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Background: Navigated transcranial magnetic stimulation (nTMS) of the motor cortex

has been successfully implemented into radiotherapy planning by a number of studies.

Furthermore, the hippocampus has been identified as a radiation-sensitive structure

meriting particular sparing in radiotherapy. This study assesses the joint protection of

these two eloquent brain regions for the treatment of glioblastoma (GBM), with particular

emphasis on the use of automatic planning.

Patients and Methods: Patients with motor-eloquent brain glioblastoma who

underwent surgical resection after nTMS mapping of the motor cortex and adjuvant

radiotherapy were retrospectively evaluated. The radiotherapy treatment plans were

retrieved, and the nTMS-defined motor cortex and hippocampus contours were added.

Four additional treatment plans were created for each patient: two manual plans aimed

to reduce the dose to the motor cortex and hippocampus by manual inverse planning.

The second pair of re-optimized plans was created by the Auto-Planning algorithm. The

optimized plans were compared with the “Original” plan regarding plan quality, planning

target volume (PTV) coverage, and sparing of organs at risk (OAR).

Results: A total of 50 plans were analyzed. All plans were clinically acceptable with

no differences in the PTV coverage and plan quality metrics. The OARs were preserved

in all plans; however, overall the sparing was significantly improved by Auto-Planning.

Motor cortex protection was feasible and significant, amounting to a reduction in the

mean dose by >6Gy. The dose to the motor cortex outside the PTV was reduced by

>12Gy (mean dose) and >5Gy (maximum dose). The hippocampi were significantly

improved (reduction in mean dose: ipsilateral >6Gy, contralateral >4.6Gy; reduction

in maximum dose: ipsilateral >5Gy, contralateral >5Gy). While the dose reduction

using Auto-Planning was generally better than by manual optimization, the radiated total

monitor units were significantly increased.

Conclusion: Considerable dose sparing of the nTMS-motor cortex and hippocampus

could be achieved with no disadvantages in plan quality. Auto-Planning could further

contribute to better protection of OAR. Whether the improved dosimetric protection
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of functional areas can translate into improved quality of life and motor or cognitive

performance of the patients can only be decided by future studies.

Keywords: navigated transcranial magnetic stimulation (nTMS), glioblastoma, hippocampus, Auto-Planning,

radiotherapy

INTRODUCTION

While it has long been observed that brain radiotherapy can cause
neurocognitive sequelae (1–5), only recently have technological
advances, such as image-guided radiotherapy, intensity- and
volumetric-modulated therapy, and improved treatment
planning algorithms, i.e., automatic inverse optimization,
allowed selective protection of critical brain structures. Hence,
increasing focus is being placed on identifying structures
vulnerable to radiation-induced deficits and protecting them by
selective dose-shaping.

Most research in this area has focused on the hippocampus,
whose dentate gyrus presents a neuronal progenitor cell niche
in the adult brain, thus meriting particular dose sparing in
radiotherapy (6). A higher dose to the hippocampus has been
observed to correlate with neurocognitive deficits, particularly
regarding verbal memory and higher cognitive functions (7–
13). Possibly related to cognitive effects, a dose-dependent
volume loss has been observed for a variety of cortical and sub-
cortical regions (14–17). Nagtegaal et al. (17) reported 0.16%
hippocampus volume loss per year and per Gray mean dose,
translating this into an increase in hippocampal age (derived by
a nomogram-based method) of between 2 and 20 years for doses
up to 50 Gy.

Radiation-induced cortical atrophy of motor-eloquent
regions, such as the precentral cortex, has furthermore been
linked with impaired fine motor skills (18). In addition to motor
deficits observed after stereotactic radiosurgery (19), dose to the
precentral gyrus has been correlated with impaired verbal and
working memory, attention, and executive functions (12).

Consequently, a number of studies have included the motor
cortex as a radiosensitive organ in radiotherapy treatment
planning (20–26). All these studies have employed navigated
transcranial magnetic stimulation (nTMS) as a reliable
technique to non-invasively define the motor cortex, which
has proven useful in pre-surgical mapping (27–36). Most studies
concentrated on the stereotactic treatment of metastases or
arterio-venous malformations (AMV’s); however, radiotherapy
treatment planning of gliomas can be expected to offer even
more optimization potential due to larger target volumes
and highly modulated treatment plans as compared with
stereotactic treatment. To our knowledge, only one study so
far considered adjuvant radiotherapy for high-grade gliomas
(21). Re-optimizing volumetric-modulated arc therapy (VMAT)
treatment plans for 30 patients with an additional optimization
objective on the nTMS-defined motor area, Diehl et al. could
achieve a significant reduction of dose to the motor area
by 14.3%.

