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An SEIR Model with Time-Varying Coefficients for
Analyzing the SARS-CoV-2 Epidemic

Paolo Girardi1,2,∗ and Carlo Gaetan3

In this study, we propose a time-dependent susceptible-exposed-infected-recovered (SEIR)
model for the analysis of the SARS-CoV-2 epidemic outbreak in three different countries,
the United States, Italy, and Iceland using public data inherent the numbers of the epidemic
wave. Since several types and grades of actions were adopted by the governments, including
travel restrictions, social distancing, or limitation of movement, we want to investigate how
these measures can affect the epidemic curve of the infectious population. The parameters
of interest for the SEIR model were estimated employing a composite likelihood approach.
Moreover, standard errors have been corrected for temporal dependence. The adoption of
restrictive measures results in flatten epidemic curves, and the future evolution indicated a
decrease in the number of cases.
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1. INTRODUCTION

The use of epidemic models permits to simulate
disease transmission dynamics to detect emerging
outbreaks and to assess public health interventions
(Boily et al., 2007; Unkel, Farrington, Garthwaite,
Robertson, & Andrews, 2012). With the scope to de-
scribe the dynamics of epidemics, standard methods,
such as the Susceptible, Infectious, Recovered (SIR)
model (Anderson, Anderson, & May, 1992), divide
the population into portions of subjects on the ba-
sis of their relation concerning the epidemic vector.
Here, the focus is on the dynamic such as the deple-
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tion of the susceptible portion to the infected one or
the possible evolution of the rate of immunization.

However, the standard SIR model, and other
extensions as the susceptible-exposed-infected-
recovered (SEIR) model, do not take into account
the time-varying nature of epidemics and several
attempts were made to overcome this limitation
(Boatto, Bonnet, Cazelles, & Mazenc, 2018; Dureau,
Kalogeropoulos, & Baguelin, 2013; Kucharski et al.,
2020). In particular, most extensions were proposed
for adapting the SIR model to specific case studies
(Liu & Stechlinski, 2012; Peng, Yang, Zhang, Zhuge,
& Hong, 2020) or to include time-varying coeffi-
cients with the scope to estimate epidemic dynamics
(Chávez, Götz, Siegmund, & Wijaya, 2017; Fang,
Nie, & Penny, 2020; Hooker, Ellner, Roditi, & Earn,
2011).

This article considers a flexible extension of the
SEIR model, which incorporates the temporal dy-
namic connected to the transmission rate parame-
ter, which is one of the most critical indicators for
epidemiologists and on the basis of the basic repro-
duction number RO. Also, this method allows us to
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make considerations about both the trend and the
prediction of the number of infected cases to eval-
uate how any possible influencing factors like as the
presence of a vaccine or restriction measures taken
by the central authorities can affect an epidemic out-
break (Haas, 2020).

The proposed method is applied to the 2019–20
coronavirus pandemic, the coronavirus disease 2019
(COVID-19), caused by a Severe Acute Respira-
tory Syndrome CoronaVirus 2 named SARS-CoV-
2 (World Health Organization, 2020). The World
Health Organization declared the outbreak to be a
Public Health Emergency of International Concern
on January 30, 2020 and recognized it as a pandemic
on March 11, 2020 (Eurosurveillance Editorial Team,
2020).

It is worthy to mention that several studies are
known in the literature concerning SEIR models
with different time-varying parameter specifications
(Hong & Li, 2020; Loli Piccolomini & Zama, 2020;
Petropoulos & Makridakis, 2020; Wu, Leung, & Le-
ung, 2020; Zhang et al., 2020). Our proposal differs
in a statistical model consistent with counting data, a
semiparametric (and therefore more flexible) speci-
fication of the time-varying parameters. We also pay
more attention to assessing the uncertainty of esti-
mates.

To study how country-based mitigation mea-
sures influence the course of the SARS-CoV-2
epidemic (Anderson, Heesterbeek, Klinkenberg, &
Hollingsworth, 2020), we have looked to the ongo-
ing epidemic in the three countries (Italy, Iceland,
and the United States) where the adopted mitigation
measures have been different (Dong, Du, & Gard-
ner, 2020; Gudbjartsson et al., 2020; Remuzzi & Re-
muzzi, 2020).

