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Epilepsy is a group of chronic neurological disorders characterized by recurrent,

spontaneous, and unpredictable seizures. It is one of the most common neurological

disorders, affecting tens of millions of people worldwide. Comprehensive studies on

epilepsy in recent decades have revealed the complexity of epileptogenesis, in which

immunological processes, epigenetic modifications, and structural changes in neuronal

tissues have been identified as playing a crucial role. This review discusses the recent

advances in the biomarkers of epilepsy. We evaluate the possible molecular background

underlying the clinical changes observed in recent studies, focusing on therapeutic

investigations, and the evidence of their safety and efficacy in the human population. This

article reviews the pathophysiology of epilepsy, including recent reports on the effects

of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical

implications, along with further perspectives in epilepsy research.
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breakdown

INTRODUCTION

Epilepsy, a condition affecting the central nervous system (CNS), is characterized by the occurrence
of repeated seizures along with a chronic complex of somatic, vegetative, and psychiatric symptoms.
Epilepsy can be defined as when the patient experiences at least one of the following: (a) two or
more unprovoked (or reflex) seizures more than 24 h apart, (b) one unprovoked (or reflex) seizure
and, over the next 10 years, a recurrence risk of at least the general recurrence risk (60%) after two
unprovoked seizures or (c) a diagnosis of an epilepsy syndrome. Patients with epilepsy are prone to
generate epileptic seizures and consequential social, psychological, cognitive, and neurobiological
disabilities (1). It is estimated that 1–2% of the world’s population is affected by epilepsy (2, 3).
It may occur in all age groups and is connected with a burden of socioeconomical, behavioral,
psychiatric, and other medical issues for both the patient and their close ones (1, 4).

Epileptogenesis describes the process of structural modifications leading to seizure activity in
a normal brain (5). Throughout recent years, many hypotheses have been proposed to explain
the underlying etiopathogenesis of epilepsy, including neurodegeneration (6, 7), disturbance of
brain-blood barrier (BBB) (8), amygdala dysregulation, alterations of the glutamatergic system
(9), oxidative stress (10), hypoxia (11), and the epigenetic modification of DNA (12). Moreover,
the majority of studies on inflammation and epilepsy indicate the important role of inflammatory
markers in epileptogenesis through the dysregulation of cytokine balance in the CNS or through
the complement pathway. These hypotheses may not exclude one another and may in fact be
concurrently presented leading to the culmination of epilepsy. As ∼40% of cases of epilepsy have
an unknown etiology, further investigations into the potential causes are essential in order for
physicians to provide an optimal treatment for patients (13).
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WHO defines biomarkers as “almost any measurement
reflecting an interaction between a biological system and a
potential hazard, which may be chemical, physical, or biological.
The measured response may be functional and physiological,
biochemical at the cellular level, or a molecular interaction” (14).
The role of finding novel markers in post-epileptic brain damage
is a possible grasping point for the prevention of complications
and for the development of targeted methods of treatment in
the future. The need of an investigation into new biomarkers is
also augmented by the relatively low specificity of EEG, which
remains the main diagnostic tool in epilepsy (15). Biomarkers
may play a role in individualized epileptic treatment, based
on the patients’ biomarker profile. As there are many types
of epileptic conditions, each condition would have a certain
panel of biomarkers. Biomarkers would also play a role in
monitoring anti-epileptic treatment and may have a potential
value in determining patients who would benefit more from
surgical therapy.

NEUROINFLAMMATION AND
OXIDATIVE STRESS

Neuroinflammation is considered to be a primary factor
in epileptogenesis. Reactive oxygen species (ROS) has been
indicated to play a crucial role as mediators in the process
of neuronal injury (16–18). Currently, there are two suggested
pathways of ROS production, the non-enzymatic and the
enzymatic pathway. The non-enzymatic pathway is indicated
to be triggered by the ionization process, UV radiation
and toxic influence of chemicals and drugs. The enzymatic
pathway, on the other hand, is a result of intracellular
damage by enzyme-mediated processes including respiratory
chain, xanthine oxidoreductase (XOR), peroxisomal oxidases,
enzymes of the cytochrome P450 family, cyclooxygenases (COX),
lipoxygenases and NADPH oxidases (NOX). ROS is considered
to be a waste product of these enzyme-mediated reactions
(19). Recent studies suggest that ROS may play a crucial pro-
epileptic role including pro-inflammatory cytokine production
and microglial activation during epilepsy. McElroy et al. have
additionally proposed the role of ROS in modulating the course
of neuroinfection (20).

The increased production of ROS leads to microglial
activation, ultimately resulting in the release of pro-inflammatory
cytokines (20). Cytokines play an essential role in these processes
not only because they are responsible for the aggravation of
immune response, but also because they regulate the pro- and
anticonvulsive neuronal hyperexcitability (21, 22). In light of
McElroy et al.’s investigations, this concept was supported by the
results of decreased microglial activation through redox-sensitive
m-Tor pathway following the administration of anti-oxidative
factors (20).

Interestingly, other studies have demonstrated that the main
cytokine activator, cyclooxygenase-2 (COX-2), was triggered via
ROS through transforming growth factor-B-activated kinase 1
(TAK1) pathway (23, 24). These investigations brought together
ROS, COX-2 TAK1 pathway in the neuroinflammatory process.

To support this concept, it was verified that the temporal lobe
epilepsy (TLE) is associated with microglia activation, which in
turn leads to the production of ROS and other cytotoxic factors
(25–28). The activation of microglia through oxidative stress
promotes the apoptosis of pericytes through ROS elevation (29).

The Role of HMGB1 in Oxidative Stress
High mobility group box-1 (HMGB1) has recently emerged
as a potential biomarker of epilepsy (30). It takes part in the
immune response via activating macrophages and endothelial
cells, leading to the release of tumor necrosis factor-a (TNF-a),
interleukin-1 (IL-1), interleukin-6 (IL-6) by connecting to the
receptor for advanced glycation end products (RAGE) and to TL4
(Toll-like receptor 4). This specific connection triggers NF-kB
(nuclear factor kappa-light-chain-enhancer of activated B cells)
activation and thus the elevation of pro-inflammatory proteins
levels (31). Furthermore, via stimulating TLR4 and neutrophils,
HMGB1 is the factor that leads to oxidative stress (32, 33).
The HMGB1-mediated HMGB1-TLR2/4-NF-κB pathway has
been shown to take part in epileptogenesis via microglial
activation. HMGB1 has been additionally indicated as a potential
therapeutic agent in epilepsy and as a non-invasive biomarker,
which could identify patients with high risk of epilepsy (34). The
level of HMGB1 has been shown to increase within 3–4 h after
a drug-resistant epilepsy (DRE) seizure, proving HMGB1 to be
a promising marker (35). Zhu et al. also reported the elevation
of HMGB1 within 24 h after an episode of seizure in children,
in comparison to the control group. The authors suggested that
HMGB1 can be a prognostic factor of the frequency of seizures in
the course of epilepsy (36).

Hypoxia and Epilepsy
Hypoxia resulting from ischemic events can lead to the energetic
disturbances of homeostasis. The following dysregulation of
ATP-dependent ion-pumps drives the imbalance of sodium,
calcium, and potassium ions concentration, leading to the release
of excitatory amino-acids such as glutamate (37, 38). As a
consequence, an uncontrolled electric stimulation is provoked,
resulting in cellular brain injury (39–41). Hypoxia inducible
factor (HIF-1), a heterodimer protein consisting of two subunits
a and b, is involved in ischemic processes (6). The level of
HIF-1a depends on the partial concentration of oxygen (42). In
normoxemia, HIF-1a is rapidly brought down by the protein
von Hippel Lindau (pVHL)-mediated process of ubiquitin-
proteasome pathway. Hypoxia, on the other hand, blocks the
degradation of HIF-1a, resulting in its accumulation within the
cell (43). Factors responsible for the stabilization of HIF-1a
may include insulin, insulin-like growth factor, platelet-derived
growth factor (PDGF), epithelial growth factor, and interleukin-
1B (41). Moreover, HIF-1a is an important regulator of gene
expression in the peripheral tissues and the CNS which is
currently in a hypoxic state. The effect of HIF-1a is the promotion
of physiological processes including angiogenesis, glycolysis and
glucose transporter 1 (GLUT1) membrane recruitment (44).
The final effect of glycolysis is the accumulation of pyruvate
in neuronal cells which is then converted into butyric acid
via butyric dehydrogenase. This accumulation of by-products
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may lead to a decreased pH within the inner environment of
neuron, leading to its dysfunction and altered metabolic state.
The ketogenic diet which is based on lowered glucose intake may
omit this pathway regulated by HIF-1a and alternatively promote
beta-oxidation, converting substrates to acyl-CoA (45). Taking
this into consideration, the efficacy of a ketogenic diet for patients
with DRE can be beneficial. In addition, it has been shown
that a ketogenic diet also improves the outcomes of patients
with GLUT-1 deficiency syndrome (46). Studies on epilepsy-
induced rat models and post-mortem human histopathologic
brain samples supported a significant correlation between HIF-
1a elevation and epilepsy occurrence (42–44, 47) Numerous
analyses have supported the positive correlation between HIF-1
and the elevation of COX-2 production. It has been demonstrated
that HIF-1a binds to hypoxia responsive element on the COX-2
promotor located inDNA, resulting in the up-regulation of COX-
2 and PGE-2 (prostaglandin E2) (48). This could potentially
explain the mechanism of febrile seizures in pediatric patients,
seizures resulting from perinatal ischemia, and seizures occurring
after strokes and transient ischemic attacks (TIA). Investigations
and further understanding of the basis of hypoxia along with
oxidative stress as the underlying cause of epilepsy could lead to
the discovery of new potential epilepsy biomarkers. For the first
time, we suggest that both pathways of hypoxia and oxidative
stress may contribute to brain damage and epileptogenesis
through COX-2 activation (Figure 1).

