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Disposition and Residue Depletion 
of Metronidazole in Pigs and 
Broilers
Yuanhu Pan1,2, Jiliang Yi1,2, Bo Zhou1,2, Shuyu Xie2,3, Dongmei Chen2,3, Yanfei Tao1,2, Wei 
Qu2,3, Zhenli Liu2,3, Lingli Huang2,3 & Zonghui Yuan1,2,3

Metronidazole (MNZ) is used in veterinary medicine for the treatment of anaerobic infections and 
a variety of protozoal and parasitic diseases. Current study has been conducted to examine the 
disposition and residue depletion studies of MNZ and its main metabolites in pigs and broilers. After a 
single oral administration of MNZ, the concentrations of MNZ and its main metabolites in the excreta 
of pigs and broilers were determined by LC-MS/MS. More than 75% of the drug was recovered within 14 
days, of which MNZ accounted for about 40%, MNZ-OH 20–25% and MAA less than 10%. The residue 
depletion study showed that MNZ was the most predominant residue in all of the tissues and could 
be detected in liver, kidney and muscle up to the withdrawal time of 14 days. MNZ-OH concentrations 
were lower than MNZ in all of the tissues, but its elimination half-life was close to MNZ. It is proposed 
that kidney and muscle are appropriate residue target tissues and both MNZ and its hydroxylated 
metabolite, MNZ-OH, should be monitored in the routine surveillance of MNZ related residues in food 
of animal origin.

Metronidazole (MNZ, 1-(hydroxyethyl)-2-methyl-5-nitroimidazole) is an antimicrobial agent which is espe-
cially used to treat anaerobic bacterial infection, protozoal and parasitic diseases1. Regarding its carcinogenic, 
mutagenic and toxic effect on host it has been banned in the EU, the United States and some of the other coun-
tries, thus no Maximum Residue Limit (MRL) has been established2–4. The usage of MNZ as a feed additive in 
food-producing animals is forbidden in China, while permitted in the treatment of histomoniasis in pigs and 
poultry. In a statement of China’s Ministry of Agriculture, MNZ itself is assigned as the marker residue and should 
not be detected in food products of animal origin5.

Metabolism studies have revealed that the major metabolic pathways of MNZ are oxidation of the 
two side-chains of the imidazole ring and glucuronide conjugation of MNZ and 1-(2-hydroxyethyl)-2-
hydroxymethyl-5-nitroimidazole (MNZ-OH) in rats, dogs, rabbits and humans6–11. In a study on 
the disposition of 14C-MNZ in rats, four compounds, including MNZ, Glu-MNZ, MNZ-OH and 
2-methyl-5-nitroimidazole-1-acetic acid (MAA) were identified as major metabolites12. Cybulski et al. studied 
the pharmacokinetics and whole-body autoradiography of [3H] MNZ in hens and quails and their results indi-
cated that a high labelling was seen in the contents of the small and large intestines13. Recently, tissue distribution 
and residue depletion of MNZ in rainbow trout were studied by using LC-MS/MS. The results displayed that 
MNZ and MNZ-OH were detected in muscle up to 42 days and 21 days post treatment, respectively14. However, 
the availability of data on MNZ residue depletion in pigs and broilers is limited and according to the guidance 
of VICH GL46 of FDA, a comprehensive residue depletion study should contain the parent drug and its main 
metabolites15.

In this paper, a sensitive LC-MS/MS method has been developed to quantitatively determined the concen-
tration of MNZ, MNZ-OH and MAA in the excreta of pigs and broilers following oral administration and thus 
to reveal the metabolism profile. Subsequently, the residue depletion of MNZ and its major metabolites in tis-
sues of pigs and broilers were investigated. The data on the metabolism and the residue kinetics of MNZ and 
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its metabolites in edible tissues (liver, kidney, muscle, fat etc.) of pigs and broilers should be useful for safety 
assessment of MNZ and offer a specific target and technical support for MNZ residue monitoring in foodstuffs 
of animal origin.

