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Abstract

Background: Patient response to chemotherapy for ovarian cancer is extremely heterogeneous and there are
currently no tools to aid the prediction of sensitivity or resistance to chemotherapy and allow treatment stratification.
Such a tool could greatly improve patient survival by identifying the most appropriate treatment on a patient-specific
basis.

Methods: PubMed was searched for studies predicting response or resistance to chemotherapy using gene
expression measurements of human tissue in ovarian cancer.

Results: 42 studies were identified and both the data collection and modelling methods were compared. The
majority of studies utilised fresh-frozen or formalin-fixed paraffin-embedded tissue. Modelling techniques varied, the
most popular being Cox proportional hazards regression and hierarchical clustering which were used by 17 and 11
studies respectively. The gene signatures identified by the various studies were not consistent, with very few genes
being identified by more than two studies. Patient cohorts were often noted to be heterogeneous with respect to
chemotherapy treatment undergone by patients.

Conclusions: A clinically applicable gene signature capable of predicting patient response to chemotherapy has not
yet been identified. Research into a predictive, as opposed to prognostic, model could be highly beneficial and aid the
identification of the most suitable treatment for patients.
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Background
Ovarian cancer is the fifth most common cancer in
women in the UK and accounted for 4% of cancer diag-
noses in women between 2008 and 2010 [1]. Worryingly,
it was also responsible for 6% of cancer-related deaths
in women over the same time period [1] and the five-
year survival of women diagnosed with ovarian cancer
between 2005 and 2009 was 42% [2]. It has been observed
that although 40%-60% of patients achieve complete clin-
ical response to first-line chemotherapy treatment [3],
around 50% of these patients relapse within 5 years [4] and
only 10%-15% of patients presenting with advanced stage
disease achieve long-term remission [5]. It is thought that
the high relapse rate is at least in part due to resistance
to chemotherapy, which may be inherent or acquired by
altered gene expression [6].
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For ovarian cancer in the UK, the standard of care for
first-line chemotherapy treatment recommended by the
National Institute for Health and Care Excellence is ‘pacli-
taxel in combination with a platinum-based compound or
platinum-based therapy alone’ [7]. This uniform approach
ignores the complexity of ovarian cancer histologic types,
particularly as there is evidence to suggest differences in
response [8]. Winter et al. [9] investigated the survival
of patients following paclitaxel and platinum chemother-
apy and found histology to be a significant predictor of
overall survival in multivariate Cox proportional hazards
regression.
Improvement in survival has also been poor in ovarian

cancer. Between 1971 and 2007 there was a 38% increase
in relative 10-year survival in breast cancer, whereas the
increase in ovarian cancer was 17% [10]. This difference
in progress is likely to be due, at least in part, to the lack
of tools with which to predict chemotherapy response in
ovarian cancer.
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Gene expression based tools for the prediction of
patient prognosis after surgery or chemotherapy are
currently available for some cancers. For example,
MammaPrint® uses the expression of 70 genes to predict
the likelihood of metastasis in breast cancer [11]. Sim-
ilarly, the Oncotype DX® assay uses the expression of a
panel of 21 genes to predict recurrence after treatment
of breast cancer [12]. The Oncotype DX assay is also
available for colon [13] and prostate cancers [14]. The
development of a similar tool for ovarian cancer could
greatly improve patient prognosis and quality of life by
guiding chemotherapy choices. The prediction of cancer
prognosis using gene signatures is a popular research field,
within which a wide variety of approaches have been con-
sidered. Popular RNA or protein expression measurement
techniques include cDNA hybridisationmicroarrays, end-
point and quantitative reverse transcription PCR, and
immunohistochemistry approaches.
Another variable aspect of studies predicting

chemotherapy response is the computational and statisti-
cal approaches utilised. One of most popular methods for
survival analysis is Cox proportional hazards regression.
This model assumes that the hazard of death is propor-
tional to the exponential of a linear predictor formed of
the explanatory variables. This model has the advantage
that, unlike many other regression techniques, it can
appropriately deal with right-censored data such as that
found in medical studies where patients leave before the
end of the study period [15].
Other popular modelling techniques include linear

models, support vector machines, hierarchical clustering,
principal components analysis and the formation of a
scoring algorithm. When dealing with data sets of vary-
ing sizes it is important to consider the number of samples
and the amount of data per patient when choosing a mod-
elling method. If the number of patients is large it is clear
that a model will be better informed about the popula-
tion from which the patient sample was drawn, and hence
is likely to generalise more effectively to independent
data sets. As the number of measurements per patient
increases, the dimensionality and hence the flexibility of
the model may increase. However, it is also important
that the number of patients is sufficiently large to supply
enough information about the factors being considered.
Of the models identified here, linear models are relatively
restrictive as the relationship between any factor and the
outcome is assumed to be linear and so are suitable for
smaller data sets. Conversely, hierarchical clustering sim-
ply finds groups of similar samples and there are minimal
assumptions concerning the relationship between factors
and outcome.
Classification models are used to predict which of a

number of groups an individual falls into and are used for
categorical variables, such as tumour grade and having or

not having a disease. For visualisation and the assessment
of classification model predictive power, a Kaplan-Meier
plot is often combined with the log-rank test to investi-
gate significance. It is worth noting that this method does
not compare predictions with measurements, it simply
considers the difference in survival between groups.
Many of the studies identified by this review involved

developing a model using one set of samples, a training
set, followed by testing of the model carried out on an
independent set of samples, the test or validation set. This
partitioning of samples is important as it allows the gen-
eralisability of the model to be assessed, and hence guards
against over-fitting. If this check is not carried out, the
true predictive ability of the model will not be known.
The aim of this review is to investigate the literature

surrounding the prediction of chemotherapy response
in ovarian cancer using gene expression. It has been
observed, for example by Gillet et al. [16], that gene sig-
natures obtained from cancer cell lines are not always
relevant to in vivo studies, and that cell lines are inaccurate
models of chemosensitivity [17]. The search was there-
fore restricted to studies involving human tissue in order
to ensure that the resulting gene signatures are applica-
ble in a clinical setting. It was also specified that the study
must involve patients who have undergone chemother-
apy treatment, so that the effects of resistance may be
investigated.

Methods
Search methodology
The aim of this review is to investigate the literature on
the prediction of chemoresistance in patients with ovarian
cancer. Therefore, the six most important requirements
identified were:

• Concerned with (specifically) ovarian cancer
• Patients were treated with chemotherapy
• Gene expression was measured for use in predictions
• Predictions are related to a measure of

chemoresistance (e.g. response rates,
progression-free survival)

• Measurements were taken on human tissue (not cell
lines)

• The research aim is to develop a diagnostic tool or
predict response

A PubMed search was carried out on 6th August 2014
to identify studies fulfilling the above requirements. The
search termsmay be found in Additional file 1. This search
resulted in 78 papers.

Filtering
The search results were filtered twice, once based on
abstracts and once based on full texts, by KL. An overview
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of the filtering process may be found in Figure 1. For
the abstract-based filtering, papers were excluded if the
six essential criteria were not all met, if the paper was
a review article or if the paper was non-English lan-
guage. This resulted in 48 papers remaining. For the
full-text-based filtering, exclusion was due to not ful-
filling the search criteria or papers that were not avail-
able. 42 papers were remaining after full-text-based
filtering.

Data extraction
Data was extracted using a pre-defined table created for
the purpose. Extraction was carried out in duplicate by
a single author (KL) with a wash-out period of 3 months
to avoid bias. Variables extracted were: author, year, jour-
nal, number of samples, number of genes measured,
study end-point, tissue source, percentage cancerous
tissue, gene or protein expression measurement tech-
nique, sample histological types and stages, patient prior
chemotherapy, modelling techniques applied, whether the
model accounts for heterogeneity in patient chemother-
apy, whether the model was prognostic or predictive,
whether the model was validated, model predictive ability
including any metrics or statistics, and the genes found to
be predictive.

Bias analysis
Bias in the studies selected for the systematic review was
assessed according to QUADAS-2 [18], a tool for the qual-
ity assessment of diagnostic accuracy studies. Levels of
evidence were also assessed according to the CEBM 2011
Levels of Evidence [19]. Results of these analyses may be
found in Additional files 2 and 3. Briefly, the majority
of studies were considered to be low risk, with six stud-
ies judged to have unclear risk for at least one domain
and seven studies judged to be high risk for at least
one domain. Thirty-six studies where judged to have evi-
dence of level 2, with the remaining six having evidence
of level 3. These levels of risk and evidence suggest that
the majority of conclusions drawn from these studies are
representative and applicable to the review question.

Gene set enrichment
Gene set enrichment analysis was applied to the gene sets
reported by the studies selected for this review. Anal-
ysis was performed using the R package HTSanalyseR
[20]. Where reported, gene sets were extracted and com-
bined according to the chemotherapy treatments applied
to patients in each study. The two groups assessed were
those studies where all patients were treated with plat-
inum and taxane in combination, and those studies where

Figure 1 PRISMA search filtering flow diagram. The initial search results were filtered using titles and abstracts and, later, the full text to ensure
the search criteria were fulfilled. Following filtering the number of papers included reduced from 78 to 42.
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Table 1 Journal and study information of papers included in the systematic review

Study Journal No. samples No. genes in study No. genes in signature

Jeong et al. [22] Anticancer Res. 487 612 388, 612

Lisowska et al. [23] Front. Oncol. 127 > 47000 0

Roque et al. [24] Clin. Exp. Metastasis 48 1 1

Li et al. [3] Oncol. Rep. 44 1 1

Schwede et al. [25] PLoS ONE 663 2632 51

Verhaak et al. [26] J. Clin. Invest. 1368 11861 100

Obermayr et al. [27] Gynecol. Oncol. 255 29098 12

Han et al. [28] PLoS ONE 322 12042 349, 18

Hsu et al. [29] BMC Genomics 168 12042 134

Lui et al. [30] PLoS ONE 737 NS 227

Kang et al. [31] J. Nat. Cancer Inst. 558 151 23

Gillet et al. [32] Clin. Cancer Res. 80 356 11

Ferriss et al. [33] PLos ONE 341 NS 251, 125

Brun et al. [34] Oncol. Rep. 69 6 0

Skirnisdottir and Seidal [35] Oncol. Rep. 105 3 2

Brenne et al. [36] Hum. Pathol. 140 1 1

Sabatier et al. [37] Br. J. Cancer 401 NS 7

Gillet et al. [38] Mol. Pharmeceutics 32 350 18, 10, 6

Chao et al. [39] BMC Med. Genomics 6 8173 NS

Schlumbrecht et al. [40] Mod. Pathol. 83 7 2

Glaysher et al. [41] Br. J. Cancer 31 91 10, 4, 3, 5, 5, 11, 6, 6

Yan et al. [42] Cancer Res. 42 2 1

Yoshihara et al. [43] PLoS ONE 197 18176 88

Williams et al. [44] Cancer Res. 242 NS 15 to 95

Denkert et al. [45] J. Pathol 198 NS 300

Matsumura et al. [46] Mol. Cancer Res. 157 22215 250

Crijns et al. [47] PLoS Medicine 275 15909 86

Mendiola et al. [48] PLoS ONE 61 82 34

Gevaert et al. [49] BMC Cancer 69 ∼ 24000 ∼ 3000

Bachvarov et al. [50] Int. J. Oncol. 42 20174 155, 43

Netinatsunthorn et al. [51] BMC Cancer 99 1 1

De Smet et al. [52] Int. J. Gynecol. Cancer 20 21372 3000

Helleman et al. [53] Int. J. Cancer 96 NS 9

Spentzos et al. [54] J. Clin. Oncol. 60 NS 93

Jazaeri et al. [55] Clin. Cancer Res. 40 40033, 7585 85, 178

Raspollini et al. [56] Int. J. Gynecol. Cancer 52 2 2

Hartmann et al. [57] Clin. Cancer Res. 79 30721 14

Spentzos et al. [58] J. Clin. Oncol. 68 12625 115

Selvanayagam et al. [59] Cancer Genet. Cytogenet. 8 10692 NS

Iba et al. [60] Cancer Sci. 118 4 1

Kamazawa et al. [61] Gynecol. Oncol. 27 3 1

Vogt et al. [62] Acta Biochim. Pol. 17 3 0

If more than one value is given, the study used multiple different starting gene-sets or found multiple gene signatures. NS: Not Specified.
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Table 2 Tissue information of papers included in systematic review

Study Tissue source % Cancerous tissue

Jeong et al. [22]

Lisowska et al. [23] Fresh-frozen NS

Roque et al. [24] FFPE, Fresh-frozen min. 70%

Li et al. [3] FFPE NS

Schwede et al. [25]

Verhaak et al. [26]

Obermayr et al. [27] Fresh-frozen, Blood NS

Han et al. [28]

Hsu et al. [29]

Lui et al. [30]

Kang et al. [31]

Gillet et al. [32] Fresh-frozen min. 75%

Ferriss et al. [33] FFPE min. 70%

Brun et al. [34] FFPE NS

Skirnisdottir and Seidal [35] FFPE NS

Brenne et al. [36] Fresh-frozen effusion, Fresh-frozen min. 50%

Sabatier et al. [37] Fresh-frozen min. 60%

Gillet et al. [38] Fresh-frozen effusion NS

Chao et al. [39]