The aim of our study is to further investigate the possibilities
of motor cortex sparing in the treatment of high-grade gliomas.

Beyond sparing the nTMS-defined motor cortex, we emphasize
the importance of maintaining hippocampus sparing. In a
previous study for brain metastases, we could show that the
inclusion of motor cortex objectives in treatment planning
without additional hippocampus objectives may even increase
hippocampus dose (26). Hence, we here assess the possibility of
the combined motor cortex and hippocampus optimization in
radiotherapy treatment of glioblastoma (GBM).

Past years have witnessed an increasing use of automated
planning algorithms to improve dose optimization, which have
been shown to contribute to improved sparing of organs at risk
(OAR) with no accompanying loss in target coverage (37–41).
Therefore, in the present study, the manual re-optimization is
compared with the results from an automated planning engine
to assess whether further improvements in this highly complex
scenario are achievable.

PATIENTS AND METHODS

In this retrospective study, patients with motor-eloquent GBMs
who underwent nTMS-based surgical resection and radiotherapy
between 2013 and 2018 were replanned and analyzed.

nTMS Mapping and Preparation in the
Radiotherapy Treatment Planning System
(TPS)
The nTMS of the patients was performed on a pre-operative MRI
with contrast-enhanced T1-weighed Magnetization Prepared
- RApid Gradient Echo (MP-RAGE) in the axial direction
on a 1.5 or 3 T scanner (Magnetom Symphony-TIM 1.5 T,
Magnetom Skyra 3.0 T, Siemens, Erlangen, Germany). The
nTMS motor mapping was done using the Nexstim navigated
brain stimulation (NBS) system 4.3 according to the protocol
by Picht et al. (28). The patient was seated in a reclined
position, and surface electromyography electrodes were attached
to the abductor pollicis brevis, first dorsal interosseous, abductor
digiti minimi, anterior tibial, and/or plantar muscles. The
resting motor threshold (RMT) was identified by stimulating
the presumed localization of the hand knob with different coil
locations and orientations. The lowest nTMS stimulus intensity
in which a 50 µV MEP response (peak-to-peak amplitude) is
elicited in five out of 10 stimulations is generally defined as the
RMT. The subsequent mapping was then carried out using 110–
130% RMT, varying the coil position over the tumor and adjacent
gyri. Positive responses were defined as MEP amplitudes above
50 µV and were marked as motor-eloquent stimulation on the
MRI. The resulting collection of points is generally taken to
represent the location of the primary motor cortex of the hand
and lower extremity.

Frontiers in Neurology | www.frontiersin.org 2 January 2022 | Volume 12 | Article 787140

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schuermann et al. nTMS Sparing in Glioblastoma Radiotherapy

FIGURE 1 | Example for nTMS-mapping and contouring in Pinnacle. nTMS, navigated transcranial magnetic stimulation. PTV = red color; motor cortex = skin color.

For each patient, the nTMS mapping was imported as an
additional secondary dataset into the original radiotherapy
treatment plan in the Philips Pinnacle TPS V16.2. This image
was rigidly co-registered to the primary data set (planning CT)
and planning MRI (acquired post-operatively in both T1 MP-
RAGE and T2 flair weighting sequence) based on a mutual
information algorithm and then manually adjusted until the
optimal alignment was achieved. Two radiation physicists and
experienced radiation oncologists verified the co-registration
independently. The original clinical target volume (CTV), the
planning target volume (PTV), and OAR (lens, bulbus oculi,
optic nerve, chiasma, medulla, brainstem, and cochlea) for
brain irradiation as defined on the planning CT and planning
MRI were reviewed, and the additional OARs were contoured:
the hippocampi were defined based on T1-weighted planning
MRI sequences according to delineation guidelines (42, 43).
The nTMS-based motor cortex was contoured by a radiation
oncologist by creating a new structure based on delineating the
nTMS-positive eloquent points in a brush size slightly larger
than the pixel size of the points so that a small margin around
the motor-positive points is generated—this is just large enough
so that adjacent motor-eloquent points coalesce into a unique
structure as shown in Figure 1. No further post-processing of the
nTMS-derived OAR was performed.