The reference data sets are presented in Sec-
tion 2, while the proposed model and the statis-
tical inference are illustrated in Sections 3 and
4. In Section 5, we collect our results for the
different countries with a proposal for the fore-
cast. We end the article with a brief discussion in
Section 6.

2. COVID-19 DATA SETS

According to the aim of this article, we used the
screening data of daily new cases and the number
of the total amount of positive cases of SARS CoV-
2 according to three countries in different phases
of an epidemic outbreak. For each country, we

considered the data in a time window that starts
about 15 days before the adoption of restrictive mea-
sures and the sources of the data are described in the
Appendix.

At the time of writing, the United States was in
the growing phase of the epidemic outbreak with an
increasing trend of new cases. In the United States,
every single state could decide the need to adopt
stay at home measures. In those states that adopted
restrictions, we registered different starting dates:
the earliest state was Puerto Rico (March 15, 2020),
followed by California (March 19, 2020) and New
York (March 20, 2020) where the highest increase
of new cases was subsequently recorded. Every sin-
gle state could adopt a different and inhomogeneous
panel of restrictive measures and in some states, as
Arkansas, Iowa, Nebraska, and North Dakota, the
local government never issued stay-at-home orders
(Lyu & Wehby, 2020). Data were analyzed from
March 4, 2020, to April 27, 2020, for a total of 55
days of observation. At the end of the considered
period, we reported 820,514 current positive cases,
56,259 deaths, and a total of 988,197 confirmed cases
nationwide.

Italy was a country in the middle phase where
a first stabilization of the SARS-CoV-2 incidence
was reported after the restriction measure, and, at
the time of writing, we observed the beginning of a
decreasing trend. The Italian Government adopted
a national home lockdown restriction on March 9,
2020, for all the population followed by more severe
measures on March 11, and ordered all nonessential
businesses to close on March 22. Data were analyzed
from February 23, 2020, to April 28, 2020, for a to-
tal of 66 daily observations. At the end of the con-
sidered period, we reported 105,813 current positive
cases, 26,977 deaths, and a total of 199,414 confirmed
cases.

Finally, Iceland was a country in the ending
phase, where after stabilization, the incidence of new
cases was going down, and the current epidemic out-
break was probably going to the end. The Iceland
government adopted stricter measures to slow down
the spread of SARS-CoV-2 on March 16, 2020, with
an active searching strategy of new cases that lead to
perform oropharyngeal swabs to about 10% of the
entire population. We considered data from Febru-
ary 29, 2020, to April 27, 2020, for a total of 59 days
of observation. At the end of the considered period,
we reported 158 current positive cases, 10 deaths, and
a total of 1,792 confirmed cases.
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3. SEIR MODEL WITH TIME-VARYING
COEFFICIENTS

3.1. SEIR Model

We start introducing the SEIR model, which is
one of the most used extensions of the standard
SIR model, an ordinary differential equation (ODE)-
based epidemiological model (Kermack & McK-
endrick, 1927). Traditionally, the SEIR model divides
a population of hosts into four classes: Susceptible
(S), Exposed (E), Infected (I), and Recovered (R).
However, in our framework, the last class should col-
lect all the subjects that move outside the (I) status,
i.e., recovered and deceased; for this reason, here-
after we denote (R) as Removed status. The model
describes how the different portions of the popula-
tion change over time t. In the standard SEIR model,
deaths are modeled as flows from the S, E, I, or R
compartment to outside, because natural deaths are
normally not monitored. If S, E, I, and R refer to the
numbers of individuals in each compartment, then
these “state variables” change according to the fol-
lowing system of differential equations:

d
dt

S(t) = μ(N − S(t)) − β
S(t)I(t)

N
, (1a)

d
dt

E(t) = β
S(t)I(t)

N
− (μ+ σ )E(t), (1b)

d
dt

I(t) = σE(t) − (μ+ γ )I(t), (1c)

d
dt

R(t) = γ I(t) − μR(t). (1d)

In Equations (1), N is the total population, μ is
the mortality rate, β is the transmission rate, σ is the
exposed to infectious rate, and γ is the removal rate
that can broadly assumed to be the sum of γR + γD,
where γR and γD are the recovery and the mortality
rate, respectively.