Schlumbrecht et al. [40] Fresh-frozen min. 70%

Glaysher et al. [41] FFPE, Fresh min. 80%

Yan et al. [42] Fresh-frozen NS

Yoshihara et al. [43] Fresh-frozen min. 80%

Williams et al. [44]

Denkert et al. [45] Fresh-frozen NS

Matsumura et al. [46] Fresh-frozen NS

Crijns et al. [47] Fresh-frozen median = 70%

Mendiola et al. [48] FFPE min. 80%

Gevaert et al. [49] Fresh-frozen NS

Bachvarov et al. [50] Fresh-frozen min. 70%

Netinatsunthorn et al. [51] FFPE NS

De Smet et al. [52] Not specified NS

Helleman et al. [53] Fresh-frozen median = 64%

Spentzos et al. [54] Fresh-frozen NS

Jazaeri et al. [55] FFPE, Fresh-frozen NS

Raspollini et al. [56] FFPE NS

Hartmann et al. [57] Fresh-frozen min. 70%

Spentzos et al. [58] Fresh-frozen NS

Selvanayagam et al. [59] Fresh-frozen min. 70%

Iba et al. [60] FFPE, Fresh-frozen NS

Kamazawa et al. [61] FFPE, Fresh-frozen NS

Vogt et al. [62] None specified NS

If more than one value is given, the study used tissue frommultiple sources. NS: Not Specified.
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Table 3 Gene expressionmeasurement techique information of papers included in systematic review

Study Immunohistochemistry TaqMan array q-RT-PCR Commercial microarray Custommicroarray RT-PCR

Jeong et al. [22] ✗ ✗ ✗ ✓ ✗ ✗

Lisowska et al. [23] ✗ ✗ ✓ ✓ ✗ ✗

Roque et al. [24] ✓ ✗ ✓ ✗ ✗ ✗

Li et al. [3] ✓ ✗ ✗ ✗ ✗ ✗

Schwede et al. [25] ✗ ✗ ✗ ✓ ✗ ✗

Verhaak et al. [26] ✗ ✗ ✗ ✓ ✗ ✗

Obermayr et al. [27] ✗ ✗ ✓ ✓ ✗ ✗

Han et al. [28] ✗ ✗ ✗ ✓ ✗ ✗

Hsu et al. [29] ✗ ✗ ✗ ✓ ✗ ✗

Lui et al. [30] ✗ ✗ ✗ ✓ ✗ ✗

Kang et al. [31] ✗ ✗ ✗ ✓ ✗ ✗

Gillet et al. [32] ✗ ✓ ✗ ✗ ✗ ✗

Ferriss et al. [33] ✗ ✗ ✗ ✗ ✓ ✗

Brun et al. [34] ✓ ✗ ✗ ✗ ✗ ✗

Skirnisdottir and Seidal [35] ✓ ✗ ✗ ✗ ✗ ✗

Brenne et al. [36] ✗ ✗ ✓ ✗ ✗ ✗

Sabatier et al. [37] ✗ ✗ ✗ ✓ ✗ ✗

Gillet et al. [38] ✗ ✓ ✗ ✗ ✗ ✗

Chao et al. [39] ✗ ✗ ✗ ✓ ✗ ✗

Schlumbrecht et al. [40] ✓ ✗ ✓ ✗ ✗ ✗

Glaysher et al. [41] ✗ ✓ ✗ ✗ ✗ ✗

Yan et al. [42] ✓ ✗ ✗ ✗ ✗ ✗

Yoshihara et al. [43] ✗ ✗ ✓ ✓ ✗ ✗

Williams et al. [44] ✗ ✗ ✗ ✓ ✗ ✗

Denkert et al. [45] ✗ ✗ ✗ ✓ ✗ ✗

Matsumura et al. [46] ✓ ✗ ✓ ✓ ✗ ✗

Crijns et al. [47] ✗ ✗ ✓ ✗ ✓ ✗

Mendiola et al. [48] ✗ ✓ ✗ ✗ ✗ ✗

Gevaert et al. [49] ✗ ✗ ✗ ✓ ✗ ✗

Bachvarov et al. [50] ✗ ✗ ✓ ✓ ✗ ✗

Netinatsunthorn et al. [51] ✓ ✗ ✗ ✗ ✗ ✗

De Smet et al. [52] ✗ ✗ ✗ ✗ ✓ ✗

Helleman et al. [53] ✗ ✗ ✓ ✗ ✓ ✗

Spentzos et al. [54] ✗ ✗ ✗ ✓ ✗ ✗

Jazaeri et al. [55] ✓ ✗ ✗ ✗ ✓ ✗

Raspollini et al. [56] ✓ ✗ ✗ ✗ ✗ ✗

Hartmann et al. [57] ✗ ✗ ✗ ✗ ✓ ✗

Spentzos et al. [58] ✗ ✗ ✗ ✓ ✗ ✗

Selvanayagam et al. [59] ✗ ✗ ✗ ✗ ✓ ✗

Iba et al. [60] ✓ ✗ ✓ ✗ ✗ ✗

Kamazawa et al. [61] ✗ ✗ ✓ ✗ ✗ ✗

Vogt et al. [62] ✗ ✗ ✗ ✗ ✗ ✓
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patients were given treatments other than platinum and
taxane. The second group includes those given platinum
as a single agent. Any studies reporting treatments from
both groups were excluded, as were studies that did not
report the chemotherapy treatments used. Kyoto Ency-
clopedia of Genes and Genomes (KEGG) terms were
identified for each gene and gene set collection analysis
was carried out, which applies hypergeometric tests and
gene set enrichment analysis. A p-value cut-off of 0.0001
was used. Enrichment maps were then plotted, using the
30 most significant KEGG terms. P-values were adjusted
using the ‘BH’ correction [21].

Ethics statement
Ethical approval was not required for this systematic
review, which deals exclusively with previously published
data.

Results
Tables 1, 2, 3, 4, 5 and 6 detail some key information
regarding the studies included in the review. Table 1 con-
tains the number of samples analysed, the number of
genes considered for the model, and the resulting genes
retained as the predictive gene signature. Table 2 provides
information about the tissue used for gene expression
measurements and whether the studies assessed the per-
cent neoplastic tissue before measurement, and Table 3
details the gene expressionmeasurement techniques used.
Table 4 contains the reported histological types and stages
of the samples processed by each study. Table 5 provides
information on chemotherapy treatments undergone by
patients, whether the model was prognostic or predic-
tive, and whether the model was validated using either an
independent set of samples or cross validation. Table 6
lists the outcome to be predicted, the modelling tech-
niques applied, and the predictive ability of the resulting
model.

Tissue source
For studies involving RNA extraction the tissue source is
an important consideration, as RNA degradation and frag-
mentation could affect the results of techniques involving
amplification. This is a notable issue in formalin fixed
paraffin embedded (FFPE) tissue, due to the cross-linking
of genetic material and proteins [63]. Of the 42 papers
included in this review, the majority used fresh-frozen
biopsy tissue. The numbers of each tissue source may be
found in Table 7, and the tissue source used by individ-
ual papers may be found in Table 2. Nine papers did not
use an RNA source directly as secondary data was used.
Data sources were mostly other studies or data reposi-
tories, such as the TCGA dataset. Two studies did not
specify the source tissue though extraction and expression
measurement methods were detailed.

The majority of papers in this review used fresh-frozen
tissue. This choice was likely made to minimise RNA
degradation and hence improve measurement accuracy.
Due to the risk of RNA degradation because of long stor-
age times and the fixing process applied to FFPE tissue,
it is often expected that FFPE tissue will be irreversibly
cross-linked and fragmented. However, following inves-
tigation into RNA integrity when extracted from paired
FFPE and fresh-frozen tissue, Rentoft et al. [64] found that
for most samples up- and down-regulation of four genes
was found to be the same whether measured in FFPE or
fresh-frozen tissue. They concluded that, if samples were
screened to ensure RNA quality, FFPE material can suc-
cessfully provide RNA for gene expression measurement.
The use of fresh-frozen tissue in a research setting is

not unusual, as can be seen from the fact that this tissue
type was most popular in this review. However, for trans-
lational research expected to lead to a clinical test, this is
not as reasonable. FFPE tissue is much more readily avail-
able, due to simpler acquisition and storage, and tissue is
already taken for histological analysis. Therefore a model
capable of using data obtained from FFPE tissue is much
more likely to be applicable in a clinical setting.
Another important consideration is the proportion of

neoplastic cells in the sample. For each paper the reported
proportion may be seen in Table 2. Of the 42 papers,
14 reported that the proportion of cancerous cells was
measured. This was usually done using hematoxylin and
eosin stained histologic slides. It is important for the gene
expression measurement that the tissue used contains a
high proportion of neoplastic cells, and hence it is impor-
tant that this pre-analytical variable is controlled. Of the
studies in this review, those reporting the percentage can-
cerous cells were evenly distributed between FFPE and
fresh-frozen tissues.

Gene or protein expression quantification
Of the studies highlighted by this review, there were four
main techniques applied for gene or protein expression
measurement: Probe-target hybridization microarrays,
quantitative PCR, reverse transcription end-point-PCR,
and immunohistochemical staining. Of these methods
only immunohistochemistrymeasures protein expression,
via classification of the level of staining, and the other
methods quantify gene expression via measurement of
mRNA copy number.
Methods involving probe-target hybridization are avail-

able commercially, and 19 of the 42 studies utilised
these. For example the Affymetrix® Human U133A 2.0
GeneChip and the Agilent® Whole Human Genome Oligo
Microarray were both used by multiple studies. Addition-
ally, 7 studies used custom-made probe-target hybridiza-
tion arrays. Probe-target hybridisation arrays generally
measure thousands of genes and hence can provide a
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Table 4 Histology information of papers included in systematic review

Study Sub-type Stage

Jeong et al. [22] Serous, Endometrioid, Adenocarcinoma I, II, III, IV

Lisowska et al. [23] Serous, Endometrioid, Clear cell, Undifferentiated II, III, IV

Roque et al. [24] Serous, Endometrioid, Clear cell, Undifferentiated, Mixed IIIC, IV

Li et al. [3] Serous, Endometrioid, Clear cell, Mucinous, Transitional II, III, IV

Schwede et al. [25] Serous, Endometrioid, Clear cell, Mucinous, Adenocarcinoma, OSE I, II, III, IV

Verhaak et al. [26] NS II, III, IV

Obermayr et al. [27] Serous, Non-serous II, III, IV

Han et al. [28] Serous, Endometrioid, Clear cell, Mucinous, Mixed, Poorly differentiated II, III, IV

Hsu et al. [29] NS III, IV

Lui et al. [30] Serous II, III, IV

Kang et al. [31] Serous I, II, III, IV

Gillet et al. [32] Serous III, IV

Ferriss et al. [33] Serous, Clear cell, Other III, IV

Brun et al. [34] Serous, Endometrioid, Clear cell, Mucinous, Other III, IV

Skirnisdottir and Seidal [35] Serous, Endometrioid, Clear cell, Mucinous, Anaplastic I, II

Brenne et al. [36] Serous, Endometrioid, Clear cell, Undifferentiated, Mixed II, III, IV

Sabatier et al. [37] Serous, Endometrioid, Clear cell, Mucinous, Undifferentiated, Mixed I, II, III, IV

Gillet et al. [38] Serous III, IV, NS

Chao et al. [39] NS NS

Schlumbrecht et al. [40] Serous III, IV

Glaysher et al. [41] Serous, Endometrioid, Clear cell, Mucinous, Mixed, Poorly differentiated IIIC, IV

Yan et al. [42] Serous, Endometrioid, Clear cell, Mucinous, Transitional II, III, IV

Yoshihara et al. [43] Serous III, IV

Williams et al. [44] Serous, Endometrioid, Undifferentiated III, IV

Denkert et al. [45] Serous, Non-serous, Undifferentiated I, II, III, IV

Matsumura et al. [46] Serous I, II, III, IV

Crijns et al. [47] Serous III, IV

Mendiola et al. [48] Serous, Non-serous III, IV

Gevaert et al. [49] Serous, Endometrioid, Mucinous, Mixed I, III, IV

Bachvarov et al. [50] Serous, Endometrioid, Clear cell II, III, IV

Netinatsunthorn et al. [51] Serous III, IV

De Smet et al. [52] Serous, Endometrioid, Mucinous, Mixed I, III, IV

Helleman et al. [53] Serous, Endometrioid, Clear cell, Mucinous, Mixed, Poorly differentiated I/II, III/IV

Spentzos et al. [54] Serous, Endometrioid, Clear cell, Mixed I, II, III, IV

Jazaeri et al. [55] Serous, Endometrioid, Clear cell, Mixed, Undifferentiated, Carcinoma II, III, IV

Raspollini et al. [56] Serous IIIC

Hartmann et al. [57] Serous, Endometrioid, Mixed II, III, IV

Spentzos et al. [58] Serous, Endometrioid, Clear cell, Mixed I, II, III, IV

Selvanayagam et al. [59] Serous, Endometrioid, Clear cell, Undifferentiated III, IV

Iba et al. [60] Serous, Endometrioid, Clear cell, Mixed I, II, III, IV

Kamazawa et al. [61] Serous, Endometrioid, Clear cell III, IV

Vogt et al. [62] NS NS

Entries in bold indicate that the study data set was comprised of at least 80% this type. NS: Not Specified.