Treatment Planning
The original clinical plan for each patient was used, that is
an intensity-modulated radiotherapy (IMRT) technique on a
Siemens Artiste linear accelerator with 6MV photon beams. For
each patient, four re-optimized treatment plans were created
in addition to the original clinically treated plan (“Original”)

using the Philips Pinnacle V16.2 TPS (Philips Healthcare, DA
Best, Netherlands):

1. a re-optimized plan with sparing of the nTMS-defined motor
cortex as an additional planning objective (“Manual Motor”),

2. a re-optimized plan with sparing of the nTMS-defined
motor cortex and bilateral hippocampi as additional planning
objectives (“Manual M+H”),

3. an automatically optimized plan sparing the nTMS-defined
motor cortex (“Auto Motor”), and

4. an automatically optimized plan sparing both the nTMS-
defined motor cortex and the bilateral hippocampi, referred to
as “Auto M+H.”

The normal plan optimization criteria are given in Table 1. For
the manually optimized plans, the first optimization run was
carried out using only the PTV and ring constructs; the OAR
objectives were only added where the OARs fell close to the PTV
and were not adequately spared in the first optimization.

The Auto-Planning algorithm of Pinnacle is a protocol-
based automatic iterative optimization algorithm (39, 44). This
algorithm tries to find the most effective balance between target
coverage and OAR sparing based on user-defined priorities.
Based on the user-defined contours, OAR objectives, and dose
prescription for the target, the algorithm generates further
optimization “help” structures in consideration of overlaps
between PTV and OARs, ring structures for a controlled dose
fall-off, and other structures to control target uniformity and
dose spillage. Sequential optimization runs are used to best
satisfy the user-defined dose objectives. Differently from library-
based automatization algorithms, no knowledge of a set of other
plans is required and the planning approach closely resembles
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TABLE 1 | Standard optimization constraints for the “Original” plans and

Auto-Planning plans.

Structure Objective

PTV and dose

fall-off

PTV Uniform dose

60Gy (100%)

Dmin 57Gy (95%)

Dmax 63 Gy

PTV-Ring 1 (+0 to

+5mm)

Dmax 57Gy (95%)

PTV-Ring 2 (+5 to

+8mm)

Dmax 54Gy (90%)

External without PTV

(+8mm)

Dmax 48Gy (80%)

OAR’s Bulbi oculi Dmean <35 Gy

Lens Dmax <5 Gy

Optic nerve Dmax <50 Gy

Chiasma Dmax <50 Gy

Brainstem V54Gy <10%

Medulla Dmax <42 Gy

Cochlea Dmax <35 Gy

Spinal canal Dmax <42 Gy

New

objectives

nTMS-defined motor

cortex

As low as possible

Hippocampus As low as possible

If the PTV overlaps with an OAR or is near to it, an individual objective is required based

on a clinical decision by the responsible radiation oncologist.

PTV, planning target volume; OAR, organs at risk; nTMS, navigated transcranial

magnetic stimulation.

an experienced manual planner. The advantage of the Auto-
Planning algorithm is the iterative nature and the inclusion
of additional and automated help structures, which provides
more complexity to the optimization than manually achievable.
Furthermore, the algorithm does not stop once the pre-set
objectives are satisfied, but rather tries to reduce the dose in the
OARs below the demanded maximal dose (39, 41, 44).

The “Manual Motor” plan used the same optimization criteria
as the “Original” plan and an additional criterion for the motor
areas delineated by nTMS exteriorly to the PTV. Since none of
the patients had the motor cortex located completely external to
the PTV, the goal of this re-optimization was the reduction of
the nTMS-based motor cortex mean dose without reducing the
coverage of the PTV. The motor cortex dose was pushed as far as
possible, accepting up to 0.5Gy decrease in mean PTV dose.

The aims of the manual motor cortex and hippocampus
sparing “Manual M+H” plan were the dose reduction of
the motor cortex mean dose and the dose reduction in the
hippocampi without reducing the coverage of the PTV. Here too,
the optimization was carried out using the same optimization
constraints as the “Original” plan adding the new constraints for
the motor cortex and hippocampi.

