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Abstract 

Background:  The association between specific bacteria and colorectal cancer (CRC) has been proposed. Only a few 
studies have, however, investigated this relationship directly in colorectal tissue with conflicting results. So, we aimed 
to quantitate Streptococcus gallolyticus, Fusobacterium spp, Enterococcus faecalis and enterotoxigenic Bacteroides fragilis 
(ETBF) in formalin-fixed and paraffin-embedded (FFPE) colorectal tissue samples of Iranian CRC patients and healthy 
controls.

Methods:  A total of 80 FFPE colorectal tissue samples of CRC patients (n = 40) and healthy controls (n = 40) were 
investigated for the presence and copy number of above bacterial species using quantitative PCR. Relative quantifica-
tion was determined using ΔΔCT method and expressed as relative fold difference compared to reference gene.

Results:  Relative abundance and copy number of E. faecalis and ETBF were significantly higher in CRC samples com-
pared to control group. E. faecalis was more prevalent than ETBF in tumor samples. Frequency of ETBF and E. faecalis in 
late stages (III/IV) of cancer was significantly higher than early stages (I/II). We did not detect a significant difference in 
abundance of S. gallolyticus and Fusobacterium spp between two groups.

Conclusion:  Our study revealed the higher concentration of E. faecalis and ETBF in FFPE samples of CRC patients 
than controls. However, additional investigations on fecal and fresh colorectal cancer tissue samples are required to 
substantiate this correlation.
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Background
Colorectal cancer (CRC) is one of the most common can-
cers worldwide, accounting for approximately 1.9 million 
new cases and 900.000 deaths in 2020 [1, 2]. The etiol-
ogy of CRC is not fully understood. Several risk factors 
are associated with initiation and progression of CRC 

including genetic susceptibility, epigenetic and envi-
ronmental factors such as diet, obesity, smoking, alco-
hol consumption and host immunity [1, 3, 4]. Because 
of high number of false positive cases in CRC screen-
ing systems such as Fecal Occult Blood Test (FOBT), 
identifying the sensitive biomarkers for early detection 
allows efficient treatment of CRC [1]. Previous studies 
have demonstrated a causal link between specific bacte-
rial and viral pathogens and cancers such as gastric car-
cinoma, cervical cancer and hepatocellular carcinoma 
[3, 5–7]. A possible role of oncogenic bacteria in CRC 
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development was first suggested in 1951 when a clini-
cal association between Streptococcus bovis bacteremia/
endocarditis and CRC was reported [1, 5, 6]. Since then, 
numerous studies have shown the enrichment of fecal 
or tissue samples of CRC patients with bacterial spe-
cies such as enterotoxigenic Bacteroides fragilis (ETBF), 
Fusobacterium nucleatum, Clostridium septicum, Ente-
rococcus faecalis, Streptococcus gallolyticus, Enteropath-
ogenic Escherichia coli and pks+ E. coli [1, 4–6]. Several 
bacterial-induced carcinogenic mechanisms in CRC have 
been proposed including Wnt signaling activation, pro-
inflammatory signaling and genotoxicity [5, 6]. Following 
bacterial infection and chronic inflammation, changes 
occur in the cellular microenvironment that leads to 
precancerous and finally cancerous events [2]. pks+ E. 
coli possesses a genotoxin colibactin, produced by the 
polyketide synthase genomic island (pks) that induces 
DNA damage, cell cycle arrest, mutations and chromo-
somal instability in eukaryotic cells. The interaction of 
LPS, FadA (Fusobacterium adhesion protein A) and Fap2 
(Fusobacterium autotransporter protein 2) located on 
the surface of F. nucleatum with epithelial cell can affect 
host immune response via decreased apoptosis, cellular 
proliferation and DNA repair through activation of the 
nuclear factor-κB (NF-κB) and Wnt signaling pathways 
[3, 8]. The possible carcinogenic role of S. gallolyticus in 
CRC is mediated by overexpression of cyclooxygenase-2 
(COX2), prevention of apoptosis and promotion of 
angiogenesis and inflammation. Furthermore, E. faecalis 
strains produce reactive oxygen species and extracellular 
superoxide anions that cause DNA damage and chromo-
somal instability [9]. A significant association between 
the presence of ETBF in fecal or colon biopsy specimens 
and CRC has been reported in previous studies. Secreted 
pro-inflammatory B. fragilis toxin (BFT) cleaves and 
degrades the extracellular domain of cell surface protein 
E-cadherin. Loss of E-cadherin triggers ß-catenin nuclear 
signaling, induces c-myc expression and IL-8 secretion [4, 
10]. BFT also causes oxidative DNA damage and stimu-
lates the high expression of IL-17. It is proposed that 
long-term colonization of colonic epithelial cells with 
ETBF may increase the risk of CRC [4, 10].