Lloyd et al. BMC Cancer  (2015) 15:117 Page 9 of 32

Table 5 Basic modelling and patient information of papers included in systematic review

Study Patient prior chemotherapy
treatment

Model accounts for the different
chemotherapies?

Prognostic or predictive? Model validated?

Jeong et al. [22] Platinum-based ✓ Predictive ✓

Lisowska et al. [23] Platinum/Cyclophosphamide,
Platinum/Taxane

✗ Prognostic ✓

Roque et al. [24] NS ✗ Prognostic ✗

Li et al. [3] Platinum/Cyclophosphamide,
Platinum/Taxane

✗ Prognostic ✗

Schwede et al. [25] NS ✗ Prognostic ✓

Verhaak et al. [26] NS ✗ Prognostic ✓

Obermayr et al. [27] Platinum-based ✗ Prognostic ✗

Han et al. [28] Platinum/Paclitaxel Prognostic ✓

Hsu et al. [29] Platinum/Paclitaxel

+ additional treatments ✓ Prognostic ✓

Lui et al. [30] NS ✗ Prognostic ✓

Kang et al. [31] Platinum/Taxane Prognostic ✓

Gillet et al. [32] Carboplatin/Paclitaxel Prognostic ✓

Ferriss et al. [33] Platinum-based ✓ Predictive ✓

Brun et al. [34] NS ✗ Prognostic ✗

Skirnisdottir and Seidal [35] Carboplatin/Paclitaxel Prognostic ✗

Brenne et al. [36] NS ✗ Prognostic ✗

Sabatier et al. [37] Platinum-based ✗ Prognostic ✓

Gillet et al. [38] NS ✗ Prognostic ✓

Chao et al. [39] NS ✗ Prognostic ✗

Schlumbrecht et al. [40] Platinum/Taxane Prognostic ✗

Glaysher et al. [41] Platinum, Platinum/Paclitaxel ✓ Predictive ✓

Yan et al. [42] Platinum-based ✗ Prognostic ✗

Yoshihara et al. [43] Platinum/Taxane Prognostic ✓

Williams et al. [44] NS ✓ Predictive ✓

Denkert et al. [45] Carboplatin/Paclitaxel Prognostic ✓

Matsumura et al. [46] Platinum-based ✓ Predictive ✓

Crijns et al. [47] Platinum, Platinum/

Cyclophosphamide,
Platinum/Paclitaxel

✓ Prognostic ✓

Mendiola et al. [48] Platinum/Taxane Prognostic ✓

Gevaert et al. [49] NS ✗ Prognostic ✓

Bachvarov et al. [50] Carboplatin/Paclitaxel,

Carboplatin/Cyclophosphamide,
Cisplatin/Paclitaxel

✗ Prognostic ✓

Netinatsunthorn et al. [51] Platinum/Cyclophosphamide Prognostic ✗

De Smet et al. [52] Platinum/Cyclophosphamide,
Platinum/Paclitaxel

✗ Prognostic ✓

Helleman et al. [53] Platinum/Cyclophosphamide,
Platinum-based

✗ Prognostic ✓

Spentzos et al. [54] Platinum/Taxane Prognostic ✓
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Table 5 Basic modelling and patient information of papers included in systematic review (Continued)

Jazaeri et al. [55] Carboplatin/Paclitaxel, Cis-
platin/Cyclophosphamide,
Carboplatin/Docetaxel,
Carboplatin

✗ Prognostic ✓

Raspollini et al. [56] Cisplatin/Cyclophosphamide,
Carbo-
platin/Cyclophosphamide,
Carboplatin/Paclitaxel

✗ Prognostic ✗

Hartmann et al. [57] Cisplatin/Paclitaxel, Carbo-
platin/Paclitaxel

✗ Prognostic ✓

Spentzos et al. [58] Platinum/Taxane Prognostic ✓

Selvanayagam et al. [59] Cisplatin/Cyclophosphamide,
Carbo-
platin/Cyclophosphamide,
Cisplatin/Paclitaxel

✗ Prognostic ✓

Iba et al. [60] Carboplatin/Paclitaxel Prognostic ✗

Kamazawa et al. [61] Carboplatin/Paclitaxel Prognostic ✗

Vogt et al. [62] Etoposide,
Paclitaxel/Epirubicin,
Carboplatin/Paclitaxel

✓ Predictive ✗

If more than one value is given, the study included patients treated with different treatments. NS: Not Specified.

wealth data per sample. TaqMan® microfluidic arrays or
quantitative-PCR were used by 16 studies. These tech-
niques are typically used for smaller panels of genes. The
TaqMan® arrays for example may contain up to 384 genes
per array. These methods are more targeted and hence the
price per sample is usually lower.
Immunohistochemistry is a more labour-intensive tech-

nique, requiring staining for each gene considered, and
hence was mostly only used by studies using small num-
bers of genes. This technique, which is semi-quantitative
due to the scoring systems employed, also suffers from a
lack of standardisation of procedures. Of the 11 papers
using this technique, the maximum number of genes anal-
ysed was seven, and the mean number of genes assessed
was 2.8. Although these studies provide useful informa-
tion regarding the correlation of particular genes with
outcome, the small numbers of genes is likely to result in
an incomplete gene signature and low predictive power.
Several of the papers utilising quantifiable techniques

used an alternative method or replicates to obtain a
measure of the assay variability. Five papers involving
commercial or custommicroarrays also used reverse tran-
scription PCR (RT-PCR) to measure the expression of
a small number of genes for comparison and one study
used samples run in duplicate to calculate the coeffi-
cient of variation. Of the studies using TaqMan microflu-
idic arrays, two used samples run in duplicate to obtain
the coefficient of variation. However, even fewer papers
reported a metric representing the level of variability
found. Two studies reported a coefficient of variation;
Glaysher et al. [41] reported CoV = 2% = 0.02 for
TaqMan arrays and Hartmann et al. [57] reported CoV =

0.2 for their custom microarray. Another two reported
Spearman’s or Pearson’s r coefficients of correlation
between microarray and RT-PCR results. Yoshihara et al.
[43] gave Pearson r values ranging from 0.5 to 0.8, and
Crijns et al. [47] gave Spearman’s r values between -0.6
and -0.9.

Histology
Table 4 details the histology (types and stages) of the
patient samples used by each study. As may be seen, the
majority of studies were heterogeneous with respect to
the types of cancer included. However, 23 of the 42 stud-
ies used at least 80% serous samples, suggesting that the
majority of information contributed to the gene signatures
of these studies is related to themechanisms and pathways
in serous cancer. In the authors’ opinion it is important
to identify the histologies of patient samples: although
treatment is currently the same across types, response to
chemotherapy has been found to vary [9,65,66]. It there-
fore may be advisable for future studies to include his-
tological information when developing models predicting
chemotherapy response.

Chemotherapy
Table 5 lists the chemotherapy treatments undergone
by patients in each study. The 10 papers labelled NS
did not specify the regimen applied, though the patients
did have chemotherapy. These cohorts cannot therefore
be assumed to be homogeneous with respect to patient
chemotherapy treatment. All studies that specified the
chemotherapy regimen undergone by patients noted at
least one platinum-based treatment. Of these, 24 included
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Table 6 Basic modelling information of papers included in systematic review

Study Prediction Prediction method Predictive ability

Jeong et al. [22] Overall Survival Student’s T test, Hierarchical clus-
tering, Compound covariate pre-
dictor algorithm, Cox proportional
hazards regression, Kaplan-Meier
curves, Log-rank test, ROC analysis

‘Taxane-based treatment signif-
icantly affected OS for patients
in the YA subgroup (3 year rate:
74.4% with taxane vs. 37.9% with-
out taxane, p=0.005 by log-rank
test)’, ‘estimated hazard ratio for
death after taxane-based treatment
in the YA subgroup was 0.5 (95%
CI = 0.31 − −0.82, p = 0.005)’

Lisowska et al.
[23]

Chemoresponse, Disease-Free Sur-
vival , Overall Survival

Support vector machines, Kaplan-
Meier curves, Log-rank test

No genes found to be significant
in the training set were significant
in the test set, for chemoresponse,
DFS or OS

Roque et al. [24] Overall Survival Kaplan-Meier curves, Log-rank test,
Student’s T test

‘OS was predicted by increased
class III β-tubulin staining by both
tumor (HR3.66, 96% CI = 1.11–12.1,
p = 0.03) and stroma (HR4.53, 95%
CI = 1.28–16.1, p = 0.02)’

Li et al. [3] Chemoresponse (chemoresistant
vs. chemosensitive)

Correlation of p-CFL1 staining and
chemoresponse

‘immunostaining of p-CFL1 was
positive in 77.3% of chemosensitive
and in 95.9% of the chemoresistant’
(p = 0.014, U = 157.5)

Schwede et al.
[25]

Stem cell-like subtype, Disease-Free
Survival, Overall Survival

ISIS unsupervised bipartitioning,
Diagonal linear discriminant anal-
ysis, Gaussian mixture modelling,
Kaplan-Meier curves, Log-rank test

OS (p values): Dressman = 0.0354,
Crijns = 0.021, Tothill = 4.4E − 7

Verhaak et al. [26] Poor Prognosis vs. Good Prognosis Significance analysis of microarrays,
Single sample gene set enrichment
analysis, Kaplan-Meier curves, Log-
rank test

Good or Poor prognosis, likelihood
ratio = 44.63

Obermayr et al.
[27]

Disease-Free Survival, Overall Sur-
vival

Kaplan-Meier curves, Cox propor-
tional hazards regression, χ2 test

‘The presence of CTCs six months
after completion of the adjuvant
chemotherapy indicated relapse
within the following six months
with 41% sensitivity, and relapse
within the entire observation
period with 22% sensitivity (85%
specificity)’

Han et al. [28] Complete Response or Progressive
Disease

Supervised principal component
method

349 gene signature: ROC AUC=
0.702, p = 0.022. 18 gene: ROC
AUC= 0.614, p = 0.197.

Hsu et al. [29] Progression-Dree Survival Semi-supervised hierarchical clus-
tering

Good Response vs. Poor Response,
p = 0.021

Lui et al. [30] Chemosensitivity, Overall Survival,
Progression-Dree Survival

Predictive score using weighted
voting algorithm, Kaplan-Meier
curves, Log-rank Test, Cox propor-
tional hazards regression

Response of 26 of 35 patients in
an independent data set was cor-
rectly predicted, patients in the low-
scoring group exhibited poorer PFS
(HR = 0.43, p = 0.04), ROC AUC =
0.90(0.86–0.95)

Kang et al. [31] Overall Survival, Progression-Free
Survival, Recurrence-Free Survival

Kaplan-Meier curves, Log-rank test,
Cox proportional hazards regres-
sion, Pearson correlation coefficient

Berchuck dataset: HR = 0.33, 95%
CI = 0.13–0.86, p = 0.013; Tothill
dataset: HR = 0.61, 95% CI =
0.36–0.99, p = 0.044

Gillet et al. [32] Overall Survival, Progression-Free
Survival

Supervised principle components
method, Cox proportional hazards
regression, Kaplan-Meier curves,
Log-rank test

‘An 11-gene signature whose
measured expression signifi-
cantly improves the power of
the covariates to predict poor
survival’(p < 0.003)

Ferriss et al. [33] Overall Survival COXEN coefficient, Mann-Whitney
U test, ROC analysis, Unsupervised
Hierarchical Clustering

Carboplatin: sensitivity = 0.906,
specificity = 0.174, PPV = 60%, NPV
= 57% (UVA-55 validation set)
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Table 6 Basic modelling information of papers included in systematic review (Continued)

Brun et al. [34] 2-year Disease-Free Survival Student’s T test, Principal compo-
nent analysis, Concordance index,
Kaplen-Meier curves, Log-rank test

No genes were found to have prog-
nostic value

Skirnisdottir and
Seidal [35]

Recurrence, Disease-Free Survival χ2 test, Kaplan-Meier curves, Log-
rank test, Logistic regression, Cox
proportional hazards regression

p53-status (OR = 4.123, p = 0.009;
HR = 2.447, p = 0.019) was a sig-
nificant and independent factor for
tumor recurrence and DFS.