Both the Auto-Planning “AP Motor” plan and the “AP
M+H” plan were optimized using the Pinnacle Auto-Planning
algorithm. The aims of “AP Motor” and “AP M+H” were the

same as the aims of “Manual Motor” and “Manual M+H,”
respectively. Note that no automatization was included at
the stage of motor cortex delineation, but only in the dose
planning step.

The numbers of fields and the allowed segments in all re-
optimized plans were equivalent to the used fields and segments
of the “Original” plan. The direction of the fields was not
changed. The final dose distributions were calculated using a
collapsed cone (CC) convolution algorithm on a 2-mm dose grid.
All plans were revised by experienced radiation oncologists and
radiation physicists and were considered clinically acceptable.

Plan Evaluation
Different quality parameters were analyzed to evaluate the
plan quality.

The Paddick conformity index (CI) (45–47).

CI = OR • UR =
TV2

PIV

PIV • TV
(1)

is the product of the Paddick overdose ratio (OR) and underdose
ratio (UR). In the ideal plan, the CI is unity and decreases with
decreasing plan quality.

The OR

OR =
TVPIV

PIV
(2)

is ideally 1, when the PTV volume inside the 95% isodose
(TVPIV) is the same size as the total volume irradiated with 95%
of the total prescription (PIV).

The UR

UR =
TVPIV

TV
(3)

is ideally 1, when the PTV volume inside the 95% isodose
(TVPIV) is the same size as the total PTV volume (TV).

The homogeneity index (HI)

HI =
PTV01% − PTV99%

PTVmean
(4)

estimates the dose homogeneity inside the PTV by the ratio
of the absolute dose difference (PTV01% dose maximum and
PTV99% dose minimum) and the mean dose. In the ideal plan
the HI equals 0.

The gradient index (GI)

GI =
PIV

V50%
(5)

estimates the steepness of the dose fall-off by the ratio of the
prescription isodose volume and the volume of half of this
dose (V50%).
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TABLE 2 | Overview of the overlap of motor cortex and PTV.

Percent of motor cortex in PTV Number of patients

<24 3

25–49 1

50–74 1

75–94 5

PTV, planning target volume.

Besides these parameters, the maximum and the mean dose
of the PTV and the OARs, especially the motor cortex and
the hippocampi, are determined. For the motor cortex and the
ipsilateral hippocampus, the intersection between the respective
OAR and the different isodoses is analyzed.

Statistical Analyses
By an in-house Pinnacle script, the dose-volume histogram
(DVH) values of each OAR, PTV, and motor cortex were
exported into a comma separated variables (CSV) table.
All calculations and statistical analyses were performed with
MATLAB R2019b. A normal distribution could not be presumed,
so Wilcoxon’s signed-rank test of paired data with Bonferroni
correction was used, reducing the level of significance to 0.005.

RESULTS

A total of 24 patients received radiation therapy and surgical
resection at the authors’ department. Only patients with a
prescription of 30 fractions of 2Gy were included to allow
for a more homogeneous collective and more valid dosimetric
comparison. Also, patients whose motor cortex was located
to more than 95% inside the PTV were excluded from this
study because a dose reduction was not reasonable. For the
remaining 10 patients, the four re-optimized plans “Manual
Motor,” “AP Motor,” “Manual M+H,” and “AP M+H” were
clinically acceptable. In Table 2, the distribution of the overlap of
the motor cortex with the PTV is presented, while in Figure 2,
an example for the resulting isodose distributions with the
related DVH (Figure 3) is shown. In Supplementary Table 1, the
metrics for plan quality and the dose to the PTVmotor cortex and
OARs are given.

PTV Coverage and Plan Quality Metrics
For the maximum dose and the mean dose to the PTV,
there was no statistically significant difference between the
five kinds of plans (Figure 4). The minimum dose decreased
slightly for all re-optimized plans, but only reached statistical
significance for the manual plans. From a clinical perspective,
this decrease was deemed adequate and would not have impaired
plan acceptability.

The brain without PTV received a slightly decreased mean
dose (<1 Gy) in the re-optimized plans, which was statistically
significant for the manually optimized plans, while the maximum
dose remained almost the same.

For all plan quality parameters, there were hardly any
significant differences between the five plans (Figure 5). The
CI, OR, HI, and the GI appear slightly higher while the UR
decreased; however, only the increase in HI for the motor cortex
and hippocampus sparing plans is statistically significant and
would not have resulted in the clinical rejection of the plans.

