
MINI REVIEW
published: 16 December 2020
doi: 10.3389/froh.2020.585710

Frontiers in Oral Health | www.frontiersin.org 1 December 2020 | Volume 1 | Article 585710

Edited by:

Daniel Lambert,

The University of Sheffield,

United Kingdom

Reviewed by:

Samapika Routray,

All India Institute of Medical Sciences

Bhubaneswar, India

Craig Murdoch,

The University of Sheffield,

United Kingdom

*Correspondence:

Geetashree Mukherjee

geetashree.mukherjee@

tmckolkata.com

Amrita Chaudhary

chaudharybt8@gmail.com

Specialty section:

This article was submitted to

Oral Cancers,

a section of the journal

Frontiers in Oral Health

Received: 21 July 2020

Accepted: 13 November 2020

Published: 16 December 2020

Citation:

Chaudhary A, Bag S, Arora N,

Radhakrishnan VS, Mishra D and

Mukherjee G (2020) Hypoxic

Transformation of Immune Cell

Metabolism Within the

Microenvironment of Oral Cancers.

Front. Oral. Health 1:585710.

doi: 10.3389/froh.2020.585710

Hypoxic Transformation of Immune
Cell Metabolism Within the
Microenvironment of Oral Cancers
Amrita Chaudhary 1*, Swarnendu Bag 1, Neeraj Arora 2, Vivek S. Radhakrishnan 3,

Deepak Mishra 2 and Geetashree Mukherjee 1*

1Department of Histopathology, Tata Medical Center, Kolkata, India, 2Department of Laboratory Hematology and Molecular

Genetics, Tata Medical Center, Kolkata, India, 3Department of Clinical Hematology, Tata Medical Centre, Kolkata, India

Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal

complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous,

with overall 5-year survival of ∼50%, but median survival of just 8–10 months for

patients with locoregional recurrence or metastatic disease. A key feature of OSCC is

microenvironmental oxygen depletion due to rapid growth of constituent tumor cells,

which triggers hypoxia-associated signaling events and metabolic adaptations that

influence subsequent tumor progression. Better understanding of leukocyte responses

to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will

therefore be essential to develop more effective methods of diagnosing and treating

patients with OSCC. This review assesses recent literature on metabolic reprogramming,

redox homeostasis, and associated signaling pathways that mediate crosstalk of

OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional

consequences of this metabolic interface between oxygen-starved OSCC and infiltrating

leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox

signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved

understanding of heterotypic interactions between host leukocytes, tumor cells, and

hypoxia-induced onco-metabolites will inform the development of novel theranostic

strategies for OSCC.
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INTRODUCTION

Squamous cell carcinoma (SCC) accounts for more than 95% of all cancers affecting the head
and neck region, with high rates of associated mortality and morbidity that represent a major
public health burden worldwide [1, 2]. In oral squamous cell carcinoma (OSCC), the predominant
sites involved include the tongue and the gingivobuccal complex, and mortality rates can be
substantially reduced by early detection and prevention strategies [3]. However, despite the
development of several high-throughput multimodal diagnostic tools, early stage detection is still
problematic; hence, 5-year survival rates in recurrent and metastatic disease remain extremely
poor [4]. It remains unclear to what extent radiotherapy or chemotherapy exerts stimulatory
or suppressive effects on host leukocyte responses [5]. The immune cell composition, function,
and metabolic status are strongly influenced by the tumor microenvironment (TME) [6–8]. The
complex dynamics of the OSCC microenvironment alter spatiotemporal distribution and effector
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functions of infiltrating leukocytes to modify/diminish host
defense mechanisms in favor of tumor cell survival [9, 10].
In particular, local oxygen depletion leads to the induction
of reactive oxygen species (ROS) that promote cancer cell
proliferation and drive autophagic/lysosomal loss of stromal
caveolin-1 [an inhibitor of transforming growth factor-β (TGF-
β) signaling] in cancer-associated fibroblasts (CAFs), resulting in
tumor recurrence and metastasis and affecting patient survival
[11–14]. Furthermore, the elevated levels of ROS result in
detrimental stabilization of hypoxia-inducible factor (HIF)-
1α, which activates pro-angiogenic genes including vascular
endothelial growth factor (VEGF) [15–17]. HIF-1α acts as a
master regulator of oxygen concentration to stimulate hypoxia-
adaptive responses in cells. Immune signaling can be altered
through the production of onco-metabolites that may further
influence the clinical course of OSCC [18]. Consequently, a
better understanding of how hypoxic stress, ROS generation, and
onco-metabolites alter immune function in the TME is now a
priority issue for the OSCC research community. The present
article therefore reviews current knowledge of how redox factors
alter leukocyte metabolism to promote the immune suppressive
microenvironment of hypoxic OSCC.