Brenne et al. [36] OC or MM, Progression-Free Sur-
vival, Overall Survival

Mann-Whitney U test, Kaplan-Meier
curves, Log-rank test, Cox propor-
tional hazards regression

Cox Multivariate Analysis:
EHF mRNA expression in pre-
chemotherapy effusions was an
independent predictor of PFS
(p = 0.033, relative risk = 4.528)

Sabatier et al. [37] Progression-Free Survival, Overall
Survival

Cox proportional hazards regres-
sion, Pearson’s coefficient correla-
tion score

Favourable vs. Unfavourable: ‘sensi-
tivity = 61.6%, specificity = 62.4%,
OR = 2.7, 95% CI = 1.7–4.2; p =
6.1 × 10−06, Fisher’s exact test’

Gillet et al. [38] Overall Survival, Progression-Free
Survival, Treatment Response

Linear regression, Hierarchical clus-
tering, Kaplan-Meier curves, Log-
rank test

‘6 gene signature alone can effec-
tively predict the progression-free
survival of women with ovarian
serous carcinoma (log-rank p =
0.002)’

Chao et al. [39] Chemoresistance Interaction and expression net-
works for pathway identification,
pathway intersections, between-
ness and degree centrality,
Student’s T test

No statistical measure available.
Many genes identified have previ-
ously been found experimentally

Schlumbrecht
et al. [40]

Overall Survival, Recurrence-Free
Survival

Linear regression, Logistic regres-
sion, Cox proportional hazards
regression, Kaplan-Meier curves,
Unsupervised cluster analysis, Log-
rank test, Mann-Whitney U test, χ2

test

‘Greater EIG121 expression was
associated with shorter time
to recurrence (HR = 1.13
(CI = 1.02–1.26), p = 0.021)’,
‘Increased expression of EIG121
demonstrated a statistically sig-
nificant association with worse
OS (HR = 1.21 (CI1.09–1.35),
p < 0.001)’

Glaysher et al. [41] Chemosensitivity AIC gene selection, Multiple linear
regression

Cisplatin: R2adj = 0.836, p < 0.001

Yan et al. [42] Chemosensitivity ANOVA, Student’s T test, Mann-
Whitney U test

‘Immunostaining scores [Annexin
A3] are significantly higher
in platinum-resistant tumors
(p = 0.035)’

Yoshihara et al.
[43]

Progression-Free Survival Cox proportional hazards regres-
sion, Ridge regression, Prognostic
index, ROC analysis, Kaplan-Meier
curves, Log-rank test

‘Prognostic index was an indepen-
dent prognostic factor for PFS time
(HR = 1.64, p = 0.0001)’, sensitivity
= 64.4%, specificity = 69.2%

Williams et al. [44] Overall Survival COXEN score, Kaplan-Meier curves,
Student’s T test, ROC analysis,
Spearman’s rank correlation coeffi-
cient, Logistic regression, Log-rank
test

Carboplatin and Taxol: sensitivity =
77%, specificity = 56%, PPV = 71%,
NPV = 78%

Denkert et al. [45] Overall Survival Semi-supervised analysis via Cox
scoring, Principal components
analysis, Kaplan-Meier curves, Log-
rank test, Cox proportional hazards
regression

Duke et al.: ‘clinical outcome is sig-
nificantly different depending on
the OPI (p = 0.021), with an HR of
1.7 (CI 1.1–2.6)’

Matsumura et al.
[46]

Taxane sensitivity, Overall Survival Hierarchical clustering, Kaplan-
Meier curves, Log-rank test

‘Patients in the YY1-High cluster
who were treated with paclitaxel
showed improved survival com-
pared with the other groups (p =
0.010)’
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Table 6 Basic modelling information of papers included in systematic review (Continued)

Crijns et al. [47] Overall Survival Supervised principal components
method, Cox proportional hazards
regression, Kaplan-Meier curves,
Log-rank test, χ2 test

OSP: (High-risk vs. low-risk) HR =
1.940, CI = 1.190–3.163, p = 0.008

Mendiola et al.
[48]

Progression-Free Survival, Overall
Survival

Kaplan-Meier curves, Log-rank test,
AIC-based model selection, ROC
curves, Cox proportional hazards
regression

OS: sensitivity = 87.2%, specificity =
86.4%

Gevaert et al. [49] Platin Resistance/Sensitivity, Stage Principal component analysis, Least
squares support vector machines

Platin-Resistance/Sensitivity: sensi-
tivity = 67%, specificity = 40%, accu-
racy = 51.11%

Bachvarov et al.
[50]

Chemoresistance Hierarchical Clustering, Support
vector machines

No prediction metric applied

Netinatsunthorn
et al. [51]

Overall Survival, Recurrence-Free
Survival

Kaplan-Meier curves, Cox propor-
tional hazards regression

OS: HR = 1.98, 95% CI = 1.28–3.79,
p = 0.0138 ; RFS: HR = 3.36, 95%
CI = 1.60–7.03, p = 0.0017

De Smet et al. [52] Stage I vs. Advanced stage, Platin-
sensistive vs. Platin-resistant

Principal component analysis, Least
squares support vector machines

Estimated Classification Accuracy:
Stage I vs Advanced Stage = 100%,
Platin-sensitive vs. Platin-resistant=
76.9%

Helleman et al.
[53]

Chemoresponse (responder vs.
non-responder)

Class prediction, Hierarchical clus-
tering, Principal component analy-
sis

Test set: PPV = 24%, NPV = 97%,
sensitivity= 89%, specificity= 59%

Spentzos et al.
[54]

Chemoresponse (pathological-CR
or PD), Disease-Free survival, Overall
Survival

Class prediction analysis, Com-
pound covariate algorithm, Ave-
rage linkage hierarchical clustering,
Kaplan-Meier curves, Log-rank
test, Cox proportional hazards reg-
ression

Cox PH (resistant vs. sensitive):
Recurrence HR = 2.7 (95% CI =
1.2–6.1), Death HR = 3.9 (95% CI =
3.1–11.4)

Jazaeri et al. [55] Clinical response Class prediction 9 most significantly differentially
expressed genes, primary chemore-
sistant vs. primary chemosensitive:
accuracy = 77.8%

Raspollini et al.
[56]

Overall Survival (high vs. low) Univariate logistic regression, χ2

test
COX-2: OR = 0.23, 95% CI =
0.06–0.77, p = 0.017; MDR1: OR =
0.01, 95% CI = 0.002–0.09, p =<

0.0005

Hartmann et al.
[57]

Time To Relapse (early vs.late) Support vector machine, Kaplan-
Meier curves, Log-rank test, average
linkage clustering

Accuracy = 86%, PPV = 95%,
NPV = 67%

Spentzos et al.
[58]

Disease-Free Survival, Overall Sur-
vival

Supervised pattern recognition/
class prediction, Kaplan-Meier
curves, Log-rank test, Cox proporti-
onal hazards regression

Unfavourable vs. Favourable OS :
(CPH) HR = 4.6, 95% CI = 2.0–10.7,
p = 0.0001

Selvanayagam et
al. [59]

Chemoresistance (chemoresistant
vs. chemosensitive)

Supervised voice-pattern recogni-
tion algorithm (clustering)

PPV = 1, NPV = 1

Iba et al. [60] Chemoresponse, Overall Survival Kaplan-Meier curves, Log-rank test,
Cox propotionate hazards regres-
sion, ROC analysis,χ2 test, Student’s
T test, Mann-Whitney U test

‘Patients with c-myc expression of
over 200 showed a significantly bet-
ter 5-year survival rate (69.8% vs.
43.5%)’, p < 0.05

Kamazawa et al.
[61]

Chemoresponse (CR or PR vs. NC or
PD)

Defined threshold expressionto
divide responders and non-respon-
ders

MDR-1 (all samples): specificity =
95%, sensitivity = 100%, predictive
value = 96%

Vogt et al. [62] Chemoresistance Correlation of AUC from in-vitro
ATP-CVA and gene expression

All p values for correlation of drugs
and genes were > 0.05

If more than one value is given, the study used multiple different prediction methods or predicted more than one endpoint.
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Table 7 Numbers of studies using various mRNA sources

mRNA source Number of studies

FFPE tissue 12

Fresh-frozen tissue 22

Fresh-frozen effusion 2

Fresh tissue 1

Blood 1

Not used 9

Not specified 2

patients treated with a platinum-taxane combination and
10 with a cyclophosphamide-platinum combination. It is
important to note that 19 of the 42 papers stated the pop-
ulation was heterogeneous with regards to chemotherapy
treatments and, of those that did, only 8 included patient
treatment history as a feature of the study. The aims of
the majority of the studies were to identify genes of which
the expression may be used to predict survival time, or
prognosis. As already noted, the presence of resistance
to the chemotherapy agent administered will dramatically
affect the survival of a patient. It is therefore reasonable
to expect the gene signatures identified to include genes
responsible for chemoresistance, which will depend on the
mechanism of action of the drug. Using a heterogeneous
cohort in terms of chemotherapy treatment may then be
causing problems with the identification of a minimal
predictive gene set.

End-point to be predicted
As may be expected, there was variation between the
end-point chosen by studies for prediction. Popular end-
points include overall survival, progression-free survival
and response to chemotherapy. The endpoints considered
by each study may be found in Table 6. Of these some
are clinical endpoints, such as overall survival, others use
non-clinical endpoints, such as response to chemother-
apy, many of which are considered to be surrogates for
overall survival. For cancer studies, overall survival is con-
sidered to be the most reliable and is the variable that
is of most interest when considering the effect of an
intervention.

Model development
Within this review, many different modelling techniques
were used to identify an explanatory gene signature to
predict patient outcome. The most popular was Cox pro-
portional hazards regression, which was applied by 17
studies. This was closely followed by hierarchical cluster-
ing, which was used by 11 studies. All other methods were
used by 8 or fewer studies. In total 24 different types of
modelling techniques were applied, ranging from statis-
tical tests such as Student’s T test and Mann-Whitney U

test, to logistic regression, to ridge regression. Table 8 lists
the modelling techniques identified and the number of
studies that employed them. It is of interest that most of
the techniques applied are forms of classification. These
methods result in samples being assigned to groups, such
as ‘good prognosis’ and ‘poor prognosis’. Whilst this may
be useful in some settings, for a clinically-applicable tool
a regression technique may be more appropriate as it will
provide a value, such as a likelihood of relapse, rather than
simply a class. Techniques in Table 8 capable of a numeric
prediction include logistic and linear regression, Cox pro-
portional hazards regression, and ridge regression.
Jointly with the modelling methods identified above,

23 of the 42 studies implemented Kaplan-Meier curves
to visualise the survival of the patient classes iden-
tified by the models. This enables the difference in
survival between classes, for example ‘good progno-
sis’ and ‘poor prognosis’, to be seen and assessed. The
application of a log-rank test assesses the separation
of the curves and identifies whether there is a sta-
tistically significant difference in survival distribution

Table 8 Keymodelling techniques applied by studies in
the review

Technique Number of papers

Cox proportional hazards regression 17

Hierarchical clustering 11

Principal components analysis 8

Student’s T test 7

Scoring algorithm 6

Support Vector Machines 5

Correlation coefficients 5

Mann-Whitney U test 5

χ2 test 5

ROC analysis 5

Class prediction 4

Logistic regression 3

Linear regression 3

AIC gene selection 2

Concordance index 1

Pathway interaction networks 1

ANOVA 1

Expression threshold identified 1

Gene set enrichment analysis 1

Linear discriminant analysis 1

ISIS bipartitoning 1

Gaussian mixture modelling 1

Significance analysis of microarrays 1

Ridge regression 1
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between the classes. It should be noted that, although
this gives an idea of separation of classes achieved by
the model, the model results must still be compared
with known outcomes to check positive and negative pre-
dictive power. This step was missing in several papers,
such as Gillet et al. [38], where the p value returned
by the log-rank test is given as the measure of model
success.
It is important to highlight the difference between prog-

nostic and predictive models. A prognostic model is one
capable of predicting prognosis, such as survival time,
using patient information and biomarkers and does not
vary between different treatment options. In contrast, a
predictive model is one able to predict the effect of a
treatment on patient prognosis [67,68]. It is therefore
clear that, although prognostic models may be useful for
research purposes andwhen one treatment option is avail-
able (such as the standard platinum-taxane combination),
predictive models have a much greater part to play in
stratified medicine where the aim is to identify the most
appropriate treatment on a patient-by-patient basis. In
order for a model to be predictive, the effects of mul-
tiple treatments must be considered and the response
compared with the biomarker status. Classification of the
studies as prognostic or predictive may be seen in Table 5.
Of the papers identified by this review, only a minority
considered the effects of chemotherapy treatment on the
predicted outcome and hence could be considered predic-
tive. Glaysher et al. [41] and Vogt et al. [62] produced sep-
arate models for various treatments, allowing the effects
of different drugs and combinations to be compared. Both
studies applied drugs in vitro to cultured tissue to mea-
sure response to chemotherapy. This was combined with
gene expression measurements to form the model train-
ing data set. In this way the same patient samples may
be used to create a set of models predicting response to
a variety of drugs. These models are therefore predic-
tive rather than prognostic. Alternatively, models may be
trained on sets of patients split by treatments undergone,
which would lead to treatment-specific models predict-
ing response to the particular drug. This method was
used by Jeong et al. [22], Ferriss et al. [33], Williams et
al. [44] and Matsumura et al. [46]. Additionally, the use
of a model variable specifying patient treatment history
could allow these models to be combined onto one using
a single training set of all patients. The model may then
be passed a variable specifying the drug of interest for
resistance prediction. A simple version of this method
was implemented by Crijns et al. [47], who included a
feature for whether a patient was treated with paclitaxel.
It is clear that the integration of patient chemotherapy
treatment into these models is underused, and it is likely
to be beneficial for this to be incorporated into future
research.