Results
Excretion of MNZ in pigs and broilers.  After a single oral dosage of 25 mg kg−1 bw to pigs and broil-
ers, urine and feces were collected and MNZ and it metabolites were assayed. For pigs, a total of 80.3 ± 5.9% 
(mean ± SD) of the administrated drug was recovered over a period of 14 days of which about 70% were collected 
in 24 h (Fig. 1). MNZ was excreted mainly in the urine (over 60%) while feces account for about 20% of the 
drug. Besides MNZ, its two oxidation metabolites (MNZ-OH and MAA) and two glucuronide conjugates were 
observed in the pigs urine. About 37% of the excreted drug was unchanged MNZ in the pigs urine and almost 
15% was Glu-MNZ. The oxidation metabolites, MNZ-OH and MAA account for almost 18%. The plots of the 
concentration of MNZ and its metabolites in pigs excreta in different time courses are presented in Fig. 2. In 
urine, maximum concentration of the individual metabolites was observed at 12 h after dosing.

The excretion profile of broilers was similar to pigs, except that little glucuronide conjugates were found in 
excreta. A total of 79.4 ± 5.4% (mean + SD) of the administrated drug was recovered over a period of 14 days. 
Almost 45% of the excreted drug was unchanged MNZ while MNZ-OH and MAA account for 27.6% and 8.2%, 
respectively (Fig. 2). The maximum concentration of the individual metabolites in broilers excreta was observed 
at 12 h after dosing.

Residue depletion of MNZ and its main metabolites.  The mean concentrations (μg kg−1 ± SD) of 
MNZ and its metabolites in the tissues of pigs and broilers after oral administration of MNZ at the withdrawal 
times of 6 h, 1d, 3d, 5d, 7d and 14d are presented in Tables 1 and 2, respectively.

In pigs, MNZ, MNZ-OH and MAA can be detected in all of the tissues except that MAA was not found in fat 
samples at any of the time points. Six hours after the last dosing, MNZ residues in the liver, kidney and muscle tis-
sues were at a maximum of 3.58, 4.26, and 2.29 mg kg−1, respectively. Moreover, the MNZ concentrations in liver 
and kidney were consistently higher than in other tissues and could be detected at the level close to the quantifica-
tion limit (1 μg kg−1) at the withdrawal time of 14 days. The maximum MNZ-OH concentrations were observed 
in the liver samples (622 μg kg−1) at the 6 h time point, followed by kidney and lung tissues, and could be detected 
up to 7 days and 3 days, respectively, after last dosing. MAA residues were much less than MNZ in all the tissues. 
A peak concentration of 58 μg kg−1 was observed in liver 6 h post dosing and after 24 h MAA concentrations were 
below the quantification limit.

In broilers, a maximum MNZ concentration of 5.86 mg kg−1 was detected in a stomach sample at the with-
drawal time of 6 h, but it was eliminated rapidly. After that, relatively high concentrations of MNZ residues were 
observed in liver and kidney tissues, in which MNZ residues were detected at 6 and 2 μg kg−1, respectively, up 
to 14 days post dosing. MNZ residue was also observed at 4 μg kg−1 in muscle tissues at the withdrawal time of 
14 days. The peak MNZ-OH concentration of 872 μg kg−1 was observed in the muscle samples of broilers at 6 h 
after dosing. After 7 days, MNZ-OH residues could only be detected in liver, kidney and muscle tissues at con-
centrations between 2–6 μg kg−1. Similarly to pigs, MAA residues were much less than MNZ in tissues and at the 
withdrawal time of 3 days. No MAA residues were detectable in any of the broilers tissue.