Organs at Risk
The OAR originally included in the clinical plans showed no
significant or clinically relevant increase of the maximum or
mean dose. The dose of all OARs in the “Original” plans
was already below the clinical critical value. OAR near the
hippocampi, such as brainstem or medulla, had a significant
decrease in the maximum dose (up to 11 Gy for the brainstem
in the “AP M+H” plan) and mean dose (up to 5.7 Gy for the
brainstem in the “AP M+H” plan) for all re-optimized plans
except for the “Manual Motor” plans, which did not optimize
hippocampus dose. For most of the OARs, a significant further
reduction of the maximum and mean doses was achieved by the
Auto-Planning plans. Only if the doses in the “Original” plans
were already very low (i.e., lenses located very far from the PTV),
no significant reduction could be found.

Motor Cortex Sparing
For the motor cortex, a significant reduction in the mean dose
for all four re-optimized plans could be achieved [from 54.3 ±

6.7Gy (“Original”) to 48.2 ± 10.2Gy (“Manual Motor”), 46.8 ±

11.2Gy (“AP Motor”), 48.1 ± 10.2Gy (“Manual Motor+Hipp”),
and 47.1 ± 11.4Gy (“AP Motor+Hipp”), Figure 6], while there
was no difference in the maximum dose (near the prescribed
dose since this contour overlapped with the PTV). The overlap
between the motor cortex and the 57, 54, 48, and 42Gy isodoses
is significantly reduced for all re-optimized plans (Figure 7). The
improvement for the Auto-Planning plans was a little higher
than for the manually optimized plans, but without reaching
statistical significance. For the other isodoses, no significant
changes occurred, given that the overlap for the lower doses with
the motor cortex approached 100%.

If only the motor cortex outside the PTV is analyzed, then
there is a significant reduction of the maximum dose and mean
dose for all re-optimized plans (Figure 8). The maximum dose
is reduced by around 3 Gy for the manually optimized plans
and around 4 Gy for the Auto-Planning plans. The mean dose
is reduced by 12 Gy for the manual plans and by 13 Gy for the
Auto-Planning plans, and the difference between the manual and
Auto-Planning plans is significant for both optimization goals.

Hippocampus Sparing
Taking the average of themaximum ipsilateral hippocampus dose
over the collective of patients, a reduction of more than 5.5Gy for
the hippocampus-sparing plans could be seen (“Original” 46.6
± 18.1 Gy, “Manual Motor” 46.3 ± 18.0 Gy, “AP Motor” 45.4
± 19.7 Gy, vs. “Manual M+H” 40.9 ± 19.6 Gy, “AP M+H”
40.9 ± 20.9 Gy, Figure 9); however, given the large variability
in maximum hippocampus doses over the collective statistical
significance could only be proven between the “Manual M+H”
plan and the “Original” and “Manual Motor” plans. For the mean
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FIGURE 2 | Example of the dose distribution in the planning CT (axial, sagittal, and coronal axis) (left, middle, and right). PTV = red color, motor cortex = skin color,

contralateral hippocampus = pink color.
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FIGURE 3 | Dose-volume histogram for the example patient in Figure 1.

FIGURE 4 | Maximum dose (D01%), mean dose and minimum dose (D99%) to the PTV. Line = median value, square = mean value, diamond = outliers, star =

statistically significant at p < 0.005.
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FIGURE 5 | Quality parameters conformity index (CI), gradient index (GI), and homogeneity index (HI). Line = median value, square = mean value, diamond = outliers.

There were no statistically significant differences between the planning scenarios.

FIGURE 6 | Maximum and mean dose to the motor cortex. Line =median value, square =mean value, diamond = outliers, star = statistically significant at p < 0.005.

doses to the ipsilateral hippocampus, a significant improvement
was observed in all re-optimized plans. The reduction of the

only motor sparing plans was not as large as the reduction of
the motor and hippocampi sparing plans, which was statistically
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FIGURE 7 | Overlap of motor cortex and isodose levels. Line = median value, square = mean value, diamond = outliers, star = statistically significant at p < 0.005.