Genes identified
Of the 42 papers in this review, 32 provided full or par-
tial lists of the genes identified by their models. Of the
remainder, it was common that the gene sets were large or
that the genes were not explicitly identified by the model,
as is the case with modelling techniques such as principal
components analysis.
In total across the papers, 1298 unique genes were

selected by models and of these 93.53% were found by
only one paper. The most commonly chosen gene was
selected by only four papers. Table 9 shows the numbers
and percentages of genes chosen by one to four papers.
A list of the genes identified by the papers in the review

may be found in Table 10.
It is clear that the gene sets selected by the studies are

very different and there is very little overlap. The genes
chosen by two or more studies may be seen in Table 11.
Many of these genes are known to have links to cancer,
which may suggest that these genes are therefore impli-
cated in ovarian cancer. It is possible that, although the
genes selected varied, they in fact represent similar mech-
anisms. This could occur if there are large sets of highly
covariate genes representing particular cellular processes
and the genes in the signatures were simply random selec-
tions from these gene sets. The same gene being selected
by multiple papers would then be unlikely, although the
same information contribution would be made. It may
then be more informative to assess and compare the
mechanisms controlled by the genes chosen as part of the
models.

Gene set enrichment
The gene sets reported by the studies identified in this
review were assessed to identify whether certain biologi-
cal pathways and mechanisms featured more prominently
according to the genes selected. Studies were split by
chemotherapy treatments recieved by the patients, and
the groups identified were platinum and taxane, and
other treatments (such as platinum, cyclophosphamide
and combinations). Studies that did not specify the
chemotherapy treatments used were excluded. Studies
falling into the platinum and taxane group were Han et al.
[28], Kang et al. [31], Gillet et al. [32], Skirnisdottir and

Table 9 Numbers and percentages of genes featured in the
gene sets of various numbers of papers

Number of papers Number of genes Percent of genes
identifying a gene

1 1214 93.53%

2 78 6.01%

3 5 0.385%

4 1 0.08%
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Table 10 List of genes reported by studies included in this review

A1BG CHPF2 FSCN1 LRRC16B PKD1 SOBP

A2M CHRDL1 FXYD6 LRRC17 PKHD1 SORBS3

AADAC CHRNE FZD4 LRRC59 PLA2G7 SOS1

AAK1 CHST6 FZD5 LRSAM1 PLAA SOX12

ABCA13 CHTOP G0S2 LSAMP PLAU SOX21

ABCA4 CIAPIN1 G3BP1 LSM14A PLAUR SPANXD

ABCB1 CIB1 GABRP LSM3 PLCB3 SPATA13

ABCB10 CIB2 GAD1 LSM7 PLEC SPATA18

ABCB11 CIITA GALNT10 LSM8 PLEK SPATA4

ABCB7 CILP GAP43 LTA4H PLIN2 SPC25

ABCC3 CITED2 GART LTB PLS1 SPDEF

ABCC5 CKLF GATAD2A LTK PMM1 SPEN

ABCD2 CLCA1 GCH1 LUC7L2 PMP22 SPHK2

ABCG2 CLCNKB GCHFR LY6K PMVK SPOCK2

ABLIM1 CLDN10 GCM1 LY96 PNLDC1 SPTBN2

ACADVL CLIP1 GDF6 LZTFL1 PNLIPRP2 SRC

ACAT2 CNDP1 GFRA1 MAB21L2 PNMA5 SREBF2

ACKR2 CNKSR3 GGCT MAD2L2 POFUT2 SRF

ACKR3 CNN2 GGT1 MAGEE2 POLH SRRM1

ACO2 CNOT8 GJB1 MAGEF1 POLR3K SRSF3

ACOT13 CNTFR GLRX MAK POMP SSR1

ACP1 cofilin1 GMFB MAMLD1 POU2AF1 SSR2

ACRV1 COL10A1 GMPR MANF POU5F1 SSUH2

ACSM1 COL21A1 GNA11 MAP6D1 PPAP2B SSX2IP

ACSS3 COL3A1 GNAO1 MAPK1 PPAT ST6GALNAC1

ACTA2 COL4A4 GNAZ MAPK1IP1L PPCDC STC2

ACTB COL4A6 GNG4 MAPK3 PPCS STK38

ACTBL3 COL6A1 GNG7 MAPK8IP3 PPFIA3 STX12

ACTG2 COL7A1 GNL2 MAPK9 PPIC STX1B

ACTR3B COX8A GNMT MAPKAP1 PPIE STX7

ACTR6 CPD GNPDA1 MAPKAPK2 PPP1R1A STXBP2

ADAMDEC1 CPE GOLPH3 MARCKS PPP1R1B STXBP6

ADAMTS5 CPEB1 GPIHBP1 MARK4 PPP1R2 SUB1

ADIPOR2 CRCT1 GPM6B MATK PPP1R26 SULT1C2

ADK CREB5 GPR137 MB PPP2R3C SULT2B1

AEBP1 CRYAB GPT2 MBOAT7 PPP2R5C SUPT5H

AF050199 CRYBB1 GPX2 MCF2L PPP2R5D SUSD4

AF052172 CRYL1 GPX3 MCL1 PPP4R4 SUV420H1

AFM CRYM GPX8 MCM3 PPP6R1 SV2C

AFTPH CSE1L GRAMD1B MDC1 PRAP1 SYNM

AGFG1 CSPP1 GRB2 MDFI PRELP SYT1

AGR2 CSRP1 GRK6 MDK PRKAB1 SYT11

AGT CSRP3 GRM2 MDR-1 PRKCH SYT13

AIPL1 CST6 GRPEL1 MEA1 PRKCI TAC3
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Table 10 List of genes reported by studies included in this review (Continued)

AKAP12 CST9L GRSF1 MEAF6 PRKD3 TAP1

AKR1A1 CT45A6 GSPT1 MECOM PROC TASP1

AKR1C1 CTA-246H3.1 GSTM2 MEF2B PROK1 TBCC

AKT1 CTNNBL1 GSTT1 MEGF11 PRPF31 TBP

AKT2 CTSD GTF2E1 MEST PRRX1 TCF15

ALCAM CUTA GTF2F2 METRN PRSS16 TCF7L2

ALDH5A1 CX3CL1 GTF2H5 METTL13 PRSS22 TENM3

ALDH9A1 CXCL1 GTPBP4 METTL4 PRSS3 TEX30

ALG5 CXCL10 GUCY1B3 MFAP2 PRSS36 TFF1

ALMS1 CXCL12 GYG1 MFSD7 PSAT1 TFF3

AMPD1 CXCL13 GYPC MGMT PSMB5 TFPI2

ANKHD1 CXCR4 GZMB MINOS1 PSMB9 TGFB1

ANKRD27 CYB5B GZMK MKRN1 PSMC4 THBS4

ANXA3 CYBRD1 H2AFX MLF2 PSMD1 TIAM1

ANXA4 CYP27A1 H3F3A MLH1 PSMD12 TIMM10B

AOC1 CYP2E1 HAP1 MLX PSMD14 TIMM17B

AP2A2 CYP3A7 HBG2 MMP1 PSME4 TIMP1

APC CYP4X1 HDAC1 MMP10 PTBP1 TIMP2

API5 CYP4Z1 HDAC2 MMP12 PTCH2 TIMP3

APOE CYP51A1 HECTD4 MMP13 PTEN TKTL1

AQP10 CYSTM1 HES1 MMP16 PTGDS TLE2

AQP5 CYTH3 HEY1 MMP17 PTGS2 TM9SF2

AQP6 D4S234E HHIPL2 MMP3 PTP4A1 TM9SF3

AQP9 DAP HIF1A MMP7 PTP4A2 TMCC1

ARAF DAPL1 HIP1R MMP9 PTPRN2 TMED5

ARAP1 DBI HIPK1 MPZL1 PTPRS TMEM139

AREG DCBLD2 HIST1H1C MRPL2 PWP2 TMEM14B

ARFGEF2 DCHS1 HK2 MRPL35 QPRT TMEM150A

ARHGAP29 DCK HLAA MRPL49 R3HDM2 TMEM161A

ARHGDIA DCTN5 HLADMB MRPS12 RAB26 TMEM259

ARL14 DCTPP1 HLADOB MRPS17 RAB27B TMEM260

ARL6IP4 DCUN1D4 HMBOX1 MRPS24 RAB40B TMEM45A

ARMC1 DCUN1D5 HMGCS1 MRPS9 RAB5B TMEM50A

ARNT2 DDB1 HMGCS2 MRS2 RAB5C TMPRSS3

ARPC4 DDB2 HMGN1 MSH2 RABIF TMSB15B

ASAP1 DDR1 HMOX2 MSL1 RAC1 TMTC1

ASAP3 DDX23 HNRNPA1 MSMO1 RAC3 TMX2

ASF1A DDX49 HNRNPUL2 MST1 RAD23A TNFRSF17

ASIP DEFB132 HOPX MT1G RAD51 TNS1

ASPA DERL1 HOXA5 MTCP1 RAD51AP1 TOMM40

ASPHD1 DFNB31 HOXB6 MTMR11 RANBP1 TONSL

ASS1 DHCR7 HPN MTMR2 RANGAP1 TOP1

ASUN DHRS11 HRASLS MTPAP RARRES2 TOP2A

ATM DHRS9 Hs.120332 MTUS1 RB1 TOX3

ATP1B3 DHX15 HS3ST1 MTX1 RBBP7 TP53
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Table 10 List of genes reported by studies included in this review (Continued)

ATP5D DHX29 HS3ST5 MUS81 RBFA TP53TG5

ATP5F1 DIAPH3 HSD11B2 MUTYH RBM11 TP73

ATP5L DICER1 HSD17B11 MXD1 RBM39 TPD52

ATP6V0E1 DIRC1 HSPA1L MXI1 RCHY1 TPM2

ATP7B DKK1 HSPA4 MYBPC1 RER1 TPP2

ATP8A2 DLAT HSPA8 MYC RFC3 TPPP

AUP1 DLEU2 HSPB7 MYCBP RGL2 TPRKB

AURKA DLG1 HSPD1 MYL9 RGP1 TRA

AURKC DLG3 HTATIP2 MYO1D RGS19 TRAF3IP2

AVIL DLGAP4 HTN1 MYOM1 RHOT1 TRAM1

B3GALNT1 DLGAP5 HTR3A NANOS1 RHPN2 TRAPPC4

B3GNT2 DMRT3 ICAM1 NASP RIIAD1 TRAPPC9

B4GALT5 DNAH2 ICAM5 NBEA RIN1 TREML1

BAG3 DNAH7 ID1 NBL1 RIT1 TREML2

BAIAP2L1 DNAJB12 ID4 NBN RNF10 TRIAP1

BAK1 DNAJB5 IDI1 NCAM1 RNF13 TRIM27

BASP1 DNAJC16 IFIT1 NCAPD2 RNF14 TRIM49

BAX DNASE1L3 IGF1R NCAPG RNF148 TRIM58

BCHE DOCK3 IGFBP2 NCAPH RNF34 TRIML2

BCL2A1 DPH2 IGFBP5 NCKAP5 RNF6 TRIT1

BCL2L11 DPM1 IGHM NCOA1 RNF7 TRMT1L

BCL2L12 DPP7 IGKC NCOR2 RNF8 TRO

BCR-ABL DPYSL2 IGKV1-5 NCR2 RNGTT TRPV4

BEAN DRD4 IHH NCSTN RNPEPL1 TRPV6

BEST4 DTYMK IKZF4 NDRG2 ROBO1 TSPAN3

BFSP1 DUSP2 IL11RA NDST1 ROR1 TSPAN4

BFSP2 DUSP4 IL15 NDUFA12 ROR2 TSPAN6

BGN DUX3 IL17RB NDUFA9 RP13-347D8.3 TSPAN7

BHLHE40 DYNLT1 IL1B NDUFAB1 RP13-36C9.6 TSR1

BIN1 DYRK3 IL23A NDUFAF4 RPA3 TTC31

BIRC5 E2F2 IL27 NDUFB4 RPL23 TTLL6

BIRC6 ECH1 IL6 NDUFS5 RPL29P17 TTPAL

BLCAP EDF1 IL8 NEBL RPL31 TTYH1

BLMH EDN1 IMPA2 NETO2 RPL36 TUBB3

BMP8B EDNRA ING3 NEUROD2 RPP30 TUBB4A

BMPR1A EDNRB INHBA NFE2 RPS15 TUBB4Q

BNIP3 EEF1A2 INPP5A NFE2L3 RPS16 TUSC3

BOLA3 EFCAB14 INPP5B NFIB RPS19BP1 UBD

BPTF EFEMP2 INSR NFKBIB RPS24 UBE2I

BRCA1 EFNB2 INTS12 NFS1 RPS28 UBE2K

BRCA2 EGF INTS9 NID1 RPS4Y1 UBE2L3

BRSK1 EGFR IRF2BP1 NIT1 RPS6KA2 UBE4B

BTN3A3 EHD1 ISCA1 NKIRAS2 RPSA UBR5

BTNL9 EHF ISG20 NKX31 RRAGC UGT2B17

C11orf16 EI24 ITGAE NKX62 RRBP1 UGT8
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Table 10 List of genes reported by studies included in this review (Continued)