The depletion plots of mean concentration of MNZ and MNZ-OH in the liver, kidney, muscle and fat tissues 
of pigs and broilers are illustrated in Figs 3 and 4. The tissue depletion profiles were characterized by a linear 
regression model using the log-transformed concentration of MNZ and its metabolites (ln C) against time. The 
last three time-point data were fit to the first-order rate equation C = C0e−kt, where C is the concentration of the 
residue, C0 is the initial concentration, k is the elimination rate constant, and the half-life of elimination (t1/2k) is 
calculated from the equation t1/2k = ln 2/k for each tissue (Table 3). The calculated t1/2k of MNZ and MNZ-OH in 
the tissues of pigs were similar to those of broilers. However, the elimination half-lives of MNZ and MNZ-OH in 
liver, kidney and muscle tissues (1.12–2.34 days) were higher than those of MNZ-OH (0.59–1.85 days). For pigs 
and broilers, the longest elimination half-lives of MNZ (2.23 and 2.34) were found in kidney and liver respec-
tively, while that of MNZ-OH were found in muscle in both pigs and broilers.

Figure 1.  Cumulative excretion of metronidazole and its main metabolites in the excreta of pigs and broilers 
over 14 days after a single oral administration at 25 mg kg−1 b w (mean ± SD).
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Discussion
Metronidazole has been proved to be effective in the treatment of anaerobic infections and protozoal and par-
asitic diseases, thus it has been used legally in specific livestock species in some countries. However, MNZ has 
been reported as a suspected mutagen and carcinogen, so its residues in foodstuffs of animal origin might cause 
a hazardous effect to the consumer health1. Metabolism studies of MNZ in humans and various animals have 
shown that MNZ can be biotransformed into an oxidation product, hydroxy-metronidazole (MNZ-OH), which 
is thought to have comparable toxicity with the parent form. The phase II metabolites, including glucuronide 
and sulfate conjugates of MNZ (or MNZ-OH), were also reported. Therefore, both the parent and its metabolites 
should be included for the purpose of MNZ residue control.

In this study, the samples were treated with β-glucuronidase/sulfatase enzymes in order to hydrolyze the con-
jugated metabolites of MNZ and MNZ-OH. The results showed that the total recoveries of MNZ, MNZ-OH and 
MAA in the tissues of pigs and broilers were 71.4% to 93.6% with the limits of quantification set at 1 μg kg−1, thus 
proving that a reliable and sensitive LC-MS/MS method for the simultaneous determination of MNZ and its main 
metabolites had been achieved. Considering all MNZ metabolites detected, the percentages of products excreted 

Figure 2.  Excretion of metronidazole and it main metabolites in the excreta of pigs and broilers after a single 
oral administration at 25 mg kg−1 b w (mean ± SD).

Tissues compounds

concentration (μg kg−1)