MicroRNA AS THE NOVEL DIAGNOSTIC
TOOLS FOR EPILEPSY

MicroRNAs (miRNAs) are a group of single-stranded,
endogenous, non-coding molecules. It is estimated that 1–5% of
both animal and human genes are involved in the coding miRNA
(49). To date, over 500 genes which take part in miRNA coding
have been discovered and the number is still rising. miRNAs
take part in both physiological and pathological processes
through its regulation of homeostasis. Research has revealed the
involvement of miRNAs in cellular processes including cellular
division, cellular cycle control, cell differentiation, apoptosis,
angiogenesis, and oncogenesis (50).

Moreover, miRNA is involved in the immunological system
through its regulation of the immune responses during infection
(51–54). For this reason, miRNAs have been suggested to be
involved in epileptogenesis (55). Three hypotheses explaining
the origin of miRNA in biofluids were proposed. The first
hypothesis suggests the passive entry of miRNA into the systemic
circulation as a result of mechanical cellular damage, which may
take place during neuroinflammation. The second hypothesis
presumes that miRNAs enter the circulation via the actively-
secreted microvesicles (MV), which could also be involved in
intracellular communication. The third hypothesis proposes that
miRNAs may be actively secreted as a response to a large variety
of stimuli. This mechanism is preceded by the formation of the
complex of miRNA-Argonaut proteins (Ago) and HDL (56, 57).

Due to the feasibility of comparing histopathological nervous
tissue samples from both human and animals, the biological

processes involving miRNAs have been extensively studied. It has
been suggested that epigenetic modifications implicated in the
development of DRE through the modulation of gene expression
are involved in the absorption of anti-epileptic drugs (58).

Due to miRNA profiling in patients with epilepsy, the
significance of miRNA in the regulation of protein levels in
epileptogenesis has been identified. Elevated levels of miRNA-
23a, miRNA-34a, miRNA-132, miRNA-146a in epilepsy, in
particular, were frequently detected. Additionally, elevated levels
of miRNA-21, miRNA-29a, miRNA-132, identified as regulated
by p53, were noticed subsequent to episodes of seizures (59). The
significance in the plasma levels of miRNA-134 within the course
of antiepileptic drugs usage has been reported, in which miRNA-
134 could potentially serve as a peripheral biomarker reflecting
the acute epileptic episode during the course of the treatment
(60). Similarly, miRNA-4521, as reported by Wang et al. (61),
could serve as a potential biomarker in refractory epilepsy. It
has also been stated that the levels of miRNA-301a-3p collected
from the blood were different in patients with DRE compared to
epileptic patients who were responsive to therapy. Thus, it was
suggested that miRNA-301a-3p could be a marker for an early
diagnosis of DRE (59). In another study, the silencing expression
of miRNA-132 was shown to lead to a decreased number of
seizures. It was suggested that the silencing of miRNA-132 has an
impact on the MFs-CA3 pathway, which may provide beneficial
outcomes for patients with epilepsy (62).

Table 1 presents the recent reports on miRNA detected in
biofluids from patients with epilepsy.

The Role of miRNA in the Brain Blood
Barrier Damage
Elevated levels of miRNA-132 were observed in animal models of
CA3 status epilepticus (SE). Microinjection of antagomir against
miRNA-132 in animal models have additionally been found to
produce an anti-inflammatory effect (62). As the concept of
inflammation and BBB damage has been proposed, the link
between miRNA-132 and epileptogenesis was indicated (69).
Elevated levels of miRNA-34a after SE has additionally been
supported. Following the microinjection of antagomir against
mir-34a, an inhibition of caspase-3 was reported, suggesting
a possible association with increased neuronal survival and
decreased level of nerve tissue apoptosis. In turn, studies on
animal models and people with TLE have demonstrated the
regulatory role of miRNA-146 during epilepsy (70, 71).

Oxidative Stress and miRNA
Increasing number of studies indicate a role of oxidative stress
as the underlying cause of many diseases. Cellular redox signals
are mediated by miRNA, an important regulator of homeostasis.
On the basis of epigenetic modification, miRNA regulates ROS
at the stage of post-transcriptional degradation of NOX4 and
Nrf2rna, which is the down-regulatory mechanism of ROS
production, resulting in decreased synthesis of ROS (72, 73). For
example, miRNA-129-5p negatively regulates HMGB1 during
epilepsy. The TLR4/NF-kB signaling pathway is activated by
elevated levels of HMGB1. It has been shown that miRNA-
129-5p plays a role in the inhibition of the development
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FIGURE 1 | Oxidative stress and hypoxia as the key players of epileptogenesis. Enzymatic and non-enzymatic pathway of ROS production as well as increased level

of HIF-1α under hypoxic/ischemic condition leads to COX-2 activation. As the result, microglia is activated and cytokines production is augmented, which leads to

neuroinflammation. HIF-1α is also the factor that regulates the glucose metabolism in the central nervous system (CNS) through GLUT-1 synthesis. Dysregulation of

HIF-1a production may result in an accumulation of pyruvate in neuronal cells which is then converted into butyric acid via butyric dehydrogenase. This accumulation

of by-products may lead to a decreased pH within the inner environment of neuron, leading to its dysfunction and altered metabolic state. ROS, reactive oxygen

species; COX-2, cyclooxygenase-2; HIF-1α, hypoxia inducible factor-1 alpha; GLUT-1, glucose transporter-1. Illustration by Paulina Szuba.

of autoimmune encephalomyelitis-related epilepsy rat model
by targeting HMGB1. Dysregulation of miRNAs’ physiology
involved in maintaining ROS homeostasis may possibly lead to
oxidative damage and disease progression (74).

Hypoxia and miRNA
Under conditions of hypoxia, the expression of HIF1A mRNA
is elevated and HIF-1a protein stabilization is increased. HIF1,
the intracellular messenger of hypoxia, is transferred to the
nucleus and regulates the expression of target genes. HIF1
binds to the HRE sequence to the cluster mir-200a-mir429 on
chromosome 1, leading to an increased expression of miRNA-
429. Subsequently, miRNA-429 in the cytosol binds to a sequence
located in the 3’UTR of the HIF-1a miRNA, leading to the
decreased activity of HIF-1 (75). The upregulation of miRNA-
429 in human hippocampal tissues from TLE and hippocampal
sclerosis-convergence have been further supported, indicating
the high utility of this miRNA (76).

Circulating miRNA as Biomarker:
Prospects and Limitations
For decades, circulating miRNAs have been a research material
of interest. In contrast to the miRNA samples obtained
from invasive surgical procedures, biofluids, particularly blood-
derived plasma and serum, is easily accessible. A full blood or

serum test is minimally invasive compared to procedures such
as a lumbar puncture. miRNA studies in biofluids have become
increasingly accessible and applicable due to the development of
new molecular investigative methods. The possibility of using
miRNA derived from blood as a sensitive marker, both as a
prognostic and predictive factor of many diseases, is invaluable
for modern researches (77–79).

On the other hand, many reports point to the uncertain
efficacy of circulating miRNA. The origin of miRNA in the
bloodstream remains unclear. In addition, reports point to the
equivocal specificity of miRNA, which can be modified under the
influence of various extrinsic factors such as tobacco, pregnancy,
diet, or alterations to the circadian cycle (80–82).

THE ROLE OF THE COMPLEMENT
SYSTEM IN EPILEPSY

The complement system is composed of more than 30 proteins
which interact in a strictly organized manner to destroy
pathogenic agents and to protect normal tissues from the
deposition of immune complexes (83). There are three pathways
leading to complement activation: classic, alternative and lectin
(84). Each pathway leads to the activation of fragment C3,
which is cleaved to form opsonin C3b and C3a, promoting the
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TABLE 1 | Reports on miRNA detected in biofluids from patients with epilepsy.

miRNA Regulation Species Material Comments References

hsa*-miR-30a-5p Up-regulation Human Biofluid Expression was analyzed by microarray and RT-qPCR.

MiR-30a was overexpressed in the serum of epilepsy patients

during seizures onset. The expression of miR-30a was

positively associated with seizure frequency.

(63)

mir-143-3p; mir-145-5p;

mir-365a-3p; mir-532-5p

Up-regulation Human Biofluid Up-regulated in serum in patients with mTLE. MiRNA

measured 30min after seizures

(64)

miR-106b; miR-146a; miR-301a Up-regulation Human Biofluid Up-regulated levels in serum derived from patients with

epilepsy in comparison to healthy control group

(65)

miRNA-129-2-3p Up-regulation Human Biofluid Upregulated miR-129-2-3p confirmed by qRT-PCR

expression in plasma samples of refractory TLE group

(66)

hsa-miR-342-5p;

hsa-miR-4446-3p; hsa-miR-30b-5p

Down-

regulation

Human Biofluid Downregulated in DRE group compared to drug-responsive

group and control group

(67)

hsa-miR-134-5p Down-

Regulation

Human Biofluid Downregulated in plasma samples from MTLE patients when

compared with healthy controls

(68)

hsa-miR-194-5p; hsa-miR-15a-5p;

hsa-miR-144-5p;

hsa-miR-181c-5p; hsa-miR-889-3p

Down-

regulation

Human Biofluid Downregulated in serum in patients with epilepsy (67)

hsa-let-7d-5p; hsa-miR-106b-5p;

hsa-miR-146a-5p;

hsa-miR-130a-3p

Up-regulation Human Biofluid Upregulated in serum samples from TLE patients (59)

*hsa, homo sapiens.

activation of the lytic pathway, acting as anaphylotoxin and
causing damage to cell membranes and pathogens. C5a formed
through this process attracts macrophages and neutrophils, and
also activates mast cells (85).