C11orf74 EIF1 ITGB2 NLGN1 RRN3 UHRF1BP1

C12orf5 EIF2AK2 ITGB6 NOP5/58 RSL24D1 UMOD

C16orf89 EIF3K ITGB7 NOS3 RSU1 UPK1A

C17orf45 EIF4E2 ITLN1 NOTCH4 RTN4R UPK1B

C17orf53 EIF5 ITM2A NOV RXRB UQCRC2

C17orf70 ELF3 ITM2C NOX1 RYBP URI1

C1orf109 ELF5 ITPR2 NPAS3 RYR3 USP14

C1orf115 EML4 ITPRIP NPR1 S100A10 USP18

C1orf159 ENC1 JAG2 NPR3 S100A4 USP21

C1orf198 ENOPH1 JAK2 NPTX2 S100P UST

C1orf27 ENSA JAKMIP2 NPTXR SAMD4B UTP11L

C1orf68 ENTPD4 KCNB1 NPY SASH1 UTP20

C1QTNF3 EPB41L4A KCNE3 NRBP2 SCAMP3 UVRAG

C20orf199 EPCAM KCNH2 NRG4 SCARF1 VDR

C2orf72 EPHB2 KCNJ16 NRP1 SCG2 VEGFA

C4A EPHB3 KCNN1 NSFL1C SCGB1C1 VEGFB

C4BPA EPHB4 KCNN3 NSL1 SCGB3A1 VEZF1

C6orf120 EPOR KCTD1 NSMCE4A SCNM1 VPS39

C6orf124 ERBB3 KCTD5 NT5C3A SCO2 VPS52

C9orf3 ERCC8 KDELC1 NTAN1 SCUBE2 VPS72

C9orf47 ERMP1 KDELR1 NTF4 SDF2L1 VTCN1

CA13 ESF1 KDELR2 NUDT21 SEC14L2 VTI1B

CACNA1B ESM1 KDM4A NUDT9 SELT WBP2

CACNG6 ESR1 Ki67 NUS1 SEMA3A WBP4

CADM1 ESRP2 KIAA0125 OAS3 SENP3 WDR12

CALML3 ESYT1 KIAA0141 OASL SENP6 WDR45B

CAMK2B ETS1 KIAA0226 ODF4 SEPN1 WDR7

CAMK2N1 ETV1 KIAA0368 OGFOD3 SERPINB6 WDR77

CANX EVA1A KIAA1009 OGN SERPIND1 WIT1

CAP1 EXOC6B KIAA1033 OPA3 SERPINF1 WIZ

CAP2 EXTL1 KIAA1324 OR10A3 SERTAD4 WNK4

CAPN13 EYA2 KIAA1551 OR2AG1 SETBP1 WNT16

CAPN5 F2R KIAA2022 OR4C15 SF3A3 WT1

CASC3 FAAH KIAA4146 OR51B5 SF3B4 WTAP

CASP9 FABP1 KIF3A OR51I1 SGCB WWOX

CASS4 FABP7 KIFC3 OR6F1 SGCG XBP1

CATSPERD FADS1 KIT OR9G9 SGPP1 XPA

CC2D1A FADS2 KLF12 OSGEPL1 SH3PXD2A XPO4

CCBL1 FAM133A KLF5 OSGIN2 SHFM1 XYLT1

CCDC130 FAM135A KLHDC3 OSM SHOX Y09846

CCDC135 FAM155B KLHL7 OXTR SIDT1 YBX1

CCDC147 FAM174B KLK10 P2RX4 SIGLEC8 YIPF3

CCDC167 FAM19A4 KLK6 PABPC4 SIRT5 YIPF6

CCDC19 FAM211B KPNA3 PAGR1 SIRT6 YLPM1

CCDC53 FAM217B KPNA6 PAH SIVA1 YWHAE
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Table 10 List of genes reported by studies included in this review (Continued)

CCDC9 FAM49B KRT10 PAK4 SIX2 YWHAZ

CCL13 FAM8A1 KRT12 PALB2 SKA3 ZBTB11

CCL2 FANCB KYNU PARD6B SLAMF7 ZBTB16

CCL28 FANCE L1TD1 PAX6 SLC12A2 ZBTB8A

CCM2L FANCF LAMB1 PBK SLC12A4 ZC3H13

CCNA2 FANCG LAMTOR5 PBX2 SLC14A1 ZCCHC8

CCNG2 FANCI LARP4 PBXIP1 SLC15A2 ZEB2

CCT6A FARP1 LAX1 PCF11 SLC1A1 ZFHX4

CCZ1 FAS LAYN PCGF3 SLC1A3 ZFP91

CD34 FASLG LBR PCK1 SLC22A5 ZFR2

CD38 FBXL18 LCMT2 PCNA SLC25A37 ZKSCAN7

CD44 FCGBP LCTL PCNXL2 SLC25A41 ZMYND11

CD46 FCGR3B LDB1 PCOLCE SLC25A5 ZNF106

CD70 FEN1 LDHB PCSK6 SLC26A9 ZNF12

CD97 FEZ1 LGALS4 PDCD2 SLC27A6 ZNF124

CDC42EP4 FGF2 LGR5 PDE3A SLC29A1 ZNF148

CDCA2 FGFBP1 LHB PDGFA SLC2A1 ZNF155

CDH12 FGFR1OP LHX1 PDGFRA SLC2A5 ZNF180

CDH19 FGFR1OP2 LIN28A PDGFRB SLC37A4 ZNF200

CDH3 FGFR2 LINGO1 PDP1 SLC39A2 ZNF292

CDH4 FHL2 LIPA PDSS1 SLC4A11 ZNF337

CDH5 FILIP1 LIPC PDZK1 SLC5A1 ZNF432

CDK17 FJX1 LIPG PEBP1 SLC5A3 ZNF467

CDK20 FKBP11 LMO3 PEX11A SLC5A5 ZNF48

CDK5R1 FKBP1B LMO4 PEX6 SLC6A3 ZNF503

CDK8 FKBP7 LOC100129250 PFAS SLC7A2 ZNF521

CDKN1A FLII LOC149018 PGAM1 SMAD2 ZNF569

CDY1 FLJ41501 LOC1720 PHF3 SMC4 ZNF644

CDYL2 FLNC LOC389677 PHGDH SMG1 ZNF71

CEACAM5 FLOT2 LOC642236 PHKA1 SMPD2 ZNF711

CEACAM6 FLT1 LOC646808 PHKA2 SNIP1 ZNF74

CEACAM7 FMN2 LOC90925 PI3 SNRPA1 ZNF76

CEP55 FMO1 LPAR6 PIC3CD SNRPC ZNF780B

CES1 FN1 LPCAT2 PIGC SNRPD3 ZYG11A

CES2 FOXA2 LPCAT4 PIGR SNX13

CFI FOXD4L2 LPHN2 PIK3CG SNX19

CH25H FOXJ1 LRIG1 PIP5K1B SNX7

CHIT1 FOXO3 LRIT1 PITRM1 SOAT2

Gene names have been standardised. Genes in bold were selected by more than two studies.

Seidal [35], Schlumbrecht et al. [40], Yoshihara et al. [43],
Denkert et al. [45], Hartmann et al. [57], Iba et al. [60], and
Kamazawa et al. [61]. Studies falling into the other treat-
ments group were Obermayr et al. [27], Sabatier et al. [27],
Yan et al. [42], Netinatsunthorn et al. [51], and Helleman

et al. [53]. The results of the gene set enrichment using
the KEGG system may be seen in Figures 2 and 3. From
the plots, it may be seen that both groups identify several
cancer-related pathways relevant to the drug mechanisms
of action.
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Table 11 Genes chosenmost commonly by studies in review

Gene symbol Number of studies Function Expression links to cancer in literature

AGR2 4 Cell migration and growth Prostate, breast, ovarian, pancreatic

MUTYH 3 Oxidative DNA damage repair Colorectal

AKAP12 3 Subcellular compartmentation of PKA Colorectal, lung, prostate

TP53 3 Cell cycle regulation Breast

TOP2A 3 Required for DNA replication Breast, prostate, ovarian

FOXA2 3 Liver-specific transcription factor Lung, prostate

SRC 2 Regulation of cell growth Colon, liver, lung, breast, pancreatic

SIVA1 2 Pro-apoptotic protein Many cancers

ALDH9A1 2 Aldehyde dehydrogenase Many cancers

LGR5 2 Associated with stem cells Cancer stem cells

EHF 2 Epithelial differentiation and proliferation Prostate

BAX 2 Apoptotic activator Colon, breast, prostate, gastric, leukaemia

CES2 2 Intestine drug clearance Colorectal

CPE 2 Synthesis of hormones and neurotransmitters

FGFBP1 2 Cell proliferation, differentiation and migration Colorectal, pancreatic

TUBB4A 2 Component of microtubules

ZNF12 2 Transcription regulation

RBM39 2 Steroid hormone receptor-mediated transcription

RFC3 2 Required for DNA replication

GNPDA1 2 Triggers calcium oscillations in mammalian eggs

ANXA3 2 Regulation of cellular growth Prostate, ovarian

NFIB 2 Activates transcription and replication Breast

ACTR3B 2 Actin cyctoskeleton organisation Lung

YWHAE 2 Mediates signal transduction Lung, endometrial

CYP51A1 2 Drug metabolism and lipid synthesis

HMGCS1 2 Cholesterol synthesis and ketogenesis

ZMYND11 2 Transcriptional repressor

FADS2 2 Regulates unsaturation of fatty acids

SNX7 2 Family involved in intracellular trafficking

ARHGDIA 2 Regulates the GDP/GTP exchange reaction of the Rho proteins Prostate, lung,

NDST1 2 Inflammatory response Prostate, breast

AOC1 2 Catalyses degredation of such as histamine and spermidine

DAP 2 Positive mediator of programmed cell death

ERCC8 2 Transcription-coupled nucleotide excision repair

GUCY1B3 2 Catalyzes conversion of GTP to the second messenger cGMP

HDAC1 2 Control of cell proliferation and differentiation Prostate, breast, colorectal, gastric

HDAC2 2 Transcriptional regulation and cell cycle progression Cervical, gastric, colorectal

IGFBP5 2 Cell proliferation, differentiation, survival, and motility Breast

IL6 2 Transcriptional inflammatory response, B cell maturation Many cancers

LSAMP 2 Neuronal surface glycoprotein Osteosarcoma

MDK 2 Cell growth, migration, angiogenesis Many cancers

MYCBP 2 Stimulates the activation of E box-dependent transcription

S100A10 2 Transport of neurotransmitters Colorectal, lung, breast
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Table 11 Genes chosenmost commonly by studies in review (Continued)

SLC1A3 2 Glutamate transporter

NCOA1 2 Stimulates hormone-dependent transcription Breast, prostate

TIAM1 2 Modulates the activity of Rho GTP-binding proteins Many cancers

VEGFA 2 Angiogenesis, cell growth, cell migration, apoptosis Many cancers

RPL36 2 Component of ribosomal 60S subunit

LBR 2 Anchors lamina and heterochromatin to the nuclear membrane

ABCB1 2 ATP-dependent drug efflux pump for xenobiotic compounds Many cancers

FASLG 2 Required for triggering apoptosis in some cell types Many cancers

TIMP1 2 Extracellular matrix, proliferation, apoptosis Many cancers

FN1 2 Cell adhesion, motility, migration processes Many cancers

TGFB1 2 Proliferation, differentiation, adhesion, migration Prostate, breast, colon, lung, bladder

XPA 2 DNA excision repair Many cancers

ABCB10 2 Mitochondrial ATP-binding cassette transporter

POLH 2 Polymerase capable of replicating UV-damaged DNA for repair

ITGAE 2 Adhesion, intestinal intraepithelial lymphocyte activation

ZNF200 2 Zinc finger protein

COL3A1 2 Collagen type III, occurring in most soft connective tissues

ACKR3 2 G-protein coupled receptor

EPHB3 2 Mediates developmental processes Lung, colorectal

NBN 2 Double-strand DNA repair, cell cycle control

PCF11 2 May be involved in Pol II release following polymerisation

DFNB31 2 Sterocilia elongation, actin cystoskeletal assembly

BRCA2 2 Double-strand DNA repair Breast, ovarian

AADAC 2 Arylacetamide deacetylase

CD38 2 Glucose-induced insulin secretion Leukaemia

CHIT1 2 Involved in degradation of chitin-containing pathogens

CXCR4 2 Receptor specific for stromal-derived-factor-1 Breast, glioma, kidney, prostate

EFNB2 2 Mediates developmental processes

MECOM 2 Apoptosis, development, cell differentiation, proliferation Leukaemia

FILIP1 2 Controls neocortical cell migration Ovarian

HSPB7 2 Heat shock protein

LRIG1 2 Regulator of signaling by receptor tyrosine kinases Glioma

MMP1 2 Breakdown of extracellular matrix Gastric, breast

PSAT1 2 Phosphoserine aminotransferase

SDF2L1 2 Part of endoplasmic reticulum chaperone complex

TCF15 2 Regulation of patterning of the mesoderm

EPHB2 2 Contact-dependent bidirectional signaling between cells Colorectal

ETS1 2 Involved in stem cell development, cell senescence and death Many cancers

TRIM27 2 Male germ cell differentiation Ovarian, endometrial, prostate

MARK4 2 Mitosis, cell cycle control Glioma

B4GALT5 2 Biosynthesis of glycoconjugates and saccharides

Genes listed by number of papers selecting each gene. Gene function and links to cancer obtained via cursory literature search.