6h 1d 3d 5d 7d 14d

Liver

MNZ 3576 ± 682 656 ± 105 196 ± 28 73 ± 15 34 ± 10 5 ± 2

MNZ-OH 622 ± 88 152 ± 38 54 ± 15 21 ± 6 9 ± 2 ND

MAA 58 ± 12 16 ± 4 ND ND ND ND

Kidney

MNZ 4256 ± 712 731 ± 156 205 ± 54 891 ± 26 41 ± 10 8 ± 2

MNZ-OH 569 ± 63 149 ± 24 46 ± 9 20 ± 5 11 ± 2 ND

MAA 46 ± 9 26 ± 5 ND ND ND ND

Muscle

MNZ 2289 ± 353 350 ± 81 105 ± 16 32 ± 10 18 ± 6 2 ± 1

MNZ-OH 325 ± 62 96 ± 20 32 ± 7 15 ± 4 4 ± 1 ND

MAA 23 ± 7 8 ± 5 ND ND ND ND

Fat

MNZ 854 ± 149 126 ± 41 27 ± 6 11 ± 4 2 ± 1 ND

MNZ-OH 203 ± 24 57 ± 12 12 ± 4 ND ND ND

MAA ND ND ND ND ND ND

Heart

MNZ 2151 ± 386 251 ± 31 32 ± 10 15 ± 4 6 ± 3 ND

MNZ-OH 189 ± 27 24 ± 2 ND ND ND ND

MAA 36 ± 7 6 ± 2 ND ND ND ND

Lung

MNZ 3075 ± 489 151 ± 42 21 ± 6 10 ± 2 4 ± 2 ND

MNZ-OH 492 ± 26 96 ± 25 14 ± 4 ND ND ND

MAA 47 ± 5 8 ± 3 ND ND ND ND

Stomach

MNZ 2885 ± 401 139 ± 41 35 ± 10 11 ± 5 3 ± 1 ND

MNZ-OH 241 ± 61 55 ± 13 7 ± 2 ND ND ND

MAA 26 ± 4 ND ND ND ND ND

Large intestine

MNZ 2611 ± 241 112 ± 29 57 ± 13 16 ± 5 3 ± 2 ND

MNZ-OH 370 ± 41 64 ± 15 22 ± 6 6 ± 2 ND ND

MAA 36 ± 5 ND ND ND ND ND

Small intestine

MNZ 2972 ± 409 235 ± 23 65 ± 14 18 ± 5 4 ± 2 ND

MNZ-OH 330 ± 34 57 ± 14 16 ± 2 4 ± 2 ND ND

MAA 23 ± 4 ND ND ND ND ND

Table 1.  Concentrations of MNZ, MNZ-OH and MAA in tissues of pigs after oral administration of 
metronidazole for 7 consecutive days (μg kg−1) (n = 4, Mean ± SD). ND = not detected.



www.nature.com/scientificreports/

4ScieNtific RePorTs | 7: 7203  | DOI:10.1038/s41598-017-07443-x

over 14 days accounted for almost 80% of the drug dose. Similar findings were also reported that the total uri-
nary excretion of MNZ in rats as well as in human subjects corresponded to 78.4% of the oral administration 
of the radio-labelled MNZ, pointing to the existence of other non-detectable metabolites16. About 80% of the 
excreted drug was recovered from urine, while by comparison, fecal excretion accounted for more than 15% of 
the excreted drug. In this context, renal excretion was considered as a primary route for elimination of MNZ and 
metabolites. However, the systemic bioavailability of oral MNZ in doses up to 0.8 g was reported to be approxi-
mately 100%17, 18. A possible explanation for the apparent discrepancy between the estimated bioavailability and 
the urinary recovery in this study would be that MNZ was excreted in part into the intestinal contents via biles as 
a glucuronide conjugate which was partly reabsorbed in the intestinal lumen19.

MNZ is primarily metabolized in the liver with MNZ-OH being the predominant metabolite in many species. 
The proportion of MNZ-OH was greater than MNZ in cumulative urine excretion from the human subjects 

Tissues compounds

concentration (μg/kg)