Although many studies have showed an association 
between the colorectal cancer development and intestinal 
microbiota, not all studies have yielded consistent results. 
Several studies demonstrated F. nucleatum as dominant 
bacteria in CRC patients, while others suggested B. fra-
gilis as an abundant bacterium associated with CRC [3]. 
So, more research is needed to find association between 
specific bacteria and CRC.

Most studies investigating bacterial involvement in 
cancer development were based on fecal samples, while 
the composition of intestinal microbiota varies in the 

fecal and mucosal surface [1, 10]. Formalin-fixed and 
paraffin embedded (FFPE) archived tissues are extremely 
valuable sources for molecular diagnostic purposes in 
colorectal cancer [1, 11]. So, we used quantitative real-
time polymerase chain reaction (qPCR) to investigate the 
presence and copy number of ETBF, E. faecalis, S. gallo-
lyticus and F. nucleatum in FFPE colon tissue samples of 
colorectal cancer patients and healthy controls.

Methods
Sample collection
This case-control study was approved by the Research 
Ethics Committee of Zanjan University of Medical Sci-
ences (IR.ZUMS.REC.1398.481). A total of 80 forma-
lin-fixed, paraffin-embedded (FFPE) colorectal tissue 
samples from patients diagnosed with colorectal cancer 
(n = 40) and healthy controls (n = 40) were collected from 
archives of Pathology Department of Ayatollah Mousavi 
hospital in Zanjan Province, Iran. Colorectal tissue sam-
ples of CRC patients and control group were collected 
during colonoscopy. The control group underwent colo-
noscopy for various reasons and all of them were outpa-
tients. No gastrointestinal disease was reported in control 
group and normal colon mucosa was confirmed. None of 
the cases or controls had a pre-colonoscopy chemo- or 
radiotherapy, previous history of other gastrointestinal 
diseases and antibiotic therapy within the past 1 month. 
The clinicopathological parameters including gender, age, 
family history of cancer, smoking, tumor stage and tumor 
location were collected according to medical records of 
patients. Sections of 10 μm in thickness from the top of 
FFPE tissue samples were prepared using a standard 
microtome with disposable blades and transported to 
the laboratory of Medical Microbiology. Then, normal 
and tumor tissues were dissected using sterile scalpels for 
DNA extraction.

DNA extraction
DNA extraction from FFPE tissue samples was per-
formed using GeneAll Exgene™ FFPE Tissue DNA 
kit (GeneAll Biotechnology, Songpa-gu, Seoul, South 
Korea). Three sections of 10 μm in thickness from FFPE 
samples was cut up and after deparaffinization, samples 
were incubated in 180 μl lysozyme (20 mg/ml) for 40 min 
at 37 °C. Then, 20 μl of proteinase K solution (20 mg/ml) 
was added and incubated at 56 °C for 1 h. The extraction 
steps were continued according to the manufacturer’s 
instructions. Also, extraction of DNA from non-tissue-
containing paraffin sections was performed to assess any 
environmental bacterial contamination of blocks during 
fixation, embedding and processing.

The concentration and purity of DNA samples were 
determined using NanoDrop spectrophotometer 
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(ND-1000, Nano-Drop Technologies, Wilmington, DE) 
at 260 and 260/280 nm, respectively. DNA samples were 
stored at − 20 °C for further analysis.