The complement system plays a critical role in the innate
immune system and is one of the main mechanisms of the
effector adaptive humoral response (86). It mediates the reaction
against infectious agents through a coordinated sequence of the
enzymatic cascade, leading to the elimination of foreign cells
by pathogen recognition, opsonization, and lysis (87). Although
it is essential in maintaining immune balance, inappropriate
activation of the complement cascade can lead to tissue damage
and contribute to the development and progression of various
pathologies (88).

Increased Concentrations of
Ingredients, Biomarkers
Studies from human and animal models have indicated that
the regulation of the complement cascade contributes to the
development of epilepsy (89). The concentration of serum C3 in
untreated patients with epilepsy were shown to be significantly
higher than in that of healthy controls (90). Recent studies
have reported an elevated concentration of the classical pathway
components in patients with epilepsy compared to healthy
controls and in untreated epileptic patients compared to those
who are undergoing treatment (91–94).

Investigation into the plasma concentrations of a panel
of complement analytes in epileptic subjects presented a
highly predictive model comprising of 6 complement analytes
(C3, C4, properdin, FH, C1Inh, and Clu) which distinguish
between epilepsy cases and controls (89). This may useful

for the development of prognostic markers and effective
epilepsy therapies.

The Classical Pathway
In the classical complement pathway, the proteolytic cleavage of
the C3 fragment into C3a and C3b requires the linkage of the C1q
to cell surfaces, C1s and C1s proteases (95).

Soluble C3a promotes the recruitment of microglia and
inflammation, whereas C3b can be subsequently split into C3bα,
C3bβ, and iC3b, all of which can act as opsonins. Recent studies
have shown new non-canonical roles for phagocytic C1q-C3
signals in improving synaptic connectivity (96, 97). For instance,
the C1q and C3b analytes are associated with the removal of
synapses during the development of the visual system and the
elimination of unwanted structures of synaptic hippocampus in
models of neurodegenerative disorders (98–101). This indicates
the role of the classical complement pathway in the epileptogenic
remodeling of synaptic circuits associated with status epilepticus
and TLE (92, 102–104).

Furthermore, it has been shown that the C1q-C3 signaling can
modify the expression of the pro-inflammatory tumor necrosis
factor alpha (TNF-α) and interleukin 1 beta (IL1β) (105, 106).
In turn, the upregulation of TNF-α levels in microglia has
been observed in the condition of the SE-induced activation of
C5 (107). It has been further indicated that the SE-provoked
increases in C1q signaling and the generation of C3a and C3b-
mediated activation of C5a/b may contribute to the initiation
and/or preservation of neuroinflammation in epilepsy (108).
Further investigation would be required, however, to deepen the
understanding of complement cascade in this matter.

The C1q analyte has been additionally proven to prevent
further necrosis and inflammation by promoting phagocytosis
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of cellular debris and apoptotic cells (109), which could be
considered a neuroprotective mechanism subsequent to SE (110,
111). C1q has also been shown to reduce the lipopolysaccharide-
induced microglial release of IL-6 and TNF-α, and thus may
play a role in helping to reduce the pro-inflammatory responses
induced by SE (105, 112). Regardless of pathway activation, the
final stage of the complement cascade leads to the formation
of a membrane-attacking complex (MAC). MAC joins the cell
membranes, creating a porous functional channel, which leads
to the flow of ions and ultimately to the osmotic lysis of
the attacked cell (113). The infusion of single proteins of the
membrane attack the complex pathway (C5b6, C7, C8, and
C9) to the hippocampus of awake, freely moving rats has been
shown to induce cytotoxicity and behavioral and electrographic
convulsions (83).

Therapeutic Potential
The therapeutic implications in modulating the complement
cascade has been previously demonstrated (114). The anti-C5
antibody directed toward the final complement pathway is
of high therapeutic significance. Treatment with eculizumab
blocks the cleavage of C5 and prevents the formation of MAC
while leaving the rest of the complement system intact (115).
Most importantly, eculizumab appears to be well-tolerated
in all approved clinical settings (116). Eculizumab and other
designed inhibitors of the complement cascade are likely
to achieve clinical utility that goes far beyond paroxysmal
nocturnal hemoglobinuria and atypical hemolytic uremic
syndrome, including autoimmune disease, transplantation,
neurodegenerative, and other CNS diseases, including
epilepsy (117, 118).

ROLE OF CYTOKINES
IN EPILEPTOGENESIS

Recent clinical and experimental findings have supported the
premise of inflammation as a major pathological basis in
epileptogenesis. Inflammation can be studied through the
measurements of inflammatory cytokines, which are soluble
mediators of cell communication that are critical in immune
regulation. Inflammatory cytokines’ potentiation of free radical
species and alterations in glutamatergic neurotransmission,
ultimately result in neuronal excitoxicity, and consequential
structural alterations (such as BBB disruption) within the brain
which have been consistently observed in epileptic individuals
(119, 120).

Within the CNS, cytokines are produced as a response to
various inflammatory stimuli. In recent years, studies have
shown that epileptic seizures can induce the production of
cytokines, which in turn contributes to further inflammation
and structural changes, thereby establishing an ongoing cycle
of events contributing to the development and progression of
epilepsy (121). Both pro- and anti-convulsive effects have been
reported for cytokines, suggesting the diverse nature of cytokine
networks and the complex relationship between the immune

system and epilepsy. Here, we review the different mechanism of
cytokine involvement in the development of epilepsy.

Free Radical Generation
Pro-inflammatory cytokines are indicated to inhibit neurogenesis
through the direct induction of neuronal death via reactive
oxygen species (ROS) generation and excitotoxic mechanisms.
Due to its high intrinsic metabolic rate and low levels of
protective antioxidants, the brain is highly susceptible to free
radical neuronal damage. The generation of ROS from a
preceding inflammatory eventmay result in progressive oxidative
damage, cellular destruction and neuroprogression (122). Pro-
inflammatory cytokines including IL-1B, TNF-α, and IFN-y have
been shown to potentiate the effects of these free radicals (123).
Consequentially, mechanisms of neuroprogression, including
neurodegeneration and reduced neurogenesis, play a part in the
underlying pathophysiology of the epileptic brain.

Alterations in Glutamatergic
Neurotransmission
Alterations in glutamatergic neurotransmission could trigger
neuronal excitotoxicity, impaired neuroprotection, and the
necessary conditions for the development of epilepsy (124, 125).

IL-1B has been indicated to alter the glutamate transporter
expression leading to a decreased reuptake of glutamate.
Resulting excess synaptic glutamate lead to subsequent N-
Methyl-D-aspartic acid (NMDA)-mediated excitotoxicity and
cellular damage (126). Particularly within the neurons of the
hippocampus, the binding of IL-1B to the IL-1 receptor induces
the phosphorylation of the NMDA receptor and the potentiation
of its activity. This results in an increased neuronal calcium influx
and subsequent cell death (127).

Blood-Brain Barrier Compromise
Neuroinflammation induces structural changes to the brain
parenchyma, one of which is the leakage of the BBB and thereby
the changes in its functional properties (21). These alterations
lead to cellular damage and neuronal hyperexcitability, leading to
the reduced threshold for seizure induction. BBB disruption can
be triggered by direct insult to the endothelium or via systemic
factors, including activation of circulating leukocyte and release
of molecular mediators that increase vascular permeability (128).
Studies have shown BBB failure after exogenous administration
of pro-inflammatory cytokines including IL-1, IL-6, TNF-a, and
IFN-y, suggesting a link between the systemic immune system
and neuronal dysfunction (129).

COX-1 and COX-2
COX-2 is indicated to play an important role in the post-
seizure inflammation and hyperexcitability of the brain, possibly
contributing to secondary damage in the brain and the increased
likelihood of repetitive seizures. One pathway is through their
synthesis of PGE2, which has excitatory effects. Activation of a
single PGE2 receptor (EP2) has been shown to exacerbate the
rapid upregulation of IL-6 and IL-1B in activated microglia and
reduce the production of TNF-a, IL-10. EP2 thus regulates innate
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immunity in the CNS by alternating the balance between pro-
and anti-inflammatory cytokines (130).

Particularly in DRE, the cellular expression of COX-1 and
COX-2 and relationship to the efflux transporter expression is
particularly important for elucidating the underling effects of
inflammation. The “transporter hypothesis” of DRE suggests that
the overexpression of ATP-binding cassette (ABC) transporters
such as P-glycoprotein (p-gp) and BCRP at BBB may prevent
anti-epileptic drugs from reaching their targets. P-gp, an ATP-
dependent efflux pump, has the function of pumping foreign
substances out of the cell. P-gp up-regulation was in part caused
by elevated COX-2 activity and pharmacologic inhibition of
COX-2 has been shown to allow greater uptake of P-gp substrate
phenytoin (131, 132).