6h 1d 3d 5d 7d 14d

Liver

MNZ 4672 ± 613 534 ± 75 85 ± 20 36 ± 10 20 ± 5 6 ± 2

MNZ-OH 593 ± 102 133 ± 26 35 ± 8 15 ± 5 7 ± 2 ND

MAA 63 ± 9 23 ± 4 ND ND ND ND

Kidney

MNZ 4834 ± 495 386 ± 42 68 ± 12 28 ± 5 12 ± 3 2 ± 1

MNZ-OH 695 ± 71 156 ± 26 45 ± 13 19 ± 4 9 ± 2 ND

MAA 44 ± 6 18 ± 4 ND ND ND ND

Muscle

MNZ 2243 ± 293 212 ± 38 68 ± 15 35 ± 12 17 ± 3 4 ± 1

MNZ-OH 872 ± 103 201 ± 61 61 ± 15 24 ± 10 11 ± 3 ND

MAA 31 ± 5 11 ± 3 ND ND ND ND

Fat

MNZ 1565 ± 326 122 ± 21 35 ± 10 12 ± 4 5 ± 2 ND

MNZ-OH 215 ± 55 62 ± 18 11 ± 3 ND ND ND

MAA ND ND ND ND ND ND

Heart

MNZ 2528 ± 388 152 ± 47 32 ± 8 11 ± 4 3 ± 1 ND

MNZ-OH 234 ± 36 73 ± 8 3 ± 1 ND ND ND

MAA 37 ± 7 8 ± 2 ND ND ND ND

Lung

MNZ 5417 ± 589 275 ± 42 52 ± 9 15 ± 5 4 ± 2 ND

MNZ-OH 716 ± 98 216 ± 35 15 ± 4 ND ND ND

MAA 45 ± 7 9 ± 3 ND ND ND ND

Stomach

MNZ 5864 ± 614 258 ± 58 70 ± 12 10 ± 3 ND ND

MNZ-OH 251 ± 31 43 ± 5 2 ± 1 ND ND ND

MAA 23 ± 4 ND ND ND ND ND

Large intestine

MNZ 3549 ± 438 235 ± 42 84 ± 18 22 ± 9 3 ± 2 ND

MNZ-OH 395 ± 34 13 ± 4 ND ND ND ND

MAA 37 ± 5 ND ND ND ND ND

Small intestine

MNZ 3127 ± 364 153 ± 31 65 ± 15 16 ± 4 5 ± 1 ND

MNZ-OH 358 ± 38 21 ± 3 ND ND ND ND

MAA 17 ± 4 ND ND ND ND ND

Table 2.  Concentrations of MNZ, MNZ-OH and MAA in tissues of broilers after oral administration of 
metronidazole for 7 consecutive days (μg kg−1) (n = 6, Mean ± SD). ND = not detected.

Figure 3.  Depletion of metronidazole and its metabolites in pig tissues after 7 days of consecutive oral 
administration at 25 mg kg−1 b w (mean ± SD).
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after oral administration of MNZ20. In current study a considerable amount of hydroxyl-metabolite of MNZ was 
detected in the excreta of both pigs and broilers, but the ratio of MNZ-OH to MNZ was up to 45% in the pig’s 
urine as the sample collected over a time period of 14 days, while in broilers, it was more than 60%. The ratio of 
the other oxidation metabolite, MAA, to MNZ was less than 10% in both animals. Differences in clearance by 
glucuronidation were also obvious in pigs and broilers. About 15% of MNZ and 2.5% MNZ-OH were excreted in 
pig’s urine as a glucuronide conjugate, whereas these conjugates were not measurable in the broilers excreta. The 
studies together indicat a distinct species difference in metabolism and clearance of MNZ.

The residue depletion study demonstrated that MNZ was well distributed in pigs and broilers liver, kidney, 
heart, lung, muscle and fat tissues after oral administration for 7 consecutive days. Furthermore, the results 
showed that the parent drug observed at higher concentrations and was more persistent than MNZ-OH and 
MAA in all the animal’s tissues. MNZ could be detected at the level close to the quantification limit in liver, 
kidney and muscle up to 14 days post withdrawal, while MNZ-OH and MAA were present in the tissues within 
7 days and 1 day respectively. Thus, MNZ is the most relevant marker residue and is consistent with a previous 
report21. It is worth noting that MNZ-OH was observed in all of the tissues after 6 h post withdrawal in which a 
highest MNZ-OH concentration of 872 μg kg−1 was present in the muscle of broilers. It was found that the ratios 
of MNZ-OH to MNZ in the tissues of pigs were less than those of broilers. Since MNZ-OH had been reported 
as having about 65% of the pharmacological activity and comparable toxicity with the parent form, the residues 
of MNZ-OH in the edible tissues of pigs and broilers should not be ignored22. The results of the current study 
also showed that the highest MNZ concentrations were detected in kidney followed by in liver and muscle after 
the withdrawal time of 1 day. The elimination half-life of MNZ in kidney was longer than in other tissues of pigs, 
however, it seemed that the elimination of MNZ-OH in muscle was slower than in kidney and liver. Similar trends 
were found in broilers, in which the MNZ-OH t1/2k in muscle (1.69 d) was the longest in all the detected tissues, 
although that of MNZ was in liver tissue. Thus, kidney and muscle could be more appropriate target tissues for 
the effective residue control of MNZ in pigs and broilers.