Quantitative real‑time polymerase chain reaction (qPCR)
Oligonucleotide primers targeted to detect conserved 
sequences specific for ETBF, E. faecalis, S. gallolyticus 
and Fusobacterium spp were selected from the literature 
and their specificity was confirmed by Primer BLAST 
(https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) (Table  1). A 
conserved sequence present in all bacteria (universal 
primer) was also used as internal control in qPCR. First, 
the specificity of amplification was checked using con-
ventional PCR and the amplicons were analyzed by aga-
rose gel electrophoresis for specific band of amplified 
products. Then, PCR standardized conditions were used 
to carry out qPCR. Furthermore, conventional PCR was 
used to assess contamination of non-tissue-containing 
paraffin sections by universal primer.

Standard curves were prepared for each run of qPCR 
using seven 10-fold dilutions of extracted DNA from ref-
erence strains of ETBF strain D-134, E. faecalis ATCC 
29212, S. gallolyticus ATCC 49147 and F. nucleatum 
ATCC 25586 and DNA copy number was calculated 
using the following formula:

Number of copies  = Mass (in grams) × 6.023× 1023/ 
Average mol. wt. of a base × template length. According 
to the standard curves, samples which did not have a flu-
orescent signal earlier than the Ct of 35 for S. gallolyticus, 
Fusobacterium spp and E. faecalis and 37 for ETBF were 
considered as negative.

Limit of detection (LOD) of primers was also deter-
mined using serial dilution of bacterial DNA. This was 
found to be approximately 102 DNA copies for B. fragilis 
and 10 DNA copies for S. gallolyticus, Fusobacterium spp 
and E. faecalis.

Simplex qPCR was performed in a reaction mixture 
with total volume of 20 μl consisted of 10 μl of RealQ 

Plus 2x Master Mix Green High ROX™ (Ampliqon, Den-
mark), 0.4 μM of each the specific primer pairs, 30 ng of 
DNA in double distilled water. Assays were carried out 
in duplicate with an Applied Biosystems StepOnePlus™ 
Real-Time PCR System. Reported data are the mean val-
ues of duplicate qPCR analyses. Amplifications involved 
an initial denaturation at 95 °C for 10 min, followed by 
40 cycles of denaturation at 95 °C for 30 s, annealing at 
57–60 °C (Table  1) for 30 s, and extension at 72 °C for 
30 s. Amplification specificity of each run was assessed by 
melting curve analysis. Relative quantification was also 
determined using the 2-∆Ct method and expressed as rela-
tive fold difference compared to the reference gene (16S 
ribosomal RNA) conserved among all bacteria.

Statistical analysis
Statistical analysis was performed with the Statistical 
Package for Social Sciences (SPSS), version 17.0 (SPSS, 
Inc., Chicago, IL). The data were presented as frequencies 
for qualitative variables and as means ± standard error 
mean (SEM) for quantitative variables. The Mann-Whit-
ney U-test and Fisher’s exact tests were used to deter-
mine the significance of differences between two groups. 
P value of < 0.05 was considered significant.

Results
The clinicopathological characteristics of patients are 
shown in Table 2. Briefly, a total of 40 FFPE colon tissue 
samples from CRC patients (19 males and 21 females) and 
40 from healthy control cases (22 males and 18 females) 
were investigated. The mean age of CRC patients was 
56.37 years (range 31–86 years) and for healthy controls 
was 60 years (range 20–82). The majority of CRC patients 
were stage III or IV cancer (65%), while stages I and II 
were 10 and 25%, respectively. In CRC patients, 62.5% 
of tumors were located in distal colon and 37.5% were in 
proximal. The distal colon includes the descending colon 

Table 1  Primers used in this study

Bacterial pathogens Target Gene Primer sequence (5–3) Amplicon (bp) Annealing 
Temperature (°c)

Ref

Fusobacterium spp 16 s ribosomal RNA CCC​AAG​CAA​ACG​CGA​TAA​GT
GCG​TTG​CGT​CGA​ATT​AAA​CC

117 58 [1]

ETBF bft TGA​AGT​TAG​TGC​CCA​GAT​GC
CAG​TAA​AGC​CTT​CCA​GTC​C

150 58 [10]

S. gallolyticus SodA AAG​CTG​CGA​CAA​CTC​GCT​TT
AAG​CGT​GTT​CCC​AAA​CGT​CA

150 59 [1]

E. faecalis 16 s ribosomal RNA CCC​TTA​TTG​TTA​GTT​GCC​ATC​ATT​
ACT​CGT​TGT​ACT​TCC​CAT​TGT​

144 60 [12]

Universal 16 s ribosomal RNA AAA​CTC​AAAKGAA​TTG​ACGG​
CTC​ACR​RCA​CGA​GCT​GAC​

180 59 [13]

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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and the sigmoid colon and proximal colon includes the 
cecum, ascending colon and the transverse colon.