The contribution of COX-2 inhibition in neuroprotection
and its potential role in adjunct therapeutic strategy remains
inconclusive, as there has yet to be a selective COX-2 inhibitor
which has shown a favorable therapeutic outcome. Although
short-term exposure might be useful, the accompanying risk
of cardiovascular adverse effects makes it unlikely that chronic
COX-2 inhibition can be used in the long-term treatment of
epilepsy (130).

Pro-Inflammatory Cytokines in Epilepsy
The seizure-induced activation of the cytokine network may
suggest the interplay of the nervous-immune-endocrine systems
in the pathological process of epileptic seizures. IL-1B and
IL-8 are pro-inflammatory cytokines that activate additional
cytokine cascades and increase seizure susceptibility and organ
damage, whereas IL-1 receptor antagonist and IL-10 act as anti-
inflammatory cytokines that have protective and anticonvulsant
effects (22). It remains unclear whether increased cytokine levels
in plasma and CSF of epilepsy patients relate to a cerebral
inflammatory process alone, or arise as a result of postictal
peripheralmuscular recovery or circulating immune cells. Several
studies related cytokines to changes in neuronal excitability and
suggested a potential role for targeted therapy (21, 133).

IL-1B

While IL-1 cytokines are constitutively expressed at very low
levels in the human CNS, they are often elevated in the brain
under certain pathological states such as during an active seizure,
hypoxic injury, and during the process of an infection (22).
Recent clinical studies have reported changes in levels of IL-1B in
the blood, CSF, and brain tissue (22). A significant difference was
found where the level of in IL-B in CSF was increased in patients
with generalized tonic-clonic seizures compared to the control
group. The increased levels also show a significant positive
correlation with the duration and frequency of seizures (134). A
decrease in IL-1ra/IL-1B ratio was reported after a seizure, that
leads to increased influence of the pro-inflammatory IL-1B and
may implicate a pro-inflammatory state in the brain (135).

Other studies found no significant differences in the IL-1B
concentration in blood and CSF after generalized tonic-clonic
seizures (22). Studies in patients with focal epilepsy, mesial
TLE, and febrile seizures similarly showed that postictal plasma
concentrations of IL-1B did not significantly differ from baseline

levels (21, 127, 136, 137). However, an increased level of IL-1B
was found in post-mortem samples of patients with TLE when
compared to autopsy controls (127).

Therapies for auto-inflammation including IL-1 blockade
have been indicated in the treatment of refractory epilepsy
(138). Febrile infection-related epilepsy syndrome, a rare but
devastating encephalopathy occurring after a febrile illness,
showed an improvement with anakinra while in refractory status
epilepticus. This suggests that this treatment may be a useful
adjunctive medication for certain cases of refractory epilepsy
syndromes (139).

IL-6

IL-6 is a primary pro-inflammatory cytokine involved in the
acute phase of the immune response. Seizures cause changes
in levels of IL-6 both in CSF and in the peripheral blood. The
magnitude of these changes is related to the severity of seizures.
IL-6 levels are strongly increased after recurrent GTCS, whereas
after single tonic-clonic or prolonged partial seizures IL-6 levels
are increased to a lesser extent (140, 141). IL-6 levels have
been reported to be significantly higher in the daily generalized
motor seizures than in either intermittent seizures or in control
subjects (142). This indicates the positive correlation between the
magnitude of IL-6 activation and severity of cerebral epileptic
activity. A meta-analysis of serum IL-6 levels in TLE patients
revealed marginal but significant IL-6 elevation when compared
to controls (143).While IL-6 seems to be consistently increased in
epilepsy patients, it is not possible to explain whether it is a cause
or consequence of the disease. A case study indicated that after
blocking IL-6R with the monoclonal antibody tocilizumab, stable
remission of epileptic symptoms could be achieved. This suggests
the possible therapeutic implications and efficacy of tocilizumab
in the treatment of synaptic diseases which needs to be further
confirmed by controlled studies (144).

IL-8

IL-8, a pro-inflammatory cytokine, plays a role in the promotion
of neuronal growth after injury and in the stimulation of
nerve growth factor production, constituting both damaging and
reparative functions involved in the pathogenesis traumatic brain
injury. IL-8 is found to be significantly increased in the serum
of patients with partial onset seizures (145). It is reported to be
associated with seizure severity (measured by seizure frequency,
VA score, or NHS3) in TLE, extra-temporal lobe epilepsy, and
idiopathic generalized epilepsy (136). In neonatal seizures, IL-8
levels significantly increased within 24 h and remained increased
after 48 and 72 h (22).

TNF-a

Although TNF-a is a prominent pro-inflammatory marker,
there are limited reports on the significance of TNF-a in
epileptic patients. No significant differences were found in
the serum of patients with daily or intermittent generalized
motor seizures (142). A study reported decreased frequency of
CD8+ T-lymphocytes expressing TNF-a in mTLE patients, in
which lower frequency could be explained by the migration
of pro-inflammatory CD8 T-cells to brain areas affected
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by repetitive seizures, thus reducing their frequency in the
peripheral blood (133). A study reported that in DRE resulting
from Rasmussen’s encephalitis, some patients showed seizure
improvement following adalimumab administration, an anti-
TNF-a therapy. In this study, patients had over a 50% decrease in
seizure frequency and shown an improvement in their functional
deficit. Further studies are necessary to confirm the results of the
efficacy of adalimumab and its further therapeutic implications
in epilepsy (146).

Anti-inflammatory Cytokines in Epilepsy
IL-1Ra

IL-1Ra, the antagonist of IL-1 receptor type 1, limits IL-1B-
mediated actions through the inhibition of IL-1B’s biological
activities and its receptor binding. IL-1Ra is induced in response
to seizures, and is indicated to exert neuroprotective and
anticonvulsant effects. Increased levels of IL-1Ra is observed after
episodes of seizures. Its elevation after generalized seizures is
higher than its increase after complex partial seizures, indicating
its reflection on the seizure severity (21). In a study on neonatal
seizures, IL-1Ra was continuously inactivated with significantly
lower concentration in seizure group within 72 h of seizure
attack. It is hypothesized that this lack of consistent IL-1Ra
induction in response to epileptogenic environment may be
characteristic of neonatal seizures, making the neonatal period
more vulnerable to seizures (22).

IL-10

IL-10 plays an important regulatory, anti-inflammatory
role, counteracting various pro-inflammatory processes
during infection as well as in autoimmune disorders. The
anti-inflammatory effects of IL-10 is mediated through the
deactivation of macrophages, which in turn decreases the
production of pro-inflammatory cytokine production by T-cells.

Although increased levels of pro-inflammatory cytokines were
primarily found in patients with epilepsy, significant elevations
of CSF IL-10 were also observed in epileptic patients (22). It has
been hypothesized that the increase of IL-10 in CSF of epilepsy
patients can be due to counteracting mechanisms to the pro-
inflammatory stimuli. As an example, in neonatal seizures, IL-10
levels were elevated in plasma 48–72 h after seizure onset. This
may indicate the enhanced protective role of IL-10 which has an
anticonvulsive effect in neonatal seizure patients (22).

Other Cytokines
EPO

Different cell types within the nervous system, including neurons,
glial cells, endothelial cells, produces EPO, and expresses EPO-
R (147). Several studies have demonstrated that EPO could
enhance phagocytosis in polymorphonuclear cells and reduce the
activation of macrophages, thus modulating the inflammatory
process. EPO could play a protective role in neuronal survival
after an epileptic seizure. A significant difference in EPO levels in
the CSF has been observed between seizure groups and control
subjects. Changes in the levels of EPO after generalized tonic-
clonic seizures has been reported to positively correlate to the
duration and frequency of seizures (148).

Hs-CRP

High-sensitivity CRP (Hs-CRP) is a useful biomarker to
detect chronic, subtle inflammation, which is not detected by
conventional CRP values. It is significantly higher in the daily
generalized motor seizures than in either intermittent seizures or
control (142).

CCL2

Chemokines, expressed in microglia, astrocytes, and endothelial
cells, plays a role in the guidance of inflammatory mediators
toward the source of inflammation and in the activation
of leukocytes (149). CCL2 is one of the primary elevated
inflammatory chemokines observed in patients with
pharmacoresistent epilepsy. It is of particular interest after
results from animal studies reveal its upregulated expression
in addition to the enhancement of seizure frequency as a
result of induced systemic inflammation. Inversely, exogenous
administration of anti-CCL2 antibodies suppress LPS-mediated
seizure enhancement in chronically epileptic animals. Although
there are limited results from human studies, these observations
may point to the significance of CCL2 in the molecular
pathways that link peripheral inflammation with neuronal
hyperexcitability (150).

In Table 2 we present the summary and characteristics of the
above-mentioned factors.

Figure 2 summarizes the discussed pathways which could
potentially lead to the development of epilepsy.

PROTEINS AND AMINO ACIDS ROLE
IN EPILEPSY

Aspartate, Glycine, Glutamate, and
NMDA Receptor
The role of aspartate and its N-methyl-D-aspartate receptor
(NMDA-R) has been widely discussed in the previous
decade. A clear connection exists between this amino acid
and epileptogenesis, though the exact mechanism is still
debatable. NMDA-Rs are ionic glutamate receptors. Several
characteristic attributes of NMDA-Rs include co-agonist
activation, extracellular Mg2+-induced voltage-dependent
blockade, elevated permeability to Ca2+, and slow gating and
deactivation kinetics (151).