The results of the current study demonstrate that MNZ is well distributed in most of the tissues of pigs and 
broilers after the oral administration, and is partially biotransformed into oxidation metabolites MNZ-OH and 
MAA, followed by glucuronide conjugation. The residue depletion studies show that the parent drug is present at 
higher concentrations and persists for a longer time in the tissues than other metabolites, thus it is a more suitable 
marker for monitoring the residue of MNZ in the edible tissues. In a CRL Guidance Paper, the hydroxymetabo-
lites are designated as marker residue and a recommended concentration of 3 μg/kg is established for analytical 
methods in residue control for nitroimidazoles (Ronidazol, Dimetridazol and Metronidazol)23. Current results 
demonstrate that the recommended concentration of 3 μg/kg for MNZ-OH can not ensure the absence of the 
carcinogenic residue of MNZ in the edible tissues. However, a higher MNZ-OH concentration and a prolonged 
period of residue persistence observed in the muscle of broilers indicate that residues of MNZ-OH may also occur 
when MNZ is used in broilers. It is therefore proposed that both MNZ and MNZ-OH should be monitored in the 
routine surveillance of MNZ related residues in food of animal origin.

Figure 4.  Depletion of metronidazole and its metabolites in broiler tissues after 7 days of consecutive oral 
administration at 25 mg kg−1 b w (mean ± SD).

Tissue

Elimination half-lifer (days)

pigs broilers

MNZ MNZ-OH MNZ MNZ-OH

liver 2.08 1.50 2.34 1.54

kidney 2.23 1.72 1.95 1.60

muscle 1.86 1.85 2.15 1.69

fat 1.12 0.72 1.41 0.59

Table 3.  Elimination half-lives of MNZ and MNZOH in tissues of pigs and broilers after oral administration of 
metronidazole at a dose of 25 mg kg−1 bw day−1 for 7 days.
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Materials and Methods
Drugs and Chemicals.  The standards of MNZ, MNZ-OH, MAA and the internal standards (IS), MNZ-d4 
(chemical and isotopic purity >98%), were sourced from Chinese Veterinary Drug Control (Beijing, China). 
β-Glucuronidase was obtained from Sigma Chemical Co (G0876, from Helix pomatia, Type H-2, ≥85000 
units/mL). Cleanert PEP-2 solid-phase extraction cartridges were purchased from Agela Technologies (Agela 
Techonologies, Inc., China). Deionized water (Milli-Q; Millipore, Bedford, MA, USA) was used throughout the 
study. High-performance liquid chromatography (HPLC) grade methanol and acetonitrile was supplied by Merck 
Chemicals Co. (Darmstadt, Germany). All other chemicals were of analytical grade.

Standard solutions.  The MNZ, MNZ-OH, MAA and MNZ-d4 stock solutions of 1.0 mg mL−1 were prepared 
in acetonitrile and stored in the dark at <−18 °C. The MNZ, MNZ-OH, MAA and MNZ-d4 working solutions 
at a concentration level of 1.0 μg mL−1 were prepared by tenfold dilution of stock solution with water-acetonitrile 
(95:5, v/v) and stored at <4 °C for no longer than three months.

Animals.  Thirty-four healthy Landrace-Large white crossbred castrated male pigs (weight, 25–30 kg) were 
purchased from the China Breeding pig Testing Center (Wuhan, China). Forty-eight healthy white broilers 
(weight, 1.5–2 kg) were purchased from Wuhan China Tai broilers farm (Wuhan, China). All of the animals were 
allowed a 7 day acclimatisation period before the experiments commenced. A standard ration based on corn 
and soybean was fed twice a day and tap water was available ad libitum. All the animal experiment procedures 
were performed in accordance with the guidelines and regulations of Animal Care Center, Hubei Science and 
Technology Agency in China (SYXK 2013-0044) and the experimental protocols were approved by the Ethics 
Committee of Huazhong Agricultural University, Wuhan, China.

Dosing and Sampling.  Pigs and broilers were randomly divided into groups A, B, and C, respectively. 
Group A (n = 6) was fed with standard ration without MNZ. Group B (four pigs and six broilers) were orally 
administered with a single dose of MNZ at 25 mg kg−1 b w Group C (24 pigs and 36 broilers) were orally adminis-
tered with MNZ at a dose of 25 mg kg−1 b w for 7 consecutive days. For group B, urine and feces were collected at 
0–6, 6–12, 12–24 and every 24 h thereafter. All of the urinary and fecal samples were weighed and stored frozen at 
−20 °C. For groups A and C, one control and four medicated pigs (six medicated broilers) were anaesthetised and 
sacrificed at days 0.25, 1, 3, 5, 7 and 14d after the last dose. Tissue samples (liver, kidney, muscle, fat, heart, lung, 
stomach, large intestine and small intestine) were collected and placed in labeled plastic bags in an ice bath. All 
samples were assayed immediately or stored frozen at −20 °C until analysis.