16S ribosomal RNA gene was not detected in non-tis-
sue-containing paraffin sections. To determine whether 
CRC was associated with ETBF, S. gallolyticus, Fusobac-
terium spp and E. faecalis, we used qPCR to compare 
the frequency and quantity of the bacteria in colorectal 
tumors and normal colon tissue. Log10 values [means ± 
standard deviation (SD)] of DNA copy numbers were 
calculated for each bacterium. The number of positive 
samples and the copy numbers of each bacterium in nor-
mal and tumor tissues are presented in Table 3. Relative 
quantification was also determined by the 2-∆Ct method 
and is shown in Table 4. E. faecalis was detected in 85% 
of CRC samples and ETBF in 45% of cases. The pres-
ence of E. faecalis and ETBF was higher in tumor sam-
ples compared to control group (P < 0.05). E. faecalis was 
more prevalent than ETBF in tumor samples (P < 0.05). 
For ETBF, log10 copies DNA ml− 1 were 3.8 and 2.7 for 
CRC samples and control group, respectively (P = 0.003). 
As shown in Table 3, higher concentration of E. faecalis 
was found in CRC patients than control group (P ≤ 0.05). 
The presence of ETBF and E. faecalis was not comparable 
when stratifying tumor samples based on cancer stages 
and cancer location (Tables 5 and 6).

According to results, we did not detect a significant 
difference in the frequency and DNA copy number of S. 
gallolyticus and Fusobacterium spp between two groups 
(Tables 3 and 4).

Discussion
In recent years, several reports suggest that intestinal 
microbial dysbiosis may be an etiological factor in the 
initiation and progression of colorectal cancer [1, 2, 14, 
15]. Although the enrichment of fecal or tissue samples 

of CRC patients with bacterial species such as ETBF, F. 
nucleatum, E. faecalis, S. gallolyticus and EPEC has been 
shown in previous studies, not all reports have consistent 
results [1, 2, 4–6]. Furthermore, data on CRC-associated 
microbiota in Iranian populations are scarce. Therefore, 
in order to find a better understanding of this associa-
tion, we used qPCR to investigate the presence and copy 

Table 2  Clinicopathological characteristics of patients

CRC (n = 40) Control (n = 40)

Male 19 (47.5%) 22 (55%)

Female 21 (52.5%) 18 (45%)

Age (Mean ± SE) 56.37 ± 14.7 60 ± 15.11

Tumor location

Distal colon 25 (62.5%) –

Proximal colon 15 (37.5%) –

Tumor stages

I 4 (10%) –

II 10 (25%) –

III 11 (27.5%) –

IV 15 (37.5%) –

Smoking 15 (37.5%) 17 (42.5%)

Family history 4 (10%) 3 (7.5%)

Table 3  Presence, copy number and Ct values of bacteria in 
normal and tumor tissues

a Values noted as number (percentage), Fisher’s exact test
b Values noted as log copies DNA ml−1, Mann–Whitney test

CRC (n = 40) Control (n = 40) P value

Qualitative presenta‑
tion, percent patients 
positive a

Fusobacterium spp
Yes 27 (67.5%) 24 (60%) 0.48

No 13 (32.5%) 16 (40%)

ETBF
Yes 18 (45%) 6 (15%) 0.003

No 22 (55%) 34 (85%)

S. gallolyticus
Yes 29 (72.5%) 28 (70%) 0.80

No 11 (27.5%) 12 (30%)

E. faecalis
Yes 34 (85%) 25 (62.5%) 0.005

No 6 (15%) 15 (37.5%)

Range and median 
values of Ct
Fusobacterium spp 25.8–38.3 (30.7) 25.3–39.1 (31.3) > 0.05