Aspartate and glutamate can both activate NDMA-R, with
glutamate being the one with a stronger stimulation potential.
Glycine is a required co-agonist. However, it can be exchanged
for stronger binding D-serine (152). Ronne-Engström et al.
presented the changes of amino acids level in extracellular
fluid (ECF) taken by microdialysis from the epileptogenic brain
regions of patients suffering from epilepsy. There was the greatest
increase in the aspartate level, and the levels of glutamate, serine,
and glycine also increased significantly (153). This indicated the
possible role of NDMA-R in epileptogenesis.

There are different mutations concerning NMDA-R subunits.
GluN1 subunit is encoded by GRIN1 gene at chromosome
9q34.3, with twelve mutations previously described (154, 155).
GluN2A is encoded by GRIN2A gene at chromosome 16p13.2,
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TABLE 2 | Cytokines and their main role in epileptogenesis.

IL-1B IL-6 IL-8 TNF-a

Action • Pro-inflammatory cytokine

• Elevated under certain pathological states

(active seizure, hypoxic injury, infection)

• Pro-inflammatory cytokine

• Involved in the acute phase of the

immune response

• Pro-inflammatory cytokine promote

neuronal growth after injury

• Stimulates the production of nerve

growth factor

• Pro-inflammatory cytokine

Generalized tonic-clonic

seizures

• No changes in plasma levels, no significant

differences

• CSF IL-1B levels show an increase after seizure

with a significant positive correlation with the

duration and frequency of seizures

• Levels strongly increased after single and

recurrent GTCS

• IL-6 significantly higher in the daily

generalized motor seizures than in either

intermittent seizures or control

• Associated with seizure severity • No significant differences

Partial seizures • No changes in plasma levels • Levels increased in prolonged partial seizures

but to a lesser extent than in GTCS

• Elevated levels in serum

Neonatal seizures – – • Significantly increased within 24 h;

remained increase after 48–72 h

Mesial temporal lobe

epilepsy

• Increased level in brain tissue • Increase frequency of CD4+ T-lymphocytes

expressing IL-6

• IL-6 increased in serum

• Associated with seizure severity • Decrease frequency of CD8+

T-lymphocytes expressing

TNF-a in mTLE patients

Febrile seizures • No significant differences in CSF and serum • No significant serum elevation

References (22, 127, 134–139) (140–144) (22, 136, 145) (133, 142, 146)

IL-1Ra IL-10 EPO CRP CCL2

Action • Anti-inflammatory cytokine

• Limits IL-1B-mediated

pro-inflammatory actions through

the inhibition IL-1B’s biological

activities and receptor binding

• Neuroprotective and

anticonvulsant effects

• Anti-inflammatory cytokine

• Suppression of pro-inflammatory

cytokine production

• Enhance phagocytosis in

polymorphonuclear cells

• Reduce the activation of

macrophages

• Possible protective role in neuronal

survival after an epileptic seizure

• Biomarker to detect

chronic,

subtle inflammation

• Guide inflammatory mediators

toward the source of inflammation

• Activation of leukocytes

Generalized

tonic-clonic seizures

• Levels increased after seizure,

higher in generalized seizure than

after complex partial seizures

• Increased level in CSF • CSF EPO levels show an increase

after seizure with a significant

positive correlation with the

duration and frequency of seizures

• High-sensitivity CRP

(Hs-CRP), IL-6

significantly higher in the

daily generalized motor

seizures than in either

intermittent seizures or

control

• Elevated in patients with

pharmacoresistent epilepsy

Partial seizures • Levels increased after seizure • Increased level in CSF

Neonatal seizure

(hypoxic-ischemic

encephalopathy-

induced

seizure)

• Levels increased within 24 h; rapid

decreased after 48–72 h

• Increased within 24 h; remained

increase after 48–72 h

References (21, 22) (22) (147, 148) (142) (149, 150)
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FIGURE 2 | Potential mechanisms occurring during epileptogenesis and their correlations with one another. Both oxidative stress and hypoxia have been previously

reported to induce epigenetic modifications of DNA. This may result in the activation of cytokines and the complement system. Consequently, the resulting

neuroinflammatory processes may in turn induce the production of cytokines and the elements of the complement system in a feedback loop. Neuroinflammation is

the primary factor which leads to BBB destruction, neurodegeneration and the dysfunction in the glutamatergic system resulting in the dysregulation of GABA

synthesis. Culmination of the above-mentioned mechanisms result in epilepsy. GABA, gamma-Aminobutyric acid. Illustration by Paulina Szuba.

which is a genome hotspot, and very susceptible to mutation,
eighty-two of which were previously described (155, 156).
These mutations are also suspected to be strongly connected
with epileptogenesis. GRIN2B, encoding the CluN2B subunit
is located on chromosome 12p13.1, with thirteen mutations
connected with epileptogenesis (155, 157). One epileptogenic
mutation is also known in the GRIND2D gene on chromosome
19q13.3, encoding the GluN2D subunit (155, 158).

Different mutations present with different disease phenotypes.
GRIN2A mutation is commonly associated with childhood
epilepsy syndromes within epilepsy-aphasia spectrum, such as
benign epilepsy with centrotemporal spikes (BECTS), Landau-
Kleffner syndrome (LKS), and epileptic encephalopathy with
continuous-spike-and-waves-during-slow-wave-sleep (CSWSS)
(159, 160), whereas GRIN1, GRIN2B and GRIN2D mutations
present with developmental delay and more severe phenotypes
of epilepsy (161, 162). This is connected with the embryonic
expression of subunits encoded by these genes and the fact that
GluN1 is a subunit required for proper functioning of NDMA-
Rs throughout the brain (163). However, GRIN2A can also
lead to more severe phenotypes, such as early-onset epileptic
encephalopathy. Among relatives, the genetic penetrance may
vary and thus not everymember will be affected by epilepsy (155).

Studies have indicated the inflammatory background
of NMDA-R-associated epilepsy. IL-1β and HMGB1 use
interleukin 1 receptor type I (IL-1R1) and Toll-like receptor 4
(TLR4), respectively, to activate Src kinases-dependent NR2B
phosphorylation and to enhance NMDA-mediated Ca2+ influx
(164, 165). Furthermore, HMGB1 uses physical, non-receptor
interaction with presynaptic NMDA receptors, resulting in
the release of Ca2+-dependent glutamate. This mediates

inflammatory cell loss and epileptogenesis by the excitability
of CA1 neurons via reduced NMDA-induced outward current
(166). NMDA-dependent long-term synaptic depression in the
hippocampus is also connected with the activation of JAK/STAT
pathway by IL-6, which has a significantly higher occurrence of
epileptogenic neuronal damage (167). Additionally, the exposure
to lipopolysaccharides in early childhood correlates with a
further poor developmental outcome due to chronic changes to
NDMA-R and its units’ expression in hippocampus and cortex
(168, 169).

Martell et al. showed the correlation between the activation
of NMDA receptors and voltage-dependent intrinsic oscillations
in intracellular whole-cell patch clamp recordings of neocortical
pyramidal neurons, with a simultaneous instability of the
neuronal system, presented by the whole-cell I-V curve and the
lower frequencies in resonance. This suggests the role of NMDA-
R in both producing low-frequency oscillations and in promoting
cell responsiveness to lower frequencies, which could make these
neurons more prone to epileptogenesis (170).

In a recent study involving post-traumatic epilepsy (PTE)—
kindled rat models and a small group of patients with temporal
lobe refractory epilepsy, Liu et al. (171) shows a significant
decrease in microfilament heavy chain level in the epileptic
brain tissue, which is a reflection of axonal impairment. He
also observed an elevated level of amyloid precursor protein
(APP), but its contributions toward epileptogenesis remain
unclear. On one hand, reduced level of APP is connected with
increased susceptibility to seizure, as reported by Steinbach et al.
(172). However, the elevated level of APP is also connected
to hyperexcitability (173). What was observed by Liu et al.
was the ability of NMDA-R antagonists to both counteract the
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accumulation of APP and reverse previous accumulations, while
NMDA-R activation can lead to the blockage of axonal transport
which is crucial for maintaining physiological neuronal function.
The hypothesis is that the process is controlled by the upregulated
activity of Cdk5 and GSK-3β (neurofilament kinases), in which
elevated levels were observed in brain tissues of both human
and rat models. Both kinases use different pathways to slow
down the axonal transport. GSK-3β downregulates kinesin-based
motility (174) and increases neurofilament bundling (175), while
Cdk5 uses the phosphorylation of NFH side arms (176), and
the pathway via Lis1/Ndel1-dependent regulator in conditions of
stress (177).

The potential clinical impact of these findings was tested on
a rat model with kainic-induced SE, relating to limbic system
protection by NDMA-R inhibitors. Hippocampal and limbic
system damage has been considered as potential starting points
for the later development of epilepsy among children with febrile
seizures (178). Studies have also indicated that the lesions in the
limbic system underlie the predisposition to febrile seizures (179)
or are secondary to early epileptic signs (180, 181).