Sample preparation.  All the urine and fecal samples were analyzed before and after glucuronide hydrolysis, 
the content of conjugates being estimated as the differences between these two assays.

Urine.  A 2 mL urine sample was pipetted into a centrifuge tube and spiked with 100 µL of MNZ-d4 as an internal 
standard (50 ng mL−1). 3 mL of 0.2 mol L−1 acetate buffer (pH 5.2) was added and the mixture was vortex mixed 
for 5 min. If necessary, 40 μL of β-glucuronidase was added into the tube and the mixture was incubated at 37 °C 
for 12 h. The mixture was cooled to room temperature and centrifuged at 8000 rpm for 10 min. The supernatant 
was carefully decanted and purified using the following SPE method.

Feces.  Aliquots of 2 g of homogenized feces were placed into a 50 mL disposable plastic centrifugal tube, fol-
lowed by addition of 2 mL water plus 3 mL methanol and 100 µL of MNZ-d4. The mixture was extracted in an 
ultrasonic bath at room temperature for 10 min and centrifuged at 8000 rpm for 3 min. The supernatant was 
evaporated to nearly dry under reduced pressure and redissolved in 3 mL of 0.2 mol L−1 acetate buffer (pH 5.2). If 
necessary, 40 μL of β-glucuronidase was added and the mixture was incubated at 37 °C overnight. After that the 
sample was further processed as described below.

Tissues.  Aliquots of 2 g tissue samples were extensively homogenized on ice in 5 mL of 0.2 mol L−1 acetate buffer 
(pH 5.2) and 100 µL of MNZ-d4 was added as an internal standard (50 ng g−1). 40 μL of β-glucuronidase was 
added and the mixture was incubated at 37 °C for 12 h. After the mixture was cooled to room temperature, 5 mL 
acetonitrile was added and the mixture was placed in an ultrasonic bath for 10 min and centrifuged at 8000 rpm 
for 5 min. The supernatant was transferred into a centrifugal tube and evaporated to nearly dryness under a nitro-
gen stream at 60 °C. The residue was redissolved in 2 mL of a solution consisting of water/methanol (95/5, v/v) 
and 2 mL of n-hexane was added for defatting. The aqueous phase was subjected to SPE cleanup.

Sample Purification.  The PEP-2 cartridge (60 mg, 3 mL) (Agela Technology, Inc., China) was conditioned 
sequentially with 3 mL of methanol and 3 mL of water. The extracted solution was loaded onto the cartridge at 
a flow rate of 1 mL min−1. The column was washed with 3 mL water and then dried by purging air at a rate of 
10 mL min−1 for 5 min. The cartridge was then sequentially washed with 3 mL methanol and 3 mL 0.05% formic 
acid in methanol at a flow rate of 1 mL min−1. The collected elute was evaporated to dryness under a gentle stream 
of nitrogen at 40 °C and reconstituted in 1 mL of water-acetonitrile (95:5, v/v). The solution was filtered through 
a 0.22 μm syringe filter and injected into the LC-MS/MS system.