It is informative to consider the KEGG terms in the
context of the mechanisms of action of the chemother-
apy drugs applied. Both groups contain patients treated

with platinum single agents or platinum-containing com-
binations. It should therefore be expected that pro-
cesses associated with the mechanism of action of
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Figure 2 Gene set enrichment networks for studies assessing ovarian cancer patients treated with platinum and taxane. Network maps of
the 30 most enriched KEGG pathways. Node marker size signifies the number of genes in this category, and the thickness of edges indicate the
Jaccard similarity coefficient between categories. Node markers are coloured according to adjusted p value as reported by the hypergeometric test,
where darker red denotes more highly significant.

platinum will be enriched. Once activated, the plat-
inum binds to DNA and results in the formation
of monoadducts, intra-strand crosslinking, inter-strand
crosslinking and protein crosslinking. This DNA struc-
ture change affects the ability of the DNA to be unwound
and replicated, resulting in the triggering of the G2-
M DNA damage checkpoint and cell cycle arrest. The
affected cell will attempt DNA repair and, if unsuc-
cessful, undergo apoptosis [69]. Expected KEGG terms
therefore include those relating to apoptosis and DNA
damage.

From Figure 2, KEGG pathways highlighted for this
group of studies include ten cancer-specific terms and six
cancer-related terms. Here italics denote a KEGG term.
The ErbB signalling pathway has been found to influence
in proliferation, migration, differentiation and apoptosis
in cancer [70] and overexpression of ERBB1 and ERBB2
have been implicated in head and neck and breast cancers.
The neurotrophin signalling pathway is known to trigger
MAPK and PI3K signalling, affecting differentiation, pro-
liferation and development, and survival, growth, motility
and angiogenesis respectively [71]. Altered expression of
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Figure 3 Gene set enrichment networks for studies assessing ovarian cancer patients treated with treatments other than platinum and
taxane. Network maps of the 30 most enriched KEGG pathways. Node marker size signifies the number of genes in this category, and the thickness
of edges indicate the Jaccard similarity coefficient between categories. Node markers are coloured according to adjusted p value as reported by the
hypergeometric test, where darker red denotes more highly significant.

genes in this pathway has been found to correlate with
poorer survival in colon, breast, lung and prostate can-
cers. Changes in expression of genes relating to focal
adhesion, which is responsible for attachment of cells to
the extracellular matrix, have been implicated in can-
cer migration, invasion, survival and growth [72]. The
TGF-beta signalling pathway also regulates many cellular
processes, including proliferation, cellular adhesion and
motility, coregulation of telomerase function, regulation

of apoptosis, angiogenesis, immunosuppression and DNA
repair [73]. The p53 signalling pathway has many var-
ied links to cancer. This pathway many be triggered by
various stress signals and can result in several responses,
including cell cycle arrest, apoptosis, the inhibition of
angiogenesis and metastasis, and DNA repair [74]. Finally,
nucleotide excision repair is known to promote cancer
development when both up and down regulated. Down-
regulation correlates is thought to increases susceptibility
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to mutation formation and hence the formation of cancer
[75], whereas up-regulation has been found to correlate
with resistance to platinum as the DNA damage caused by
the chemotherapy agent is repaired [76].
The first group of studies considered patients treated

with taxanes in addition to platinum. Taxanes act by
stabilising tubulin, preventing the microtubule structure
formation required for mitosis. This results in cell cycle
arrest at the G2/M DNA damage checkpoint and apop-
tosis. Mechanisms for taxane resistance are, however,
not well understood. Two suggested mechanisms include
the increased expression of multidrug transporters, and
changes in the expression of the β-tubulin isoforms [77].
Neither of these mechanisms seem to be enriched in the
platinum and taxol group. In addition to the single-agent
effects of platinum and taxanes, there is an additional syn-
ergistic effect [78]. However, this effect is also not well
studied and hence the mechanisms by which this occurs
are not clear.
The second group, as seen in Figure 3, was composed

of studies applying chemotherapy treatments other than
platinum and taxanes. This group is heterogeneous with
respect to chemotherapy treatment, and mainly consists
of studies reporting treatment as ‘platinum-based’. The
other drug explicitly mentioned by studies in this group
is cyclophosphamide. This drug is an alkylating agent and
acts to form adducts in DNA [79]. This DNA damage
triggers the G2/M DNA damage checkpoint, resulting in
DNA repair or apoptosis. This suggests that the same
DNA repair mechanisms related to platinum treatment
are also relevant to cyclophosphamide. For this group,
the KEGG pathway analysis shows that the gene set is
enriched with 14 pathways related to cancer, in addi-
tion to two general cancer-related terms. The mTOR sig-
nalling pathway is downstream to the PI3K/AKT pathway
and regulates growth, proliferation and survival [80]. The
MAPK signalling pathway controls the cell cycle, and has
been found to contribute to the control of proliferation,
differentiation, apoptosis, migration and inflammation in
cancer [81]. The chemokine signalling pathway has been
found to regulate growth, survival and migration in addi-
tion to its role in inflammation [82]. Angiogenesis and
vasculogenesis are known to be regulated by the VEGF
signalling pathway [83], which is already the target of
treatments such as bevacizumab. Purine metabolism is
required for the production and recycling of adenine and
guanine, and hence is required for DNA replication. This
process is the target of chemotherapies such asmethotrex-
ate. The term drug metabolism – other enzymes is partially
cancer related; this term refers to five drugs: azathioprine,
6-mercaptopurine, irinotecan, fluorouracil and isoniazid.
Of these, two are chemotherapy treatments; irinotecan is a
topoisomerase-I inhibitor and fluorouracil acts as a purine
analogue. Also featuring in Figure 3 are apoptosis, ErbB

signalling pathway, focal adhesion, neurotrophin signalling
pathway, B cell receptor signalling pathway and Jak-STAT
signalling pathway, all of which are known to be related to
cancer.
Overall, the gene sets appear to be enriched for cancer-

related resistance mechanisms [84]. However, when com-
bined there is little evidence from this analysis to suggest
that the signatures are capturing chemotherapy-specific
mechanisms in addition to more general survival path-
ways. The DNA repair terms may suggest a response to
platinum-based treatment, though the down-regulation
of these mechanisms is also related to cancer develop-
ment and resistance in general [85]. It is likely that, due to
the varying reliability suggested by the bias analysis and
the reported model development techniques, the signal-
to-noise ratio of informative genes is low when the gene
signatures are combined, preventing the identification of
processes of interest.

Model predictive ability
Sensitivity and specificity
The comparison of the success of the various mod-
els is difficult, particularly due to the fact that many
papers report different metrics as measures of model
accuracy. Many of these are also incomplete, not pro-
viding enough information to fully describe the model.
Ideally, models should be applied to an independent set
of samples with known outcomes and performance mea-
sures on this data set reported. For classification models
an informative set of measures would be positive pre-
dictive value, negative predictive value, specificity and
sensitivity:

Sensitivity = ntrue positive
ntrue positive + nfalse negative

Specificity = ntrue negative
ntrue negative + nfalse positive

PPV = ntrue positive
ntrue positive + nfalse positive

NPV = ntrue negative
ntrue negative + nfalse negative

where ntrue positive is the number of true positive predic-
tions, nfalse positive is the number of false positive predic-
tions, ntrue negative is the number of true negative pre-
dictions and nfalse negative is the number of false negative
predictions.
Together these provide information on true positive and

negative rates as well as false positive and false nega-
tive rates, all of which are important when assessing the
performance of a model.
Using the sensitivity and specificity the positive and

negative likelihood ratios may be calculated and, using
the prevalence of the condition in the test population, the
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probability of a patient having the condition based on the
test results may be found, as in the equations below.

LR+ve = sensitivity
1 − specificity

LR-ve = 1 − sensitivity
specificity

P(Condition + |Test+) =
P(Condition+)

1−P(Condition+)
· LR+ve

P(Condition+)
1−P( Condition+)

· LR+ve + 1

P(Condition + |Test−) =
P(Condition−)

1−P(Condition−)
· LR-ve

P(Condition−)
1−P(Condition−)

· LR-ve + 1

These post-test probabilities are much easier to inter-
pret and incorporate the prevalence of the condition. It
should be noted that in order for the test to be applied
in a clinical situation the pre-test probabilities used,
P(Condition+) and P(Condition−), should be correct for
the population of patients to whom the test will be applied.
Here the sample prevalence from each study was used for
convenience. However, it would be informative to recalcu-
late P(Condition+|Test+) and P(Condition+|Test−) for
the general population of ovarian cancer patients, as this
would provide a better comparison between models.
Table 12 details the post-test probabilities of patients

having a condition based on a positive or negative test
result from themodels developed by studies in this review.
The papers appearing here are those that supplied sen-
sitivity and specificity and the numbers of patients with
and with without the condition, or alternative information
allowing these to be calculated such as numbers of true
and false positives and negatives.
From the table it may be seen that there is a great

variety between the success of the models. For exam-
ple, Kamazawa et al. [61] and Hartmann et al. [57]
both achieved P(Condition + |Test+) = 0.95 on their
respective samples of the population. This means that if
a patient tests positive, there is a 95% probability that
they are positive for the condition in question, which in
these cases are ‘responding to chemotherapy’ and ‘poor
prognosis’ respectively. In contrast, Obermayr et al. [27],
Helleman et al. [53] and Gevaert et al. [49] only achieved
P(Condition + |Test+) of between 0.20 and 0.40. These
results suggest that the tests are not able to predict the
outcome of a patient any better than a random choice, and
in the case of tests in the region of 0.20 it is likely that most
patients are simply assigned to the same class.
The ability of tests to not commit type II errors and give

false negatives is also important. Ferriss et al. [33] and
Hartmann et al. [57] both achieved well in this regard,
with P(Condition + |Test−) = 0.07 and P(Condition +
|Test−) = 0.05 respectively. Several studies, by contrast,
had very poor probabilities of false negatives; Obermayr et
al. [27], Helleman et al. [53] and Gevaert et al. [49] all have

P(Condition + |Test−) > 0.5, which suggests that these
models give a false negative more often than a random
assignment.
Kamazawa et al. [61] and Selvanayagam et al. [59] both

achieved extremely impressive prediction abilities, as may
be seen by the very large P(Condition + |Test+) and very
small P(Condition+ |Test−) values. However, these stud-
ies exemplify why care must be taken in assessing the
predictive ability of models. Both studies calculated sen-
sitivity and specificity based on only training set results
and hence there is no way to judge the generalisability of
the models. There is a tendency for models to perform
better on the training set than any following indepen-
dent data set to which it is subsequently applied. Sec-
ondly, the training set used by Selvanayagam et al. [59] is
extremely small at eight patients and has a 50 : 50 ratio of
chemoresistant to chemosensitive patients. This sample is
not representative of the population and hence the val-
ues of P(Condition + |Test+) and P(Condition + |Test−)

will be skewed by unrepresentative P(Condition+) and
P(Condition−).
Overall, the most successful model of this group is that

by Hartmann et al. [57] as it makes predictions with good
reliability and has been validated on an independent data
set. The least successful models were Obermayr et al. [27],
Helleman et al. [53] and Gevaert et al. [49]. These studies
suffered from low ability to identify true positives and high
probability of false positives, resulting in poor predictive
ability.