Therefore, the clinical implication of limbic system damage
and its role in neuroprotection remains equivocal. The inhibition
of NMDA-R by dizocilpine after SE showed processes of
neuroprotection in most affected limbic system regions, except
for the hilus of the dentate gyrus and the substantia nigra pars
reticulata. Although the hilus was susceptible to damage during
SE, it was not progressive in the NDMA-R inhibitor group. Thus,
dizocilpine was suggested to have a potentially protective role.
A reduced level of fragmented DNA and histological apoptosis
markers suggests that the inhibition of NDMA-R could prevent
neuronal apoptosis. The prevention of the loss of dentate granule
cells is of clinical importance as the resulting hyperexcitability
in damaged regions may ultimately lead to the development of
epilepsy. However, the neuropathological indication of neuronal
protection did not correlate with the clinical prevention of
spontaneous recurrent seizures (SRS) (182). Additionally, a study
on ketamine, another NDMA-R antagonist, on pilocarpine-
induced SE rat model reproduced similar results to those from
the kainic model concerning the development of SRS (183).
On the other hand, the limitation of the dizocilpine study
was the injection of only a single dose of NMDA-R inhibitor,
which cannot exclude the fact that, with repetitive inhibition,
the neuropathological protection could be followed by clinical
improvement (182).

The development of proper treatment based on NDMA-
R inhibition is still an ongoing process, with its first data
reported mostly through case studies (155). In the case of a 6-
year-old child with GRIN2A mutation and early-onset epileptic
encephalopathy, non-responsive to conventional methods of
treatment, good response to memantine (159), an FDA-approved
drug used clinically for the treatment of Alzheimer’s disease, was
observed. In rat models, memantine was observed to significantly
lower the reduction of NFH by decreasing Cdk5 and GSK-3β,
showing probable mechanisms of its protective role. GLuN1 and
GLuN2B inhibitor, ifenprodil, showed similar, promising results
(171). A number of experiments of in vitro electrophysiological
models included different NMDA-R inhibitors, such as ketamine,

magnesium, dextromethorphan, dextrorphan, amantadine, and
TCN-201 (159). TCN-201 in rat models significantly reduced the
number of epileptiform events (184). The most commonly used
inhibitor, memantine, occurs as a stronger, and safer NMDA-R
inhibitor than amantadine (185). Ketamine has lower potency
and is therefore less effective than memantine. An analysis of
the potential of a selective GluN2B negative allosteric modulator,
radiprodil, was proven to be more effective than other NDMA-R
inhibitors in some variations of gene mutations (186).

NDMA-R inhibitors are not always equally effective when
used in monotherapy. In a case study of two children
with GluN2D V667I mutation, one remained refractory to
the monotherapy of memantine, midazolam, pentobarbital,
ketamine or magnesium, while polytherapy with ketamine and
magnesium i.v. proved to be beneficial. In another case, in
which the patient was found to be refractory to memantine
and polytherapy of memantine, sulthiame, and lamotrigine
improved his condition. This indicates the possible usage of
NDMA-R antagonists in polytherapy along with conventional
anticonvulsant (158).

The Role of Glutamine Synthetase
Glutamine synthetase (GS) is an enzyme characteristic for
astrocytes. It has a leading role in the glutamine-glutamate-
ammonia cycle. Glutamine is involved in many biological
processes including the Krebs’ cycle and is a precursor to
the neurotransmitters gamma-aminobutyric acid (GABA) and
glutamate (187, 188). It connects processes of cell metabolism, the
detoxification of ammonia, glutamate, and the neurotransmitter
pool role (189, 190).

Physiologically, glutamate released from synapses is converted
by GS into non-toxic glutamine due to its uptake by glial cells,
mostly via the excitatory amino acid transporter 2 (EAAT2), and
then transported back to neurons, repeating the cycle (191, 192).
GS is expressed on glial cells, where it is responsible for 80%
of glutamate transport (193, 194). The cycle of glutamate and
glutamine is also affected by the malfunction of the EAAT2 (195,
196), phosphate-activated glutaminase (197) and the vesicular
glutamate transporter 1 (VGLUT1) (198).

Chronically elevated levels of extracellular glutamate lead
to increased excitotoxicity (199–201), as observed in various
neuropsychiatric disorders (202), including refractory epilepsy.
The studies on GS after SE in animal models are equivocal. In
kainate models, in the latent phase GS expression was higher,
while it decreased in the chronic phase (203, 204). In the
pilocarpine model, however, GS in the chronic phase appeared
redistributed rather than downregulated (205).

Mesiotemporal sclerosis (MTS) is characterized by region-
specific neuronal loss (206–208), reactive alterations in
astrocytes, gliosis, and mossy fiber sprouting (209, 210).
Astrogliosis, a characteristic feature for MTS, presents with an
upregulation of the intermediate filament marker, glial fibrillary
acidic protein (GFAP) (211–214). This pathomechanism has
been observed in TLE, a type of refractory epilepsy (215).

In TLE patients and in rodent epilepsy models, regions of the
hippocampus affected by cell death shows downregulated GS,
leading to an increase in extracellular glutamate concentration,
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ultimately resulting in neural hyperexcitability, excitotoxicity,
and neurodegeneration in epilepsy (205, 216). Using magnetic
resonance spectroscopy, it was observed that what underlies
this downregulation is the disruption of glutamate-glutamine
cycle. Not only was the glutamate level increased and the
glutamine level decreased, the process of cycling was slower
(217). The glutamate receptor subunits GluR1 and GluR2 in
the hippocampus appeared to be upregulated. In two studies of
resected tissue obtained from subjects affected by TLE, however,
no changes in glutamate transporter expression were found
(215, 218).

In brain microdialysis studies, it was observed that the
increase in glutamate level occurred seconds before a seizure
started and the peak was observed for no shorter than 15min
after the end of EEG recordings of the seizure (215, 219).
Analogs of glutamate or glutamate itself can trigger seizures and
its antagonists counteracts a seizure occurrence (220, 221). In
addition, genetic deletion in GS or EAAT2 expression (222) or
the injection of its inhibitor such as methionine sulfoximine
led to spontaneous seizure in a rodent model (223–226).
Currently, there are no known substance that would alleviate
epileptogenesis caused by GS or EAAT2 disruption. The role of
genetic engineering in treatment is yet to be described.

P2X7 Receptor (P2X7R)
One of the most discussed receptors with a well-studied role in
epileptogenesis is P2X7R, a cell surface-expressed, purinergic,
ionotropic receptor for ATP, which is released in the event of
neurotrauma (e.g., seizure). In rodent models, P2X7R, in contrast
to other receptors from P2X family, is only expressed in the
postnatal period, reflecting a correlation with CNS maturation
and the development of purinergic signaling, required for proper
development (227–229). Abnormalities in purinergic signaling
lead to abruptions in neuronal migration and axonal outgrowth,
disrupting proper synaptogenesis, and the development of
microglia and astroglia (230, 231).

ATP release roots through both a physiological, activity-
regulated manner and through neuronal and glial damage.
All of P2X receptors bind to ATP (232). P2X7R requires
a high amount of this ligand, a characteristic feature for
pathological conditions (233). The activation of P2X7R is
connected with immunological reactions of microglia and
the release of caspase-1-dependent interleukin-1b (IL-1b),
regulated by inflammasomes (234). This interleukin, in turn,
promotes glutamatergic signaling and upregulates the activity of
cycloxygenase-2 (COX2), nitric oxide synthase (NO synthase)
and TNF-a, leading to increased excitability (125, 235). The
expression of P2X7R on a molecular level seems to be regulated
by the Specificity protein 1 (Sp1) transcription factor in neuro
2a cells (236) and posttranscriptional silencing by microRNAs.
The latter was observed in mice model with induced status
epilepticus (237).

TNF-a is primarily a product of macrophages and T-cells,
existing at low levels in the physiological brain. It can be
rapidly upregulated in pathological conditions by glial cells,
neurons and the epithelium. The main pathways of TNF-
a activity include NF-kB binding leading to cell death (238)

and the activation of p38 mitogen-activated protein kinase
resulting in cell survival (239). Studies on the P2X7R agonist,
2′-3′-O-(benzoyl-benzoyl) ATP (BzATP), and its antagonist,
oxidized ATP (OxATP), indicates a crucial role of TNF-a
in the homeostatic balance between neuronal cell death and
neuroprotection. The activation of P2X7R, followed by TNF-a
activation, was shown to reduce glutamate-induced neuronal cell
death (240, 241). The modulation of P2X7R by its agonists and
antagonists in a rat pilocarpine epilepsy model indicated that
the activation of P2X7R and its induction of TNF-a can lead to
more evident neuronal damage within the hippocampus (242).
However, in KASE model, P2X7R antagonist treatment was not
associated with astroglial protection (243, 244).

The inhibition of P2X7R is also connected with the reduction
of neutrophil infiltration after SE via Monocyte Chemoattractant
Protein 1 (MCP-1) (245–247). Immunoreactivity is detected
in microglia and further regulates the activity of Macrophage
Inflammatory Protein 2 (MIP-2), leading to neuronal damage
(248). In addition, P2X7R modulates glutamate and GABA
release in the hippocampus (233, 249–252), lowering the
intracellular potassium level and depolarizes sodium and calcium
entry (253). It is possible for P2X7R to modulate the activity
of neurons by PanX1, a membrane channel opened by P2X7R,
which modulates neuronal cell death and neuronal activity (254).