In general, β is called transmission rate that is
the number of people that a positive case infects each
day; in our settings, β is defined as equal to ab, where
a is the contact rate that is the average number of
contacts per person in a day, while b is the probabil-
ity of disease transmission in a single contact. How-
ever, a and b cannot be identified on the basis of the
current information. The ratio S(t)/N permits to ad-
just β taking to account people who cannot infect
each other.

The parameters σ and γ are strictly dependent
on the specific disease causing the epidemic and on
the fraction of susceptible population. The parameter
σ is set equal to η−1 where η is the incubation period
that may be higher for asymptomatic subjects; γ is
the recovery rate calculated as γ = ρ−1 where ρ is
the average duration of the disease in days.

Moreover, unlike the full specification, we do not
consider the effect of births in model (1), and there-
fore, σE(t) represents the number of new infected.

Based on this parametrization, we can define the
reproduction number, RO, as

RO = βσ

(γ + μ)(σ + μ)
.

The index conveys the strength of contagious in an
epidemic outbreak. In the case of both σ and γ � μ,
RO can be approximated by β/γ .

3.2. Time-Varying Parameter Specification

The standard SEIR model does that the param-
eters μ, β, σ , and γ are time-invariant. However, the
characteristics of an epidemic suggest us that these
parameters can vary. In particular, the overall mor-
tality rate μ may increase if the number of deaths in
a population directly or indirectly attributable to the
disease (i.e., the insufficient capacity of health ser-
vices) rises. The β rate may also vary according to
social distancing policies or, even, the isolation of in-
fected people.

We aim to evaluate as the actions taken by the
governments, and how a different degree of travel re-
strictions, social distancing, or limitation of the peo-
ple movement can affect the epidemic curve of the
infectious population. Our working hypothesis is that
if there is an effect of the actions, they only affect
the transmission rate of the epidemic, β. For this rea-
son, we propose to modify this parameter over time,
namely,

d
dt

S(t) = μ(N − S(t)) − β(t)
S(t)I(t)

N
, (2a)

d
dt

E(t) = β(t)
S(t)I(t)

N
− (μ+ σ )E(t), (2b)

d
dt

I(t) = σE(t) − (μ+ γ )I(t), (2c)

d
dt

R(t) = γ I(t) − μR(t). (2d)
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Since the function β(t) takes positive values, in the
estimation step, we consider the following log-linear
specification:

log(β(t)) =
K∑

k=1

ψkNk(t), (3)

where Nk(t), k = 1, . . . ,K, are K natural cubic spline
basis functions evaluated at K − 2 equally spaced
knots in addition to the boundary knots.

The representation in (3) has the advantage that
the estimation of β(t) reduces to the estimation of
the coefficients ψk. We refer to the next subsection
for a short discussion about the number of knots
and their positions. The time-dependent transmission
rate β(t) allows us to define a time-dependent ver-
sion RO (the basic reproduction number) as follows:

RO(t) = β(t)
γ
.

This index permits to evaluate the strength of conta-
gious over a temporal window comparing β(t) with
the removal rate γ . To constraint γ between 0 and
1, in the estimation process, we reparametrize γ as
γ= exp(γ ∗)

1+exp(γ ∗) .
The system (2) is a system of nonlinear ODEs,

which must be solved numerically. In this article, we
use the ODE solver lsode (Hindmarsh, 1983) as it
has implemented in the R package deSolve. If we
suppose that μ and σ are known parameters, the
(numerical) solutions S(t; θ ), E(t; θ ), and I(t; θ ), an
R(t; θ ) depends on the (vector of) parameters θ =
(ψ1, . . . , ψK, γ

∗).

4. STATISTICAL INFERENCE

Different agencies in the world that daily update
and publish data sets of epidemic data that contain at
least three time series: the total number of infected,
the number of dead, and the number of recovered
(see Section 2 for more details). We derive from these
time series the daily number of current positive cases
Y (t) and the daily number of new positive cases Z(t),
recorded at day t, t = 1, . . . ,T .

