SDS, 1%BSA at 421C for 45 min (Fluka, Sigma-Aldrich,
Buchs SG, Switzerland). Labelled cDNA was dried in a vacuum trap
and used as probe after resuspension in 110ml of hybridization
solution (50% formamide, 5� SSC, 0.1% SDS, 100 mg/ml salmon
sperm from Invitrogen, Carlsbad, CA). Hybridization and washing
were performed in a Lucidea Slide Pro System (GE Healthcare,
Uppsala, Sweden). Arrays were scanned with a GenePix 4000B
fluorescence scanner and analysed by Genepix Pro 6.0 software

(Axon Instruments, MDS Analytical Technologies, Toronto, Canada).
Data was filtered according to spot quality. Only those spots with
intensities at least twice the background signal and with at least
75% of pixels with intensities above background plus two standard
deviations were selected for further calculations. After these
criteria, over 70% of spots in each array were usually found
suitable for further analysis.

Data analysis
Microarray experiments were conducted by comparing pairs of
top2ts versus reference TOP2 strains. The results for each gene were
given as a ratio of pixel intensities (ratio of medians of the top2ts

strain divided by the TOP2 strain). Ratios were normalized within
the Genepix Pro 6.0 software. The experimental design provided for
each condition (0, 30, 120 min) up to 6 determinations for each gene
(three biological replicates and two replicated spots). Those genes
for which a minimum of 12 (out of 18) data values passed the
microarray quality standards were considered for statistical
analyses (4639 genes). Data were calculated as binary logarithms
(log2) of fluorescence ratios. Significant changes of expression
values between the starting point and at 30 and 120 min after the
temperature shift were determined by one-way ANOVA (Po10�3).

Quantitative real-time PCR analysis
An aliquot of RNA used in the microarray experiments was reserved
for qRT–PCR follow-up studies. First strand cDNA was synthesized
from 2mg of total DNAseI-treated RNA in a 20ml reaction volume
using Omniscript RT Kit (Qiagen, Valencia, CA) following manu-
facture’s instructions. qRT–PCR reactions were conducted in
triplicate using the SYBR Green PCR Master Mix (Applied Bio-
systems, Foster City, CA) and the ABI-PRISM 7000 Sequence
Detection System (Applied Biosystems). Gene-specific primers were
designed using Primer Express software (Applied Biosystems).
Amplified fragments were confirmed by sequencing in a 3730 DNA
Analyzer (Applied Biosystems) and comparison with the published
genomic data at SGD. Real-time PCR conditions included an initial
denaturation step at 951C for 10 min, followed by 40 cycles of a two-
step amplification protocol: denaturation at 951C for 15 s and
annealing/extension at 601C for 1 min. Given the singular pattern of
transcriptional changes observed in our study, no reference gene
could be used to compensate for inaccuracies in total RNA
quantitation.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org). Genomic datasets (biological tri-
plicates of the reported experiments) are stored in the GEO
databases (Series accession number GSE18242).
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