HYPOXIA AND REDOX BALANCE IN THE
ORAL SQUAMOUS CELL CARCINOMA
MICROENVIRONMENT

Hypoxic TME alters local ROS generation and metabolic profile
of both constituent tumor cells and infiltrating leukocytes
[19–21]. Glycolysis is a metabolic process carried out in cell
cytoplasm to generate two ATPs and pyruvates; this pyruvates
serves as a fuel for tricarboxylic acid (TCA) cycle and
oxidative phosphorylation (OXPHOS) under aerobic conditions
[22, 23]. However, under anaerobic conditions, pyruvate is
reduced to lactate, and this lactate is secreted into extracellular
matrices [24]. The metabolic features of cancer cells are very
heterogeneous where OXPHOS and aerobic glycolytic activities
are impaired [25].

Intriguingly, cancer cells specifically express pyruvate kinase
M (PKM)-2 that oxidizes and generates reduced nicotinamide
adenine dinucleotide phosphate (NADPH) to maintain redox
buffering; besides, this PKM-2 gene trans-activates HIF-1α target
genes, leading to a significant shift in metabolic activity and
cancer cell signaling [26, 27]. In solid tumors like OSCC,
increased production of ROS, cytokines, and CAFs stimulates
the production of pro-angiogenic factors in an attempt to
promote neovascularization and enhance survival (Figure 1)
[28, 29]. In addition, the cancer cells undergo a metabolic
shift from OXPHOS to glycolysis, which produces lactate and
increases serum levels of lactate dehydrogenase (LDH), which
has been linked with poor survival in patients with OSCC
[30]. Tumor cells therefore have the capacity to utilize both
OXPHOS and aerobic glycolysis for baseline metabolic activity
and rapid energy production via the lactate pathway (Figure 1).
In this regard, OttoWarburg proposed that due to mitochondrial
defects, the predominant metabolism in cancer cells is aerobic

glycolysis rather thanOXPHOS.Warburg’s historic findings were
called Warburg effect [31]. However, the metabolic coupling
between OSCC cells and associated stromal cells is mainly
determined by growth requirements; these effects are called
dual/reverse Warburg effect [32, 33]. A previous NMR-based
study suggested that OSCC can contravene the Warburg effect
and implicated malonate (a competitive inhibitor of succinate) to
induce drastic alterations in the TCA cycle that produce more
fatty acid for membrane biogenesis in OSCC [34–36]. Among
various glycolytic enzymes, alpha-enolase is crucial to produce
phosphoenolpyruvate. As the mortality of OSCC is known to be
due to metastasis, enolase in particular seems to play a major role
in the malignant transformation of dysplastic epithelium in oral
pre-cancer through promoting cell surface receptor enolase [37–
40]. In addition to altered glucose metabolism, modified amino
acid metabolism also occurs in OSCC. The amplified glutamine
catabolism creates glutamine scarcity in hypoxic tumor core and
leads to a dramatic histone hypermethylation [41]. In order to
better understand the effects of hypoxia on OSCC, we will require
new immunological paradigms that consider how dysregulation
of crucial metabolic pathways can impact on both tumor growth
and host leukocyte responses.

MITOCHONDRIAL HOMEOSTASIS AND
IMMUNE DYSFUNCTION IN ORAL
SQUAMOUS CELL CARCINOMA

In the hypoxic/acidic TME, reduced OXPHOS and electron
transport chain (ETC) activity in local immune cells lead
to altered mitochondrial membrane potential and impaired
generation of ATP [42, 43]. The immune system not only kills
cancerous cells but also modifies the TME in three phases—
elimination, equilibrium, and escape [44]. The growing and
transformed cells can be eradicated by immune response
in the elimination phase; however, immune selection and
reorganization create an immune resistant environment, namely,
the equilibrium phase [45]. Consequently, immune surveillance
escapes to kill tumor cells, and tumor cells grow in an
uncontrolled manner [46]. In the last phase of cancer immuno-
editing (i.e., “escape” phase), cancer cells produce large amounts
of “pro-tolerogenic” kynurenine catalyzed by indoleamine 2,3-
dioxygenase (IDO) processing of tryptophan [47]. Tryptophan
catabolites have affinity to bind aryl hydrocarbon receptors
(AhRs) of mitochondria, which persuade mitochondrial
dysfunction in T cells and natural killer (NK) cells [48, 49].
Thus, under conditions of acute tryptophan depletion, central
mitochondrial metabolic processes and synthesis of NADPH
are disrupted such that infiltrating immune cells will undergo
apoptosis rather than eradicating the tumor [50].