FIGURE 8 | Maximum and mean dose to the motor cortex. Line =median value, square =mean value, diamond = outliers, star = statistically significant at p < 0.005.

significant (“Original” 29.6 ± 18.3 Gy, “Manual Motor” 29.0
± 17.3 Gy, “AP Motor” 25.4 ± 20.2 Gy, “Manual M+H” 23.0
± 18.2 Gy, and “AP M+H” 21.1 ± 18.2 Gy). Meanwhile the
Auto-Planning plans attained an even higher reduction than the
manually optimized ones so that the “AP M+H” plan offered the
largest improvement (statistically significant in comparison with
all other plans).

Regarding the spatial overlap between the ipsilateral
hippocampus and isodose levels, there were no significant
differences between the plans, although it can be seen from
Figure 10 that the intersection between the hippocampus and

higher isodose levels has decreased for the plans with motor
cortex and hippocampus sparing.

For the motor cortex and hippocampi sparing plans,
the maximum dose of the contralateral hippocampus was
significantly reduced by more than 5.5 Gy and the mean dose by
about 3.5 Gy as compared with the “Original” plan (Figure 11).

Plan Efficiency and Modulation
Figure 12 gives the required monitor units (MU) of the planning
scenarios. For all re-optimized plans, the monitor units are
significantly increased except for the “Manual Motor” plan for
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FIGURE 9 | Maximum and mean dose of the ipsilateral hippocampus. Line = median value, square = mean value, diamond = outliers, star = statistically

significant p < 0.005.

FIGURE 10 | Overlap of ipsilateral hippocampus and isodose levels. Line = median value, square = mean value, diamond = outliers, star = statistically significant

p < 0.005.

which no significance could be proven. The increase for the plans
which spare motor cortex and hippocampi, is significantly larger
than for the plans which only consider themotor cortex. Also, the
plans optimized with Auto-Planning require significantly higher
monitor units, i.e., higher modulation of the beams.

DISCUSSION

Although we had only a small number of patients available for
analysis, this was a homogeneous collective with very comparable
clinical scenarios. For this cohort, a total of 50 treatment plans
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FIGURE 11 | Maximum and mean dose to the contralateral hippocampus. Line = median value, square = mean value, diamond = outliers, star = statistically

significant p < 0.005.

FIGURE 12 | The required monitor units for the different plans. Line = median

value, square = mean value, diamond = outliers, star = statistically significant

p < 0.005.

were compared, which were created in a reproducible manner
and revised by an attending radiation oncologist and a senior
medical physicist. This study could show that combined sparing
of the nTMS-defined motor cortex and the hippocampus is
feasible in the radiotherapeutic treatment of patients with GBM
without compromising target coverage, plan quality metrics, or
sparing of traditional OAR, even in a collective of patients where
the motor cortex was partially included in the PTV.

The main goal, which was the sparing of the motor cortex and
the hippocampi, could be achieved. The motor cortex mean dose
was reduced by more than 10% (>6 Gy) in the whole nTMS-
defined cortex and by up to 25% (>12 Gy) for the part of the
motor cortex located outside of the PTV. A reduction of the
maximum dose could expectedly not be achieved because the
cortex overlaps largely with the PTV. However, the maximum
dose of the motor cortex outside the PTV was significantly
reduced for all plans by more than 3.5 Gy. Furthermore, the
overlap of the motor cortex with high-dose isodoses could be

significantly decreased.
For the ipsilateral and contralateral hippocampus, a reduction

in the mean dose of over 20% (>6 Gy) and 40% (>4.6 Gy),

respectively, could be achieved. The maximum doses were
decreased significantly by over 10% (>5 Gy) and 20% (>5 Gy)
for the ipsilateral and contralateral hippocampus, respectively.

Benefits of Automated Planning
Using the Auto-Planning algorithm, the motor cortex located
outside the PTV could be better protected than in the manual
plans; all other objectives (complete motor cortex, ipsilateral, and
contralateral hippocampi) were equally satisfied by the manual
and Auto-planning scenarios with no significant differences.

While several studies for different tumor entities have shown
that Auto-Planning resulted in a better plan quality than manual
plans [e.g., (38, 48)], this is not supported in our study collective.
The PTV coverage and the plan quality defined through the plan
quality parameters were the same for the “Original” plan and
both kinds of planning. The similar plan quality indicates that
the plan quality of the manual plans was good. However, the
spread of the mean and maximum dose and the quality factors
were smaller for the Auto-Planning. In addition, the variation
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in dose to the healthy brain without PTV is smaller for Auto-
Planning than manual. While only a reduction in measures of
statistical spread (such as the interquartile range as seen in the
box plots above) precludes a statistically significant difference
between the manual and automated plans, this may point to
better reproducibility and stability of the Auto-Planning results.