ETBF 23.4–38.2 (37.5) 26.9–39.1 (38.8) > 0.05

S. gallolyticus 26.4–36.8 (31.2) 28.1–37.8 (31.8) > 0.05

E. faecalis 21.5–37 (28.3) 23.3–38.1 (29.7) > 0.05

Log copies DNA ml−1 b

Fusobacterium spp 2.9 ± 0.32 2.8 ± 0.15 0.23

ETBF 3.81 ± 0.07 2.7 ± 0.63 0.002

S. gallolyticus 3.04 ± 0.12 2.98 ± 0.31 0.39

E. faecalis 4.4 ± 0.10 3.1 ± 0.43 0.001

Table 4  Quantitation of intestinal bacteria in CRC and controls. 
Quantitative values are shown as relative difference, calculated 
by the 2-∆Ct method and expressed as relative fold difference 
compared to the reference gene. Values shown are mean + SEM

CRC (n = 40) Control (n = 40) P value

Relative difference
Fusobacterium spp 0.03 ± 0.04 0.02 ± 0.03 0.62

ETBF 0.03 ± 0.01 0.003 ± 0.02 0.025

S. gallolyticus 0.04 ± 0.01 0.02 ± 0.02 0.18

E. faecalis 0.05 ± 0.03 0.01 ± 0.02 0.029
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number of ETBF, E. faecalis, S. gallolyticus and F. nuclea-
tum in FFPE colon tissue samples of Iranian CRC patients 
and healthy controls. According to our results, relative 
abundance and copy number of E. faecalis and ETBF 
were significantly higher in CRC samples compared to 
control group. E. faecalis was more prevalent than ETBF 
in tumor samples. In our study, we used the 16 s riboso-
mal RNA gene as an internal control, but it was better to 
use a reference gene such as prostaglandin transporter 
(PGT) for normalization. Several case-control studies 
have reported that the abundance of ETBF was higher in 
ulcerative colitis, colorectal adenoma and CRC patients 
than controls [3–6, 9, 10]. In study conducted by Rez-
asoltani et al. (2018), higher numbers of ETBF, E. faeca-
lis, F. nucleatum, S. bovis, and Porphyromonas spp. were 
reported in adenomatous polyp patients in contrast to 
controls [9]. In our previous study, we demonstrated 
the association between fecal ETBF and CRC and sug-
gested that fecal detection of ETBF may be a potential 
biomarker for colorectal cancer diagnosis [4]. Further-
more, Shariati et al. (2021) showed a significantly higher 
abundance of B. fragilis and F. nucleatum in fresh frozen 
biopsies of colorectal lesions of Iranian CRC patients 
compared to adjacent normal mucosal tissues. However, 
they could not detect such a relation for S. gallolyticus 
and EPEC [16].

Enterococcus faecalis as one of the most common 
Gram-positive cocci in human stools produces extra-
cellular superoxide, hydrogen peroxide and hydroxyl 
radicals which cause DNA damage in mammalian 

cells and chromosomal instability that lead to colorec-
tal cancer [17]. We detected higher number of E. fae-
calis in CRC patients compared to control group. In 
consistent with our results, Balamurugan et  al. (2008) 
demonstrated higher level of E. faecalis in stool of CRC 
patients compared to healthy volunteers. According to 
their results, population of Eubacterium rectale and 
Faecalibacterium prausnitzii was decreased approxi-
mately fourfold in CRC patients compared to healthy 
group. These changes in bacterial population in colon 
could potentially lead to epithelial cell damage and 
increased turnover and may be an etiological factor of 
CRC [17]. Furthermore, in study conducted by Zhou 
et  al. (2016), the median abundance of Fusobacterium 
spp., E. faecalis and ETBF in tumor tissues was signifi-
cantly higher than adjacent normal tissue and healthy 
controls [6]. However, in a prospective case cohort 
study of consecutive colonoscopy patients, fecal E. fae-
calis population was identified as unstable over > 1 year 
and an association between superoxide-producing E. 
faecalis and large colon adenomas or cancer was not 
found [18].

According to our results, the presence of ETBF and E. 
faecalis was not comparable when stratifying tumor sam-
ples based on cancer stages and cancer location.