HETEROTYPIC IMMUNE MODULATION IN
HYPOXIC ORAL SQUAMOUS CELL
CARCINOMA

Hypoxic OSCC reprograms cellular metabolism in order to
modify the repertoire of infiltrating immune cells toward a
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FIGURE 1 | The hypoxic microenvironment of oral squamous cell carcinoma (OSCC).

more tumor-permissive profile [51]. For example, macrophages
located within hypoxic tumors tend to polarize toward an “anti-
inflammatory” M2 phenotype, whereas cytotoxic T lymphocytes
shift from glycolysis to OXPHOS-based metabolism (Figure 2)
[52, 53]. Since essentially all OSCC tumors are subject to hypoxia
upon reaching a certain mass, it is important to study how
innate and adaptive immune cells alter their metabolism under
these conditions in order to fully understand their influence on
disease progression.

Hypoxia “Edits” Immune Signaling
The OSCC microenvironment has two forms of immune
responses: innate and adaptive. Innate immune responses
are non-specific and instant against pathogens, allergens, and
non-self proteins. Phagocytes [myeloid-derived suppressor cells
(MDSCs), neutrophils, monocytes, and macrophages] and NK
cells are the main cells of innate immunity. Phagocytes engulf
the foreign particles and digest through lysosomal enzymes,
whereas NK cells kill the foreign bodies using altered major
histocompatibility complex I (MHC class I) proteins, perforin,
and granzyme-mediated apoptosis [54]. Dendritic cells (DCs)
serve as a crucial link between innate and adaptive immune
responses under physiological conditions. DCs process antigens
and present them to T lymphocytes via MHC class I or II [55].

Adaptive immunity is composed of mainly T and B lymphocytes;
B cells are professional antigen-presenting cells (APCs) that
can activate T cells in tertiary lymphoid structures, allowing
coordination of B and T cell responses in OSCC [56, 57]. In
head and neck squamous cell carcinoma (HNSCC), regulatory
T cells (Treg) situated in the center of the tumor mass have
been reported to be more strongly immunosuppressive than
circulating Treg [58]). Treg can impede T effector (Teff) cell
function to reduce antitumor activity and contribute to poor
prognosis in multiple types of cancer. Activated CD8+ Teff are
dominant antitumor cells that secrete granzymes, perforin, and
pro-inflammatory cytokines, such as tumor necrosis factor (TNF)
and interferon (IFN)-γ, whereas CD4+ T cells can either inhibit
or promote tumor cell activity via the specific activities listed
here [59, 60].

The macrophage subtypes M1 and M2 are activated in
response to microbial and cancer-derived stimuli, respectively
[61]. M1 polarization of macrophages is induced by T helper
type 1 (TH1) cytokines such as IFN-γ and signaling through
signal transducer and activator of transcription 1 (STAT1),
whereas M2 polarization is promoted by T helper type 2 (TH2)
cytokines such as IL-4 and IL-13 that trigger the STAT6 pathway
[62]. Functionally, M1 macrophages produce pro-inflammatory
cytokines, ROS and reactive nitrogen species (RNS), while
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FIGURE 2 | Metabolic crosstalk of tumor and immune cells in the hypoxic microenvironment.

mediating antigen presentation via MHC class II molecules.
M1 macrophages also actively phagocytose pathogens and are
considered to suppress tumor development [63]. In contrast,
M2 macrophages are activated by cytokines including IL-4/IL-
13, IL-10, TGF-β, and glucocorticoids that promote secretion of
anti-inflammatory mediators. Further, M2 macrophages inhibit
the lytic activity of CD8+ cytotoxic T cells [55]. Despite their
opposing roles, both M1 andM2macrophages can coexist within
the same tumor.