In contrast, the variation for the motor cortex dose is higher
for Auto-Planning than for the manual plans. This effect could
be due to the overlap of the motor cortex and the PTV. The
conflicting objectives were not always achievable, which was
a problem for the Auto-Planning algorithm, that could more
consistently be solved manually by the informed decision of
the planner. Nevertheless, on the average, the Auto-Planning
performed slightly better.

Due to the different optimization parameters, the Auto-
Planning reduced the dose for almost all other OARs significantly
even when they were already below the constraints. This
is one expressed aim of the Auto-Planning algorithm, as
it strives to satisfy all the objectives and if possible to
undercut them (41). The manual plans only aimed to reduce
the dose in the other OARs if they were too high from
a clinical point of view and ceased the efforts when the
clinical objectives were reached. The second advantage of
Auto-Planning is that one optimization is enough to produce
a clinically acceptable plan, while for the manual plans,
many optimization runs were normally needed. Hence, the
clinical workflow was greatly relieved by knowing that an
adequate plan could be reliably be created with the known
set of objectives. In the clinical reality, this would also
allow for a less experienced planner to create high-quality
plans based on the Auto-Planning template, whereas an
experienced planner invested considerable time and effort into
the manual optimizations.

However, the good performance and partly even better sparing
of the Auto-Planning scenarios come at the cost of higher
intensity modulation expressed in the plan MU. While the
manual plan with hippocampi sparing increased significantly by
around 60 MU (−2 MU to +277 MU) when compared with
the original plan, which amounts to about 19%, the increase
for the Auto-Planning plans was significantly higher with over
185 MU (almost 60% higher than in the original plans, “AP
Motor”: +75 MU to +277 MU and “AP M+H”: +84 MU
to +367 MU). Such a large increase in irradiated dose will
contribute to higher head scatter and leakage radiation, which is
not precisely accounted for in the treatment plans and may be
relevant from the perspective of radiation protection.

Comparison With Previous Studies on
nTMS-Based Motor Cortex Optimization
A small number of studies have systematically evaluated the
motor cortex as an optimization objective in radiotherapy
treatment planning. As early as 2013, Conti et al. (23) used nTMS
and functional MRI data and tractography of the motor and
language system to optimize dose distributions in CyberKnife
radiosurgery of 25 patients, achieving a 17% reduction in dose

to functional areas. Focusing on the nTMS-defined motor cortex,
Tokarev et al. (25) could reduce the maximum dose by up to
17% (average 6%) and the >12 Gy-volume by 2–78% (average
35.2%) in eight patients planned using GammaKnife. For linear-
accelerator-based treatment of brain metastases, Schwendner et
al. (22) reported a mean dose reduction to the nTMS-based
motor cortex of 18% for a collective of 30 patients planned with
VMAT, which corresponded to our own results for patients with
metastases treated with IMRT, non-coplanar arcs, or static beams
[sparing of about 30% in mean dose, but depending on planning
technique and distance between the lesion and the motor
cortex, (26)].

Only one study hitherto considered patients with malignant

gliomas, which present a rather different patient collective with
different needs for planning and optimization. In general, much
larger target volumes are treated with modulated techniques in
standard fractionations to 60Gy or more, resulting in different
necessities and possibilities for plan optimization. Diehl et
al. (21) re-optimized plans for 30 patients with high-grade
gliomas setting an objective of 45Gy maximum dose to the
nTMS-defined motor cortex outside the PTV [prescription
59.4 Gy/70Gy in PTV/simultaneous integrated boost (SiB)].
The resulting mean dose to the motor maps was reduced

by 12.8%, and the volumes of the motor maps receiving >

45Gy decreased by 11.3%, without a relevant decrement in
overall plan quality. We chose a somewhat modified approach
in setting the motor map objectives as low as achievable
for each patient before compromising PTV coverage. Still, a

similar decrease in mean motor cortex dose (10%, 6 Gy) and a
significant decrease in the overlap with the high dose isodoses are

obtained. In particular, a further slight but statistically significant
improvement in the overlap volumes could still be achieved
using the Auto-Planning modality. Furthermore, for all patients,
we could obtain the motor cortex dose protection not only
without compromising PTV coverage and the sparing of other
OAR but also when including additional constraints on the
bilateral hippocampi.