LC-MS/MS analysis and quantification.  The concentration of the analytes was measured by liq-
uid chromatography tandem mass spectrometry (LC-MS/MS) which consists of a Surveyor Finnigan plus 
system with an online degasser, a Surveyor autosampler and a TSQ Quantum triple stage quadrupole 
mass spectrometer. Spray voltage was set at 4500 V, sheath gas and auxiliary gas were 40 and 15, respec-
tively, and the capillary temperature was 355 °C. Product masses and collision energies were optimized by 
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infusing the standards into the mass spectrometer. Chromatographic separation was achieved on a Shimadu 
VP-ODS column (150 mm × 2 mm, 5 μm) equipped with a Security-Guard C18 column (4 mm × 3 mm i.d.; 
Phenomenex). The mobile phase was a mixture of 0.1% formic acid in water (A) and 0.1% formic acid in 
acetonitrile (B). The gradient elution used was started from 5% B for 0.5 min, linearly increased to 90% B 
over 3.4 min, held for 0.5 min, and finally decreased to 5% B to re-equilibrate for 1.6 min. The flow rate was 
0.4 mL min−1, and the column temperature was maintained at 35 °C. Detection and quantification were con-
ducted using MRM mode to monitor precursor to production transitions for all standards. The respective 
MS/MS settings are presented in Table 4.

Method validation.  The analysis method was validated according to EU Commission Decision 
2002/657/EC criteria24. The specificity, matrix effects, linearity, CCα, CCβ, accuracy and precision of 
the method were determined by spiking blank matrices with using standard solutions containing MNZ, 
MNZ-OH and MAA. The specificity of the method was evaluated by the analysis of 20 control samples of 
liver, kidney, muscle and fat from untreated pigs and broilers. No interference from endogenous substances 
was observed in the retention time of the target analytes and IS. The typical chromatograms of biological 
specimens are shown in Fig. 5. Matrix effects on the ionization of analytes were evaluated by comparing 
the peak area of the standard solution with those of the matrix extract solution. The matrix-matched cali-
bration curves were constructed by using fortified mixture working solutions in blank tissues with low 
(1–200 μg kg−1) and high (200–8000 μg kg−1) concentrations for MNZ and MNZ-OH and a concentration 
range of 5–500 μg kg−1 for MAA. The linear regression analysis of the calibration curves showed a good 
linearity with correlation coefficient above 0.9921. CCα values were calculated by the analysis of 20 blank 
samples of pigs and broilers, three times of the signal-noise ratio (S/N) were defined as the CCα. The CCβ 
was calculated by analyzing 20 blank samples spiked with the concentration at CCα, and the CCα value 
plus 1.64 times the corresponding standard deviation (SD) was defined as CCβ (β = 5%). The CCα and 
CCβ ranged from 0.5 to 1 and 1 to 5 μg kg−1 in the tissues of pigs and broilers, respectively, well fulfilled 
the sensitivity requirments of the CRL Guidance document that CCα for screening methods or CCβ for 
confirmatory methods should be lower than 3 μg kg−1 23. Accuracy and precisions (intraday, interday, and 
within laboratory) were calculated by the determination of five aliquots of each tissue fortified at 1, 2 and 
5 μg kg−1. The recovery of three compounds in tissues of pigs and broilers ranged from 71.4 to 93.6% and 
75.2 to 92.2%, with the intraday relative RSD less than 13.2% and 12.8%, respectively. These values indicated 

Analyte
Retention 
time (min)

Precursor 
ion (m/z)

Product ion 
(m/z)

Collision 
energy (eV)

MNZ 6.28 172.0
172.0 > 128

11
172.0 > 82

MNZ-OH 4.28 188.0
188.0 > 123

14
188.0 > 126

MAA 1.69 186.2
186.2 > 140

16
186.2 > 169

MNZ-d4 6.29 176.0
176.0 > 132

12
176.0 > 86

Table 4.  LC-MS/MS parameters used for MNZ, MNZ-OH, MAA and IS quantification.

Figure 5.  Representative chromatograms of blank liver sample (A); blank liver samples spiked with reference 
standards and internal standard (20 μg kg−1) (B)
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that the established method was accurate and precise and fit for the purpose of metabolism and residue 
depletion studies.

Statistical analysis.  The concentration of MNZ and its metabolites were quantified by matrix match 
calibration curves. Descriptive statistical parameters, such as mean, SD, and CV were calculated. The residue 
depletion profile of MNZ in tissues of pigs and broilers was estimated by linear regression. The half-life (t1/2) of 
MNZ and its metabolites in different tissues during the elimination phase was calculated graphically by fitting 
linear regression.
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