Tumor cells can secrete IL-10, colony-stimulating factor
(CSF)-1, and various chemokines [C-C motif chemokine ligand
(CCL)-2, CCL-18, CCL-17, and C-X-C motif chemokine ligand
(CXCL)-4] that appear to favor M2 polarization [64]. In addition
to cytokine expression, hypoxic tumors can further direct
macrophage phenotypes and responses via release of exosomes
loaded with soluble factors and suppressive micro RNA [65]. In
human HNSCC, the acidic TME has been reported to promote
HIF-1α activation and tumor-associated macrophage (TAM)
expression of M2-specific markers CSF1R and CD163, as well
as driving concomitant production of arginase and VEGF [66,
67]. NK cells have the capacity to kill tumor cells and activate

antitumor T cell responses by secreting IFN-λ and cytotoxic
molecules such as granzyme and perforin, but these activities can
be severely restricted by the concomitant presence ofMDSCs [68,
69]. MDSCs are known for their immune suppressive activity for
both innate and adaptive immunity. The two subtypes of MDSCs
are monocytic (M-MDSCs) and polymorphonuclear (PMN-
MDSCs), which have variable capacities to inhibit the function of
activated CD8+ T cells [70, 71]. MDSCs are thought to suppress
T cell responses by expressing a range of inhibitory factors
including arginase, inducible nitric oxide synthase (iNOS), TGF-
β, IL-10, cyclooxygenase (COX)-2, and IDO [72]. HIF-1α appears
to play a key role in this immunosuppressive process by driving
the expression of cytokines that promote MDSC infiltration
of the tumor mass [73]. In addition, granulocyte MDSCs
(G-MDSCs) are classified as T cell-suppressive neutrophils
because of similar morphology and cell surface markers as
mature neutrophils [74, 75]. Neutrophils migrate toward and
infiltrate tumors under the influence of potent chemokines
such as IL-8, after which these cells appear to enhance tumor
proliferation and are correlated with poor survival in solid
cancers [76, 77]. Several clinical observations indicate that

Frontiers in Oral Health | www.frontiersin.org 4 December 2020 | Volume 1 | Article 585710

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Chaudhary et al. Hypoxic Immune Metabolism of Oral Cancers

neutrophil activity is further modulated under the influence of
the TME to assist cancer development [78]. However, tumor-
associated neutrophils (TANs) may exert a dual role, since these
cells appear capable of promoting either CD8+ T cell activity or
tumor progression, depending on the prevailing level of TGF-β
within the TME [79].

Likewise, with the polarization of TAMs, TANs exhibit two
polarization phenotypes, i.e., N1 (antitumor neutrophils) and
N2 (pro-tumor neutrophils), where TGF-β signaling plays a
vital role [80]. Obstruction of TGF-β signaling or type I
IFNs activates N1 phenotype with accretion of TNF-α and
type 1 IFN, whereas augmentation in TGF-β signaling leads
to N2 phenotype with high levels of neutrophil elastase
(NE) and arginase in oral cancers [81]. Immature DCs
are activated by pathogen-associated molecular patterns such
as toll-like receptor (TLR) ligands, thereafter migrating to
lymphoid organs and presenting antigen to T cells in the
context of MHC [82]. In this process, phosphoinositide 3-
kinase (PI3K)/Akt signaling pathway regulates the metabolic
switch through inhibiting AMP-activated protein kinase and
promotes glycolysis [83]. While adenosine signaling limits
DC activation, ATP detection by P2YR and P2XR promotes
DC migration and IL-1 secretion, respectively [84]. Hypoxic
TME not only alters the innate immune signaling but also
modifies adaptive immune signaling. Likewise, under hypoxic
conditions, B cell caspase signaling is activated and kinase
complex mammalian target of rapamycin complex 1 (mTORC1)
pathway is reduced, leading to cell death via apoptosis [85].
B cells also secrete IL-10 under hypoxic stress; however, in-
depth molecular pathway is not well-characterized [86]. The
role of HIF-1α transcription factor in tumor-infiltrating T
cells remains unclear [87]. However, in cancer cells, HIF-
1α interaction with hypoxia response element (HRE) in the
programmed cell death ligand 1 (PD-L1) promoter can trigger
rapid expression of this immune checkpoint molecule, which
is also capable of signaling more effectively in the lactate-
rich TME [59, 88]. PD-L1 ligation of programmed cell
death protein 1 (PD-1) on Teff can inhibit T cell receptor
(TCR) signaling and attenuates the PI3K/Akt and Ras/mitogen
activated protein kinase (MEK)/extracellular signal-regulated
kinase (ERK) pathways to restrict antitumor responses [89, 90].
Accordingly, antibodies targeting the PD-1: PD-L1 axis and other
immune checkpoints have the ability to restore glucose levels
in the hypoxic TME and have proven highly effective in the
treatment of OSCC [91–93]. In particular, abnormal metabolic
processes within cancer cells can generate neo-antigens that
are presented by MHC class I molecules on the cell surface
of antigen-presenting cells for recognition by CD8+ cytotoxic
T cells [94].