Beyond the dosimetric optimization, such as the nTMS
information into radiotherapy treatment planning, may offer
further benefits. Picht et al. (20), presenting a mixed collective of
11 patients with metastases, meningiomas, and AMVs, evaluated
whether the nTMS information on the motor cortex influenced
patient counseling, contouring, and other treatment decisions
from indication to dose prescription and optimization. All
these factors except for the contouring were found to be at
least somewhat influenced by the additional information in a
large percentage of the patients. It can thus be presumed that
the inclusion of nTMS information at an earlier stage than
merely in dose optimization can provide further benefits for
informed decisions.

Clinical Benefits of the Motor Cortex and
Hippocampus Protection
In how far these dosimetric improvements can be translated into
clinical endpoints is yet uncertain. First of all, the clinical effects
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of radiotherapy may only become evident after some latency and
may hence not occur within the remaining lifetime of patients
with highly malignant glioma. In this case, an improvement in
quality of life would not be achieved. However, several effects
of ionizing radiation on the brain have been observed to occur
within a time span of weeks to months, such as attention deficit
and short-term memory loss (49, 50), or by >6 months after
radiotherapy [general cognitive impairment and dementia in
brain tumor survivors (50)]. In these patients, preservation of
quality of life will be of paramount importance, if this can
be achieved.

While motor skills have been reported to be decreased after
radiotherapy (18, 19, 51), only little information is available
on possible dose thresholds. In addition to the influence on
motor skills, Peiffer et al. (12) found that the volume of the
precentral gyrus covered by >40Gy is a significant predictor for
verbal immediate recall and trail making test performance, so
an improvement in this value might translate into measurable
cognitive improvement of the patients. In our paper, a significant
reduction in the volume of the motor cortex overlapping with
the high isodose levels (above 48Gy and higher) could be
achieved, and some sparing of lower isodose coverage was
also feasible.

Regarding the hippocampus, Kim et al. (7) found impaired
verbal learning performance for patients receiving a mean left
hippocampus dose of between 38 and 43Gy as compared
with those receiving 11–12Gy. While there was considerable
variation in mean hippocampus dose in our patient collective,
the hippocampus-optimized plans could reduce the dose to the
contralateral hippocampus to <14Gy in the manual and no
more than 12Gy in the Auto-Planning plans for all patients in
our collective. The ipsilateral hippocampus mean dose ranged
between 8 and 60Gy (mean 30Gy) in the original plans and
could be reduced by 6.5 and 8.5Gy in the manual and Auto-
Planning optimizations so that it can be expected that some
patients would be represented directly on the slope of a dose-
response curve and hence benefit from dose reduction. Similarly,
the maximum hippocampus dose varied greatly with distance
from the PTV; however, it could still be reduced by about
5Gy, which may be relevant for those patients close to a
threshold dose of ca. 12Gy, which was observed by Tsai et
al. (8) to correlate with impaired verbal memory. Summing
up the tenuous evidence on dose effects available so far, some
tangible clinical and cognitive improvements may be achieved
at least for a subset of the patients receiving radiotherapy. Most
importantly, this dose sparing comes at no cost in plan quality
regarding either PTV coverage and hence prognosis or sparing of
“traditional” OAR. Therefore, to our opinion even a hypothetical
and plausible – though as yet unproven – improvement in motor
and the cognitive outcome would warrant the additional care in
dose optimization.

CONCLUSION

Simultaneous dose reduction in the motor cortex and
hippocampi is feasible while the PTV coverage, plan quality

parameters, and sparing of other OAR are maintained or
improved. The overall mean dose reduction to the nTMS-
defined motor cortex was up to 10% (6 Gy), while the mean
dose to the ipsilateral hippocampus was reduced by more
than 20% (6 Gy) and the contralateral by more than 40%
(4 Gy). Manual optimization and Auto-Planning achieved
considerable dose protection, with slightly better performance of
the Auto-Planning algorithms for most of the OAR coming at
the cost of considerably higher dose modulation. No apparent
disadvantages due to sparing the nTMS-definedmotor cortex and
hippocampi were found. Consequently, standardized sparing of
these structures may be recommended for the clinical routine
while the effects for the quality of life, motor function, and
cognitive performance need to be determined in future studies.
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