Despite the noted association with CRC, we did not 
detect a significant difference in the frequency and copy 
number of S. gallolyticus and Fusobacterium spp between 
CRC patients and controls. The association between S. 
gallolyticus endocarditis/bacteremia and CRC is well 
established [19]. However, none of our patients had a his-
tory of bacteremia/bacterial-endocarditis and this may 
explain the lack of difference in abundance of S. gallolyti-
cus between two groups. In agreement with our results, 
Mahmoudvand et  al. (2017) reported no association 
between S. gallolyticus and colorectal cancer in paraffin-
embedded biopsy specimens [20]. Only in studies con-
ducted by Abdulamir et al. (2010) and Farajzadeh Sheikh 
et al. (2020), S. gallolyticus was detected with higher fre-
quency in CRC patients with and without a history of 
bacterial endocarditis/bacteremia compared to healthy 
controls [21, 22]. According to Bundgaard-Nielsen et al. 
(2019) and Viljoen et al. (2015) studies, S. gallolyticus was 
not detected in any of colorectal tissue samples. Their 
findings could potentially be explained through ethnic 
differences in susceptibility to colorectal colonization of 
S. gallolyticus or geographical differences in S. gallolyti-
cus distribution. Furthermore, these discrepancies may 
also be related to application of diverse specimens (like 
fresh frozen tissues, FFPE and stool) and different detec-
tion methods (such as qPCR, pyrosequencing, Fluo-
rescence In  Situ Hybridization) used for detection of S. 
gallolyticus [1, 5, 16].

Table 5  Presence of bacteria in CRC patients with respect to 
cancer stage

Stage of cancer Stage I
(n = 4)

Stage II
(n = 10)

Stage III
(n = 11)

Stage IV
(n = 15)Bacteria

Fusobacterium spp 
(n = 27)

3 (75%) 5 (50%) 8 (72.7%) 11 (73.3%)

ETBF (n = 18) 2 (50%) 4 (40%) 5 (45.4%) 7 (46.6%)

S. gallolyticus (n = 29) 4 (100%) 5 (50%) 11 (100%) 9 (60%)

E. faecalis (n = 34) 4 (100%) 7 (70%) 11 (100%) 12 (80%)

Table 6  Presence of bacteria in CRC patients with respect to 
cancer location

Tumor location Proximal colon
(n = 15)

Distal colon
(n = 25)Bacteria

Fusobacterium spp (n = 27) 9 (60%) 18 (72%)

ETBF (n = 18) 7 (46.6%) 11 (44%)

S. gallolyticus (n = 29) 10 (66.6%) 19 (76%)

E. faecalis (n = 34) 12 (80%) 22 (88%)
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In contrast to previous studies [5, 6, 9, 23], we did not 
observe a difference in abundance of Fusobacterium spp 
between CRC patients and controls. Furthermore, Bund-
gaard-Nielsen et al. (2019) showed that F. nucleatum was 
distributed equally in tumors, paired normal tissue and 
diverticula, but significantly less present in adenomas [1]. 
However, F. nucleatum abundance in CRC patients var-
ied between 13 and 87% in different countries [5, 6, 9, 16, 
23, 24]. According to Shariati et  al. (2021) and Kashani 
et al. (2020) from Iran, F. nucleatum was highly abundant 
in CRC tissues (23 and 68%, respectively) compared to 
adjacent normal mucosa [16, 24]. Environmental factors 
such as weight, body mass index, diet, and geographical 
location may play an active role in bringing about this 
variation [16].

Our study also has several limitations. One of the limi-
tations was the small number of included samples and the 
use of formalin fixed colorectal tissue specimens. Since 
formalin fixation causes cross-linking of DNA-tissue pro-
tein, which can prevent amplification. Also, DNA frag-
mentation may occur in formalin fixed tissue, which may 
limit our ability to detect bacteria [1, 11, 25]. Because all 
FFPE samples were handled similarly, we do not expect 
the formalin fixation to affect the observed differences in 
bacterial load and prevalence between diagnoses. On the 
other hand, we had a specific focus on the bacterial spe-
cies E. faecalis, ETBF, S. gallolyticus and Fusobacterium 
spp. Further studies are need to investigate a potential 
role of other bacterial species as E. coli and C. septicum, 
Prevotella and Acinetobacter in CRC.

Conclusions
Our study revealed the higher concentration of E. fae-
calis and ETBF in FFPE samples of CRC patients than 
controls. However, additional investigations on fecal and 
fresh colorectal cancer tissue samples are required to 
substantiate this correlation.
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