Hypoxia Modifies the Resting Metabolic
Status of Immune Cells
The resting metabolic status and associated effector functions
of local immune cells play vital roles in determining the nature
of host antitumor responses. In particular, glucose transport
regulates pyruvate flow into the TCA cycle and is essentially

“rate-limiting” for host immunity, since leukocytes typically
require rapid energy generation in order to achieve full activation.
The hypoxic TME is a key driver of M2 polarization in infiltrating
macrophages likely via the expression of specific cytokine signals
that activate nuclear factor (NF)-κB, although the underlying
mechanism has yet to be precisely defined in OSCC [95, 96].
Like other myeloid lineage cells, macrophage mitochondria can
generate both superoxide and NO, which react to form the
powerful oxidant peroxynitrite, which is highly toxic to cancer
cells [97, 98]. While some investigators have reported that
mitochondrial ROS (mROS) stimulate macrophage expression
of pro-inflammatory cytokines, other researchers have instead
observed the induction of an anti-inflammatory phenotype;
hence, further study is required to fully understand these events
[99–102]. The glycolytic reprogramming of TAM is regulated
by oxygen sensors including prolyl-hydroxylases (PHDs) and
is accompanied by proton pumping and acidification of M2
macrophages that subsequently impair antitumor responses
[103]. Similarly, while resting NK cells typically utilize OXPHOS,
exposure to high doses of tissue damage-associated cytokine
IL-15 stimulates conversion to glycolytic activity [104]. For
tumor-infiltrating neutrophils, the principal metabolic pathways
employed are aerobic glycolysis and the pentose phosphate
pathway (PPP), which support chemotaxis and microbicidal
activities, respectively (Figure 2) [105]. Metabolic shift toward
PPP is also required for formation of neutrophil extracellular
traps, which envelope and attach to the circulating cancer cells
and expedite metastasis to distant sites [106]. Tumor-associated
MDSCs predominantly utilize fatty acid (FA)-β oxidation
(FAO) and thus display high rates of oxygen consumption
(Figure 2) [107]. In the hypoxic TME, MDSCs display potent
immunosuppressive activity, which depends on the endoplasmic
reticulum (ER) stress response transcription factor CCAAT-
enhancer-binding protein homologous protein (CHOP) [108].
DCs are the critical components of the immune system against
cancer as they have robust antigen-presenting ability to educate
T cells [109, 110]. Upon microbial stimulation, DCs typically
shift from OXPHOS to glycolysis; however, in TME, DCs
promote immune suppression through galectin-1 [111]. In this
regard, how metabolic profiles influence DC function and tumor
progression in vivo is not yet well-defined [56, 112]. Activated
B cells can secrete antibodies that can bind and induce tumor
cell killing, but these processes can be strongly influenced by
mitochondrial generation of ROS and heme synthesis. While the
presence of CD20+ B cells within the TME indicates a good
prognosis in lung cancer, gastric cancer, and melanoma, the role
played by B cells in HNSCC has yet to be fully investigated.
Variable hypoxia across the developing OSCC tumor is thought
to alter tissue distribution of local B cells, which generate
immune complexes and produce cytokines that then modify
myeloid cell function to assist tumor progression [113]. B cells
utilize glycolytic metabolism during early development in the
bone marrow. Later survival, maturation, and functional activity
of B cells are instead regulated by HIF-1α and depend on
glucose transporters and phosphofructokinase. The oncogenic
Myc expression in B cells hindered the oxidation of acetyl-CoA in
TCA cycle as it persuades lactate dehydrogenase for conversion

Frontiers in Oral Health | www.frontiersin.org 5 December 2020 | Volume 1 | Article 585710

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Chaudhary et al. Hypoxic Immune Metabolism of Oral Cancers

of pyruvate (glycolysis intermediate) to lactate [114]. Naive T
cells employ OXPHOS and fatty acid metabolism before shifting
glycolysis in order to support Teff functions [112].Memory T cells
also depend on OXPHOS for energy generation in the resting
state, whereas Treg favor fatty acid oxidation. It is noteworthy
that while glycolytic metabolism predominates among Teff and
Treg, both populations have been observed to maintain OXPHOS
within the TME (Figure 2), which may contribute to detrimental
cancer-associated inflammation, further mutation, and eventual
metastasis [115, 116]. Metabolic alterations in the T cell pool
may also impede the differentiation of Teff while increasing the
generation of Treg and “exhausted” populations, thus further
supporting cancer evasion of host immunity [50].