Hazard ratios
It is common for studies of survival to quote hazard ratios
comparing the results of clusters identified by classifica-
tion models or relative-risk models such as Cox propor-
tional hazards regression. These ratios represent the ratio
of the probability of an event occurring to a patient in each
of the two groups. The event is often death, but could also
be recurrence for example. The studies listed in Table 13
supplied hazard ratios as measures of predictive ability.
The hazard ratios vary from 0.23 to 4.6 with the majority
around 2 to 3. A hazard ratio that is not equal to 1 sug-
gests that the variable has predictive ability, and a ratio of
4, for example, suggests that a member of the high-risk
group is 4 times as likely to die within the study period
than a member of the low-risk group. The study with the
highest hazard ratio is Spentzos et al. [58], with HR = 4.6.
This is closely followed by Raspollini [56] with HR = 0.23
and Skirnisdottir and Seidal [35] with HR = 4.12. The
confidence intervals on the hazard ratios of all the stud-
ies are large and, with the exception of Spentzos et al.
[58], at the lowest edge the hazard ratio is very close
to 1. This suggests that, although all these hazard ratios
were found to be significant, some were close to not
reaching the arbitrary 5% level. Most notable are Roque



Lloyd et al. BMC Cancer  (2015) 15:117 Page 27 of 32

Table 12 Predictionmetrics for studies reporting sensitivity and specificity

Study Prediction Sensitivity Specificity LR+ve† LR-ve† P(C+)† P(C−)† P(C + |T+)† P(C + |T−)†

Li et al. [3] Chemoresistance 0.96* 0.23* 1.24 0.18 22
44

22
44 0.55 0.15

Obermayr et al. [27] RFS 0.22* 0.85* 1.47 0.92 46
216

170
216 0.28 0.77

Ferriss et al. [33] Chemoresponse 0.94* 0.29* 1.33 0.20 85
119

34
119 0.77 0.07

Sabatier et al. [37] Prognosis 0.62* 0.62* 1.64 0.62 194
366

172
366 0.65 0.35

Yoshihara et al. [43] PFS 0.64* 0.69* 2.06 0.52 45
87

39
87 0.69 0.30

Williams et al. [44] Prognosis 0.77* 0.56* 1.75 0.41 97
143

46
143 0.79 0.16

Gevaert et al. [49] Chemoresistance 0.67* 0.40* 1.12 0.82 15
45

30
45 0.36 0.62

Helleman et al. [53] Chemoresistance 0.89* 0.56* 2.02 0.20 9
72

63
72 0.22 0.58

De Smet et al. [52] Chemoresistance 0.71† 0.83† 4.29 0.34 6
13

7
13 0.79 0.29

Raspollini et al. [56] Prognosis 0.79† 0.46† 1.45 0.47 28
52

24
52 0.63 0.29

Hartmann et al. [57] Prognosis 0.86* 0.86* 6.14 0.16 21
28

7
28 0.95 0.05

Selvanayagam et al. [59] Chemoresistance 1.00† 1.00† ∞ 0.00 4
8

4
8 1.00 0.00

Kamazawa et al. [61] Chemoresponse 1.00* 0.83† 6.00 0.00 21
27

5
27 0.95 0.00

*Value stated in reference.
†Value calculated.
C: condition presence.
T: test result.
RFS: Relapse Free Survival.
PFS: Progression Free Survival.

et al. [24], Schlumbrecht and Seidal[40], and Denkert et al.
[45]. These models would need further investigation to
determine their predictive ability. Of the papers in this
group, Spentzos et al. [58] appears to have the best predic-
tive ability when classifying patients into two clusters with
significantly different survival times.

Linear regression
Two papers reported the success of model assessed using
linear regression: Glaysher et al. [41] and Kang et al. [31].
These studies plotted the predicted values or model score
against the measured values and applied linear regression
to obtain a line of best fit. The R2 or R2

adj of this line is
then calculated to assess the discrimination of the model.
Glaysher et al. [41] achieved R2 = 0.901 (R2

adj = 0.836)
for a model predicting resistance to cisplatin via cross-
validation and Kang et al. [31] achieved R2 = 0.84 for
a model predicting recurrence-free survival in the data
set on which it was derived. These values suggest a good
level of predictive ability, both in terms of calibration and
discrimination, with the model by Glaysher et al. [41]
achieving the better predictions.

Cox proportional hazardsmodels
When studies identified by this review applied the Cox
proportional hazards model to predict patient outcome,
it was common for the main analysis of the model to be
assessing whether the gene signature was found to be sig-
nificant and whether the signature was an independent
predictor. However, the application of this model to an
independent data set was much less common. As may

be seen from Table 6, the success of many models was
judged using the significance of covariates including the
gene signature in the model. It is likely that this model
was not applied to external data sets due to subtleties
in what the model predicts when compared to methods
such as linear regression. Whereas in linear regression
the survival times are predicted directly, Cox propor-
tional hazards regression predicts hazard ratios. Royston
and Altman [86] developed techniques for the external
validation of Cox proportional hazards models by appli-
cation to an independent data set. These rely on having
at least the weights of the variables included in the linear
predictor, and ideally the baseline survival function. The
first allows the assessment of the discriminatory power
of a model, whereas the second is also required to allow
the calibration of the model to be assessed. Royston and
Altman [86] are of the opinion that the inclusion of a
log-rank test p-value is not informative due to the irrel-
evance of the null hypothesis being tested, and hence
this should not be considered when judging model per-
formance. An alternative to the log-rank test to compare
survival between groups would be time-dependent ROC
curves [87].

Failure to predict
Of the studies identified by this review, some mod-
els failed to achieve significant predictive ability. These
include Lisowska et al. [23], Vogt et al. [62] and Brun
et al. [34]. Of these papers, Vogt et al. [62] and Brun
et al. [34] both considered small numbers of genes when
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Table 13 Predictionmetrics for studies reporting hazard ratios

Study Prediction Classes HR 95% CI Median survival P value

Jeong et al. [22] OS YA subgroup vs. YI subgroup 0.5 0.31 − 0.82 0.005

Roque et al. [24] OS High vs. low TUBB3 staining 3.66 1.11 − 12.05 707 days vs. not reached 0.03

Kang et al. [31] OS High vs. low score 0.33 0.13 − 0.86 1.8 years vs. 2.9 years < 0.001

Skirnisdottir and Seidal [35] Recurrence p53 -ve vs. +ve 4.12 1.41 − 12.03 0.009

Schlumbrecht et al. [40] RFS EIG121 high vs. low 1.13 1.02 − 1.26 0.021

Yoshihara et al. [43] PFS High vs. low score 1.64 1.27 − 2.13 0.0001

Denkert et al. [45] OS Low vs. high score 1.7 1.1 − 2.6 0.021

Crijns et. al [47] OS 1.94 1.19 − 3.16 0.008

Netinatsunthorn et al. [51] RFS Yes vs. no WT1 staining 3.36 1.60 − 7.03 0.0017

Spentzos et al. [54] OS Resistant vs. sensitive 3.9 1.3 − 11.4 41 months vs. not reached < 0.001†

Raspollini et al. [56] OS No vs. yes COX-2 staining 0.23 0.06 − 0.77 0.017

Spentzos et al. [58] OS High vs. low score 4.6 2.0 − 10.7 30 months vs. not reached 0.0001

†Calculated value.
HR: Hazard Ratio.
OS: Overall Survival.
RFS: Relapse Free Survival.
PFS: Progression Free Survival.
CI: Confidence Interval.

constructing their models. It is possible then that these
models failed because no informative genes were consid-
ered. Conversely, Lisowska [23] applied their modelling
technique to over 47000 genes using 127 patients. It is
therefore a possibility that genes were selected by their
model purely by chance rather than due to true explana-
tory ability. This model was tested using an independent
data. When the model was applied to this data set it per-
formed poorly, suggesting that the genes chosen did not
generalise to the second cohort of patients. Neither Vogt
et al. [62] nor Brun et al. [34] reported measuring the
precision or accuracy of the gene expression measure-
ments. Lisowska et al. [23] used RT-PCR to measure the
expression of 18 genes from the microarray, but the RT-
PCR measurements were carried out on a separate set of
samples and hence are not useful when considering accu-
racy. It is therefore unknown whether the gene expression
measurement techniques applied by these studies were
sufficiently accurate.

Discussion
The papers identified as part of this review tackled the
important issue of chemoresistance and survival predic-
tion in ovarian cancer via gene or protein expression.
The concept of identifying gene signatures is popular,
but requires careful handling to extract the information
required for this to be successful. It was observed that of
the many different tissue preservation techniques applied,
the most common were fresh-frozen and formalin fixed,
paraffin embedded tissue. It is our opinion that, due to

the high quality expression measurements that may now
be achieved with FFPE tissue, this is the most appropri-
ate choice for research intended to translate into a clinical
setting.
It was found that the majority of the studies included in

this review were heterogeneous with respect to the his-
tological type of the patient cohort. This suggests that,
due to the differing response of different types of ovar-
ian cancer to chemotherapy, the gene signatures may be
identifying different pathways and mechanisms. However,
it should also be noted that although 27 of the 42 stud-
ies were heterogeneous, 12 of these consisted of greater
than 80% serous samples. Therefore, for these studies
the inclusion of multiple histological types is likely to
have less effect on the gene signature and mechanisms
highlighted could be expected to occur in serous ovarian
cancer. It would be advisable for future studies to include
histological type and grade as model features.
The majority of studies identified by this review attempt

to classify patients into groups with different character-
istics, for example ‘poor prognosis’ and ‘good prognosis’
or ‘chemosensitive’ and ‘chemoresistant’. However, vari-
ables such as response to chemotherapy and prognosis are
rarely so well separated into classes; they are by nature
continuous variables. Altman and Royston [88] are clear
that dichotomising continuous variables into categories
(such as high-risk vs. low-risk) should be avoided, as it
results in loss of information and may lead to underes-
timation of variation and the masking of non-linearity.
Arbitrary choices of cutoff values may further obscure
the situation, when the original continuous variable could
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serve the same purpose in many models. In terms of
a clinical test it therefore may be more appropriate to
apply alternative techniques, such as various types of
regression, to obtain a real valued prediction of patient
outcome.
It was noted that the metrics reported as measures

of predictive ability vary between studies. These vary
in the amount of information conveyed and hence care
should be taken to use metrics that fully describe the
model. Sensitivity and specificity are commonly reported
for classification techniques and, together with the num-
bers of patients in each class in the data set, allows
the probabilities of a patient having the condition of
interest given that they have tested positive or negative.
It is the ultimate aim of most classification studies to
obtain these probabilities, as it allows the predictive abil-
ity of the test to be assessed and the applicability of the
test to be evaluated. Of the studies reporting sensitiv-
ity, specificity and related information, the best predictive
ability was achieved by Hartmann et al. [57] and the
worst by Helleman et al. [53]. It is important to note
that from the sensitivity and specificity the model by
Helleman et al. [53] does not appear to be any worse
than some of the others, but these probabilities incorpo-
rate the prevalence of the condition of interest in the test
population. It would therefore be highly informative to
recalculate these probabilities using the prevalence of the
condition in the population of ovarian cancer patients.
Since some of the test populations were not represen-
tative of the overall population (having so called ‘spec-
trum bias’), this would give a much more reliable indica-
tion of the predictive ability of the models in a clinical
setting.
One of the main aims of the studies identified was

to obtain a ‘gene signature’, the expression of which can
explain and predict the response in the patient. To this
end, the majority of the papers (32 of 42) provided full
or partial list of the genes selected by the modelling pro-
cess. An analysis of these gene signatures resulted in the
conclusion that the signatures were very dissimilar, with
the most commonly selected gene appearing in only four
papers. 93.53% of genes were selected by only one paper.
This seems to indicate that the gene signatures identi-
fied were not based on underlying cellular processes, or
at least that the processes being highlighted were not the
same across the papers. It should be noted that many of
the studies used cohorts of patients who were heteroge-
neous in terms of chemotherapy treatment and, due to
the development of resistance to chemotherapy via gene
expression changes, this may affect the genes found to be
explanatory. It may be that several gene signatures from
sub-populations of patients treated with different drugs
are combining and hence reducing the predictive ability of
the models.

In order to assess the biological relevance of the genes
selected for the gene signatures, gene set enrichment
analysis was carried out. This technique is used to high-
light processes and pathways that are over-represented
in the gene signature compared to the set of all genes.
For the purposes of this review, two groups of studies
were considered: those where the patients were treated
with platinum and taxane, and those where the patients
were treated with other platinum based treatments.
These groups were selected due to the low numbers
of studies using a single treatment option. For exam-
ple, there were no studies considering platinum, tax-
ane or cyclophosphamide as single agents. Following
the analysis, 30 KEGG terms were returned for each
group. Of these, each list comprised of approximately
half cancer related terms. Of these the majority were
processes often up- or down-regulated in cancer cells,
such as proliferation, apoptosis, and motility and metas-
tasis [89]. It is unclear whether the change in regula-
tion of these processes is further altered in response
to specific chemotherapy treatments. However, one pro-
cess worthy of additional consideration is DNA repair.
DNA repair is known to be an important mechanism
in cancer both though cancer development when down-
regulated or mutated [75] and resistance to DNA dam-
aging chemotherapy when up-regulated [76]. Therefore,
the strong presence of DNA repair terms may suggest
the presence of platinum resistance pathways in the gene
signatures. It is the authors’ opinion that, although the
combined gene signatures appear not to include predictive
chemotherapy-specific information, they may be capable
of providing prognostic information. It is also thought
that some studies, such as Glaysher et al., may include
genes relevant to additional chemotherapy-specific pro-
cesses which are ‘drowned out’ when combined with other
signatures.

Conclusion
It is clear that the prediction of response to chemother-
apy in ovarian cancer is an ongoing research problem that
has been attracting attention for many years. However,
although many studies have been published, a clinical tool
is still not available. It is our belief that, although not yet
accomplished, progress within the field suggests that the
development of a predictive model is possible. There is
great variability between the approaches and success of
existing studies in the literature, and there have been very
high levels of variation in the genes identified as explana-
tory. It is the authors’ opinion that, if more care is taken
when selecting the patients for inclusion to control for
treatment history, these gene signatures may be simplified
and models able to predict response to treatment may be
developed.
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