P2X7R is upregulated in seizures within the hippocampus
and the cortex in mouse models. This upregulation in HI
seizures models is prolonged, leaving the brain susceptible to
further epileptiform events and epilepsy development (255).
This would lead to a rapid or an enhanced release of pro-
inflammatory cytokines such as IL-1b, resulting in a prolonged
neuroinflammatory response and further injury (256, 257) and
a disruption of cognitive and hippocampal function of brain
regulated by IL-1b, which seem to be affected in HI seizures in
rodent model (255).

In various clinical studies, the injection of P2X7R
antagonists such as A-438079, JNJ-47965567, Brilliant Blue
G and JNJ-42253432 lead to reduced seizure intensity.
It also limits the immunological reaction via caspase-
activation and neuroinflammatory genes transcription (232).
The antagonists proved helpful in different neurological
abnormalities, such as Alzheimer’s disease, traumatic brain
injury and Parkinson’s disease (258–262). They were also
studied in non-neurological conditions and appeared safe
and well-tolerated, although they showed no efficacy in those
diseases (263–265).

A-438079 injection proved effective in kainic rat models of
status epilepticus. The neuroprotective outcome of A-438079
was also observed in global hypoxia invoked in rats, a model
for neonatal hypoxic-ischemic (HI) seizures. However, the effect
on post-hypoxia seizure was limited due to the short-term
study duration. A high dose of the antagonist did not present
comparable results, indicating a short duration of action and a
narrow therapeutic window (251). In another study of a KASE
epilepsy model, A-438079 combined with lorazepam caused
seizures cessation during status epilepticus. However, it is unclear
whether the drugs had a crucial role (266). Comparable results
in HI seizures mice model was also observed for JNJ-47965567,
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with a similar clinical limitation for its usage (232). None of
the antagonists presented full cessation of seizures, indicating
that seizures can be triggered by a different neurotransmitter
rather than by ATP (267, 268). JNJ-42253432 led to less severe
phenotype of epileptiform activities though failed to suppress
SRS (243).

Brilliant Blue G (BBG), a selective P2X7R antagonists
reducing Ca2+ influx in neuronal cells, which in turn
increases glutamate transporter 1 (GLT-1)/Glutamate aspartate
Transporter (GLAST) mRNA stability, reducing glutamate
release. This leads to the recovery of astrocytic GLT-1/GLAST
function and consequential higher glutamate reuptake
(269). This is crucial for the prevention of excitotoxicity.
In rat models, BBG administration helped in PTZ-induced
kindling animals to improve cognitive functions, such
as learning and memory, which can be a clinical sign of
reduced hippocampal injury and cell death (270). However,
BBG had a non-satisfactory anticonvulsive effect in 6Hz
electroshock-induced mice model, not affecting the seizure
threshold (271).

Aquaporin 4 and Its Role in Neuroexcitation
Aquaporin 4 (AQP4) is a protein from the aquaporin family of
hydrophobic membrane channels, serving as a water channel in
accordance to the osmotic gradient (272–275).

AQP4 is expressed by glial cells in the brain and the spinal
cord, mainly within points of contact between astroglial end-
feet and blood vessels and astrocyte membranes ensheathing
the glutamatergic synapses (276–278). In mice models, AQP4
deficiency has been connected to prolonged seizures along
with deficit extracellular K+ clearance. This has been explained
through the role of water and ion homeostasis in blocking
hyperexcitability. Accordingly, the expression of AQP4 has been
reduced in the perivascular membrane within the epileptically-
altered sclerotic regions of the hippocampus (272). Moreover,
AQP4 immediately decreases its immunoreactivity post-SE in
kainic-induced epileptic mice models, which correlates with the
prolonged seizures observed (279, 280). However, it is unclear
whether this is due to the initial change during SE or that SRS
trigger recurrent changes. The changes were observed mainly
in stratum lacunosum moleculare, the molecular layer and
the dentate gyrus, affecting the fine processes of astrocytes as
well as its end-feet (272, 280, 281). Immunoreactivity diffused
to a greater extent in neurophils, especially in the areas of
dysmorphic neurons. In a compensatory manner, AQP4 mRNA
levels are increased (272, 282). The exact mechanism of this
reaction is unclear (280, 283). It is probable, in accordance
to the mathematical modeling of the AQP4-deficiency model
of water and ionic (potassium) transport in brain ECF, that
post-neuroexcitation changes in rate and extent of alterations
in extracellular space volume affect changed K+ dynamics and
what is more, also on astrocyte water permeability. It may also
have an influence on long-range K+ buffering and gap junction
coupling (283). The other theory suggests that the cause and the
result are the opposite: diffuse immunoreactivity in the piriform
cortex and the hippocampus with an expression mostly observed
at end-feet astrocytes, after SE results in areas lacking AQP4 in

piriform cortex. The role of mislocalization of APQ4 with the
reduction of channel in adluminal end-foot membranes rather
than in the abluminal ones, that stable level is underlined in
some papers, with the results of testing suggesting no changes
in expression, but rather in the localization of AQP4 in subjects
with epileptic seizures (284, 285). Both lowered expression
and incorrect localization on end-foot membranes can lead
an alteration in homeostasis. Additionally, AQP4 is described
as a factor influencing synaptic plasticity by neurotrophin
mediation, especially neurotrophin BDNF, leading to long-term
potentiation, depression and location-specific object memory in
mice models (286–290).

Glial fibrillary acidic protein (GFAP) is another astrocyte
marker, characterized by its intermediate filaments. In kainate-
induced SE, the levels of GFAP were visibly elevated in all
areas of the hippocampus excluding the stratum sadiatum
and stratum lacunosum moleculare. Immediately after SE, no
changes in GFAP protein expression were observed but a trend
toward increased protein was observed later post-SE, while GFAP
mRNA anteceded the increase in GFAP levels (291, 292). It led
to further sclerotization of the hippocampus, a phenomenon
characteristic for further development of TLE. This is another
indication of protein markers of astrocytes playing a role as
a marker for the development epilepsy after an epileptiform
event (272).

The theory of an inflammatory cause of epilepsy has not
been reflected in the possible role of AQP4 in epileptogenesis.
In mice models, AQP4 deficiency has an alleviating effect
on experimental autoimmune encephalomyelitis as well as
on inflammation after intracerebral lypopolysacharydes (LPS)
administration (293–295). AQP4 stimulates AQP4-dependent
cell to swell and promotes cytokine release. It also activates
astrocyte Ca2+ signaling via TRPV4 as a reaction to an osmotic
stimuli (284).

The therapeutic possibilities are currently limited. In several
small studies, substances such as tetraethylammonium (TEA+),
azetazolamide, carbonic anhydrase inhibitors, bumetanide, and
its analog AqB013 and others may have the potential to
inhibit AQP4, but the results remain inconclusive (296–302).
Antiepileptic drugs, such as zonisamide, lamotrigine, phenytoin
and topiramate, were observed as AQP4 inhibitors. The safety
level of various substances with inhibiting capacities, including
NSC168597, NSC164914, and NSC670229, is uncertain (303). A
promising molecule is TGN-020, a structurally similar substance
to carbonic anhydrase and antiepileptic drugs. Up to this point,
its peritoneal injection was shown to reduce ischemic cerebral
edema and infarct volume in a rat model of ischemic stroke,
without any studies on its potential role in epilepsy treatment
(303). Similar results have shown the effects of IMD-0354,
an inhibitor of both kinase IKKβ and AQP4, in lowering
the intracranial pressure in mice models after acute water
intoxication and as a form of pro-drug (a phenol phosphate) to
reduce brain edema, improving the neurological state of mice
after an ischemic stroke (304). The studies conducted on different
models are also prone to an assessment distortion due to potential
factors affecting or mimicking AQP4’s role and the need for
blood-brain barrier penetration of potential inhibitors (284).
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Matrix Metalloproteinase-9 and Epilepsy
Matrix metalloproteinases (MMPs) are zinc-dependent
endopeptidases which play a role in regulating the cell-
matrix composition. They are produced by neurons and, to a
lesser extent, by glial cells. They play a crucial role in prenatal (in
embryogenesis and morphogenesis) and postnatal development
(in remodeling of tissues). They could potentially play an
important role in the pathomechanism of neurodegenerative
disorders (such as Alzheimer’s disease), ischemia, neurotrauma,
neoplasms (305–308), inflammation (309) and epilepsy (310–
314). In pathological conditions, the stimulation of MMPs is
upregulated by cytokines from immune cells and glia (315–317).

MMP-9, a gelatinase, is activated extracellularly from inactive
zymogen. Matrix metalloproteinases (TIMPs), especially TIMP-
1, have a controlling role over MMP-9. MMP-9 can influence
cerebral epithelium via the proteolysis of type IV collagen. To
a lesser degree, it degrades other types of collagen (V and XI),
laminin and aggrecan core protein. It is also involved in learning
(318, 319) and in neuronal plasticity. It serves an important
role in controlling the extracellular matrix protein composition
(320, 321) through the proteolysis of molecules responsible for
signaling and adhesion, growth factors (321–324) and receptors
for neurotransmitters (321, 325). The changes in synapses and its
structures facilitates synaptic transmission and, consequentially,
the excitability of neurons (312, 318). It has also been reported
to contribute to neuroinflammation and to neuronal apoptosis in
epilepsy in animal models.

Synaptic transmission is also influenced via MMP-9 by
NMDA and AMPA glutamate receptors, reducing its efficacy
after multiple seizures, as observed in 4-aminopyridine (4-AP)
induced epilepsy model (325–328).