Hypoxic Oral Squamous Cell Carcinoma
Produces Immunosuppressive
Onco-Metabolites
The metabolic products of cancer cells (onco-metabolites)
are intimately linked with the control of the immune cell
function [117]. For example, the microenvironment of OSCC
is characterized by hypoxia, low pH, and elevated lactate
levels, which disturb ETC operation and leads to deposition
of citrate and succinate [21]. Citrate is converted into acetyl-
CoA and utilized in several biosynthetic pathways. Oxidation
of succinate produces ROS and promotes HIF-1α activation.
Hypoxia-generated lactate also drivesmacrophage differentiation
toward an M2 phenotype [118]. TAMs are unable to utilize
extracellular arginine due to rapid enzymatic breakdown by
arginase and must instead use extracellular glutamine to produce
this “semi-essential” amino acid [119]. TANs also produce
high levels of arginase to disrupt TCR signaling. Increased
lactate concentration in the hypoxic TME favors decreased
NK cell expression of granzyme/perforin and NKp46, leading
to reduced anticancer cytolytic activity (Figure 2) [120]. The
nuclear factor of activated T cells (NFAT) has also been
implicated in downregulation of NK cell activity via an increase
in cancer-associated lactate dehydrogenase expression [121].
Other hypoxia-induced onco-metabolites such as adenosine
and lactic acid have previously been reported to impair DC
activation (Figure 2) [122]. The tumor-associated dendritic cells
(TADCs) stimulate arginase, which then depletes arginine in
the extracellular matrix (ECM) and arginine scarcity impairs
CD8+ T cell responses [123]. Some stable onco-metabolites
(like kynurenine and quinolinate) along with specific cytokine
milieu promote AhR signaling in non-functional Treg, Foxp3+-
induced Treg (iTreg), and TH17 cells. These signaling pathways
further de-differentiate Treg, iTreg, and TH17 cells into functional
iTreg and endorse immune tolerance [124, 125]. IDO contributes
to the tolerogenic ability of DCs to inhibit Teff functions and
promotes Treg activity [126, 127]. The by-products (highly
reactive aldehyde) of anomalous lipid peroxidation (triggered by
ROS) create ER stress on TADCs and lower antitumor responses
[128]. In addition, acylcarnitine and 2-hydroxyglutarate (2-HG)
have been identified as a prominent onco-metabolite in HNSCC
[129]. This 2-HG skews TH17 polarization and alters Treg

metabolism by promoting the OXPHOS and destabilizing HIF-
1α [130, 131].

IMMUNE-TUMOR METABOLIC SWITCH
UNDER HYPOXIA

Tumor hypoxia is characterized by local tissue acidification
and nutrient depletion, thereby creating metabolic competition
and generating active biomolecules that influence cancer
cell interactions with host leukocytes. Competition for key
metabolites along with cholesterol esterification, release of
adenosine, and expression of prostaglandin E2 inhibits effector
T cells [132]. Hypoxic OSCC modifies pro- and antitumoral γδ

T cell populations via exosomes [11]. OSCC can also express
a range of different TLRs, with high levels of TLR-2 and
TLR-4 correlating with tumor progression and chemoresistance,
respectively. HIF-1 can deregulate TLR3 and TLR4 in OSCC cell
lines under hypoxia stress, leading to potent effects on tumor cell
survival, proliferation, and metastatic potential [133].

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Hypoxia-related metabolic stress inhibits the activity of host
immune cells to support oncogenic transformation and
inflammation in OSCC. The hypoxia signaling in immune cells
not only alters the glycolysis but also modifies other metabolic
pathways like amino acid, FAO, PPP, and TCA, resulting in
onco-metabolite production. Further, these onco-metabolites
disturb the redox balance, mitochondrial function, and ATP
production through aerobic glycolysis in OSCC.

In future studies, it will be important to elucidate the
correlation between spatial distributions of immune cells in
hypoxic/non-hypoxic OSCC. Novel and advanced therapeutic
approaches like interfering with HIF-1α signaling in immune
cells through antisense or small interfering RNA, modulating
the metabolic status of immune cells through gene editing
technology [clusters of regularly interspaced short palindromic
repeats–caspase 9 (CRISPR-Cas9)], and designing new smart
oxygen-sensitive chimeric antigen receptor (CAR) T cell may
provide new insight to overcome the challenges associated with
hypoxic OSCC in the future.
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