There are various possible pathways of MMP-9 activation.
During an epileptic activity, the activation of MMP-9 depends
on Ca2+ entry (329). However, the prolonged synthesis and
accumulation of the precursor form of MMP-9, resulting
in increased functional MMP-9, is unlikely to depend on
the immediate increases in neuronal Ca2+ levels. During
kainine-induced seizures, Ser-proteases such as tPA/plasmin
and thrombin stimulate the release of MMP-9 (330, 331). The
active form of MMP-9 can be quickly transformed from the
constitutive pool of zymogen (312). Further synthesis can be
observed due to neuronal intermediate early genes activity (332)
or to transcription activation in neurons, stimulated by pro-
inflammatory cytokines such as IL-1b and TNF-a, released
from glia (333–336). These cytokines may use MAPK/Erk
pathway to activate transcription (321, 336). The inhibition
of MMP-9 in microglial cells after LPS stimulation decreases
the level of pro-inflammatory cytokines such as IL-1b and
IL-6 and inhibits the transcription of iNOS (inducible nitric
oxide synthase) (337), modifying the pro-inflammatory activity
of MMP-9.

Several studies suggest that the CNS attempts to reduce
alterations in neuronal excitability through neuroplasticity
(338–340). However, no epilepsy model presents signs of
neuroplasticity, such as aberrant synaptogenesis or axonal
sprouting (341) or structural effects on dendritic spine density
(342, 343), leaving this hypothesis unclear.

In pathological conditions in which MMPs are more
stimulated to activation, MMP-9 activity leads to the disruption
of BBB. The BBB leakage results in further immunological
reaction and immune cells’ recruitment and migration. This can
contribute to a worsening of the state of the patient, causing brain
edema, hemorrhage or further spreading of infarct (344–348).
For instance, in ratmodels, the leakage led to epileptiform activity
with a positive correlation between MMP-9 levels and seizure
frequency (349, 350).

In rat models after kainate seizures, MMP-9 activity and
MMP-9 mRNA levels were significantly increased exclusively
in the hippocampal dentate gyrus, correlating with the changes
in the hippocampal dendritic architecture. This could be
connected to synaptic abnormalities, such as the quantity of
synapses and dendrites and to dysregulated synaptic transmission
(311, 312). MMP-9 knockout mice were less sensitive to
pentylenetetrazol (PTZ) kindling-induced epilepsy, with a
simultaneous decrease of mossy fiber synaptogenesis (313),
while MMP-9 overexpression results in increased dendritic
spine proliferation and the misposition of synaptogenesis in the
hippocampus. There is a positive correlation between MMP-9
level and seizure duration in acute encephalopathic patients. In
patients affected by viral infections, higher MMP-9/TIMP-1 ratio
which was measured after prolonged febrile seizures is indicated
to be connected with dysfunctional BBB (351) and an increase
susceptibility to febrile seizures or encephalopathy (253). On the
other hand, higher MMP-9 levels in the CSF is observed in these
patients with bacterial infections of the CNS who present with
neurological complications, such as secondary epilepsy (352).
In patients with systemic lupus erythematosus, patients with
higher levels of MMP-9 were more prone to seizure activity
and other neuropsychiatric symptoms in the course of their
disease (353). Whether or not MMP-9 plays a significant role in
seizure-induced neuroapoptosis is a question which necessitates
further research.

Excitotoxicity leading to neuronal and hippocampal apoptosis
in conjunction with high MMP-9 activity was observed in
kainate-induced epilepsy models (310, 354). In pilocarpine
models of epilepsy, the same phenomenon was also observed.
The apoptosis was connected to signals of neuronal cell
survival, mediated by integrin, and interrupted by MMP-9, after
pilocarpine-induced status epilepticus (355).

The homeostatic balance in MMP-9 levels can also play a
protective role. Its protective homeostatic plasticity involves
extracellular substrates, including integrins (321, 324, 356),
cadherins (357) and b-dystroglycan (322, 323, 358), which helps
to control dendritic spinal shape and induce its reversible
loss by b-dystroglycan or ICAM-5, consequentially affecting
the entire synapse (313, 358, 359). This effect depends on
MMP-9mRNA activity-dependent dendritic transport, enhanced
in the kainate epilepsy model (311). It is vital in obtaining
reduced neuronal excitability and thus, the optimal conditions
for recovery (360). In mice models, lower levels of MMP-9 led
to reduced seizure-evoked pruning of dendritic spines, leading to
decreased neuronal loss (313).

In models with 4-aminopyridine (4-AP) induced seizures
and in Wistar Glaxo Rijswijk (WAG/Rjj) rats, no cell damage
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was observed. 4-AP models presented with generalized cortical
seizures and WAG/Rjj rats presented with absence epilepsies,
which typically generate spike and wave discharges after 4
months of age. MMP-9 and zymogen levels were increased in
regions affected by seizure activity in these models (regions of
the seizures’ generalization within the cortex in the 4-AP model
and the thalamus and cortical regions in WAG/Rjj during higher
seizure activity). In WAG/Rjj, additionally, a diurnal peak was
observed, which correlates with the sleep-wakefulness transition
and the seizure activity. This indicates that cortical seizures
promote the precursor and the active form of MMP-9. MMP-9’s
elevation could be an effect of elevated neuronal activity rather
than that of neuronal death, as no apoptosis was observed in
the WAG/Rij model of absence seizures and in the 4-AP model
in the zones affected by seizure propagation (361). Additionally,
higher levels of MMP-9 in WAG/Rjj rats treated with the anti-
absence seizure drug ethosuximide (ETX) were reported. This
is due to the suppression of the sleep-wake disturbances until
ETX started to interfere with sleep pattern, which resulted in the
downregulation of MMP-9 (362, 363).

The therapeutic potential of MMP-9 inhibitors remains
inconclusive. In animal models, the MMP-9 inhibitor, S24994,
has a protective role on the hippocampus in kainate-induced
epilepsy. In kainate or picrotoxin models, it reduces dendritic
spines after seizure activity (313). Monoclonal antibodies can
also be beneficial and genetic engineering could provide
further insights.

As in the case of AQP4, there are FDA-approved drugs
with an inhibiting potential. Tetracyclines, statins, resveratrol,
estrogen, and indomethacin are medications which have been
observed to reduce MMP-9 levels. Tetracyclines (minocycline,
doxycycline), via the prevention of BBB leakage, reduced
CNS inflammation and size of infarction (364–368). Statins
(atorvastatin, simvastatin, pravastatin) improved clinical
outcome in acute coronary syndrome patients (369, 370).
In animal models, atorvastatin and minocycline reduced
seizure activity and inhibited neuroinflammation and neuronal
apoptosis (371–374).

In Table 3 we present the summery and characteristics of
above-mentioned proteins.

CONCLUSIONS

In this review, we summarize the current findings on the
potential biomarkers of epilepsy. For the first time, we suggest
that both processes of hypoxia and oxidative stress may
lead to a neuroinflammatory state, ultimately resulting in
epileptogenesis. Inflammatory factors may play an essential role
in epilepsy. MiRNAs, regulated by epigenetic modifications, can
be detected from biofluids. The diverse pathways and numerous
molecules from recent investigations provide opportunities
for further research regarding the diagnosis and treatment
of epilepsy. The level of cytokines can be used to predict
the disease severity and be useful in monitoring treatment
efficacy. Medications targeting cytokines inhibitors can improve
disease prognosis. T
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There is no consensus in which miRNA, protein or amino
acid could serve as an ideal marker for epilepsy and further
neuronal damage. Its connection to epilepsy is most likely
through features connected with specific epileptiform events,
rather than generally to epilepsy as a uniform disease. Each
type of epilepsy presents with a different seizure phenotype,
distinct behavioral changes, and further complications and
comorbidities, suggesting the possibility of differences in the
underlying etiology on a molecular level.

There are some common limitations among many studies on
the molecular etiopathogenesis and development mechanisms in
epileptiform events and epilepsy. First of all, only a few studies are
performed on human cell lines. Even in these cases, the sample
is not obtained from biopsy, but from fresh cadavers or during
surgical treatment of neoplasms or epileptic lesions. Due to this
collecting method, the sample obtained may have been altered
and even damaged on themolecular level, leading to disturbances
in studies results. Due to genetic modifications, the rodent model
is becoming increasingly accurate in its resemblance to the
conditions of human CNS but it could not serve as a relevant
biological model. Secondly, the processes of inducing seizures
can have a great influence on the behavior of neurons, glia cells,
and their proteins. Thirdly, most studies presented results from a
small sample size over a limited period of time. This can also lead
to biased results and disturbances in their statistical analysis.

It is important to pay attention to the increasing number of
molecules with a future therapeutic potential which are under
investigation due to their influence on proteins and amino acids.

There is also an open field for genetic engineering to enhance
the power of established particles to regulate the excitability of
brain cells. Nonetheless, we should remember that small rodent
groups may not develop potential adverse reaction which may
on the other hand be evident in human organisms. Because of
this, FDA-approved drugs with modifying potentials can be the
first step to novel therapy, based on protein, and amino acids
activity in CNS. Extensive data exists regarding the molecular
details of epileptogenesis. Although there are no conclusive
answers, we can establish a starting point for further research
on the therapeutic potential and clinical implications of proteins
and amino acids reactions and collaboration in brain electric
homeostasis. The role of finding novel markers of brain damage
after post-epileptiform events is a possible grasping point for the
prevention of complications and for new, targeted methods of
treatment in the future.
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