Usually, the time series are supposed to be real-
izations of a stochastic version of the compartmen-
tal models. The different versions can be broadly
classified into continuous models and discrete mod-
els. In the first group, fall the continuous-time
Markov chains (CTMCs) and the stochastic differ-
ential equations (SDEs) (Allen, 2008). In the second
group, a discrete-time approximation to the stochas-

tic continuous-time model is considered (Lekone &
Finkenstädt, 2006). There exists an extensive litera-
ture on calibrating the stochastic models against time
series with different inferential approaches (Anders-
son & Britton, 2012; Dureau et al., 2013; Finkenstädt
& Grenfell, 2000; Hooker et al., 2011; Ionides, Bretó,
& King, 2006).

Instead in this article, we follow the simplest idea
that the solutions of the system (2) are actually the
expectations at days t = 1, . . . ,T of as many count-
ing random variables. More precisely, we model the
observed counts {Y (t),Z(t)} as

Y (t) ∼ Poisson(I(t; θ )), (4a)

Z(t) ∼ Poisson(σE(t; θ )). (4b)

Then the estimate of the parameter θ already de-
fined is obtained by maximizing the independence
log-likelihood (Chandler & Bate, 2007)

cl(θ ) =
T∑

t=1

Y (t) log I(t; θ ) − I(t; θ ) (5)

+ Z(t) log(σE(t; θ )) − σE(t; θ ) =
T∑

t=1

cl(θ; t).

Note that CL(θ ) is not a “true” log-likelihood
but an instance of a composite likelihood (Lindsay,
1988) since it does not seem reasonable to assume
that Y (t) and Z(t) are mutually and temporally inde-
pendent. However, even though the model is not cor-
rectly specified, the maximum composite likelihood
estimator, θ̂ , is still a consistent and asymptotically
Gaussian estimator with asymptotic variance V (θ )
under mild conditions (Chandler & Bate, 2007; Jacod
& Sørensen, 2018).

The variance V (θ ) can be estimated by the sand-
wich estimator V̂ = B̂−1M̂B̂−1′

. The “bread” ma-
trix is given by B̂ = T−1 ∑T

t=1 ∇u(θ̂; t) with u(θ̂; t) =
∇cl(θ̂; t). In the presence of time dependence, the
“meat” matrix M̂ is given by the heteroskedasticity
and autocorrelation consistent (HAC) estimator

M̂ = T−1
T∑

t=1

T∑
s=1

w|t−s|∇u(θ̂; t)∇u(θ̂; t)�,

where w = (w0, . . . ,wT−1) is a vector of weights (An-
drews, 1991).

With the aim of forecasting the spread of the epi-
demic outside the observed period, the number and
the positions of knots in (3) play a crucial role. The
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higher the number of nodes, the less smooth the func-
tion β(t). In this way, however, there is a risk of over-
fitting the data. On the other hand, the trend of the
β(t) outside the observation time interval is mainly
determined by the basis functions corresponding to
the boundary knots.

We select the number of knots by maximizing the
composite likelihood information criterion (CLIC)
(Varin & Vidoni, 2005)

CLIC(θ̂ ) = cl(θ̂ ) + tr(B̂−1M̂).

The criterion has a strong analogy with the Akaike
information criterion (AIC). In fact, cl(θ̂ ) measures
the goodness-of-fit similarly to the log-likelihood and
the penalty tr(B̂−1M̂) reduces to −(K + 1) if the
model (4) is correctly specified, i.e., if Equation (5)
is the “true” log-likelihood.

We could locate the internal knots to reflect pol-
icy interventions. However, it is very difficult to hy-
pothesize the immediate effects of these policies and
a simpler choice has been to place temporally equally
spaced nodes. As for the boundary knots, it was cho-
sen to place them at the beginning of the period and
one week after the last observation available to ob-
tain more stable estimates in the forecast period.

5. RESULTS

The epidemic outbreak showed different pat-
terns in the selected time window: the reported
SARS-CoV-2 cases in the United States were rapidly
increasing, reaching a peak and subsequent stabi-
lization of the number of daily new cases with an
incidence of about 10 cases ×100.000 inhabitants;
in Italy, a drop up to 2.5 daily new SARS-CoV-2
cases ×100.000 was reported, after an initial growth
that reached a peak of incidence of about 10 cases
×100.000 people similar to the United States; in Ice-
land, the incidence of new SARS-CoV-2 cases knew
a huge peak (≈ 25 cases ×100.000 people), then a de-
creasing trend and finally a limited number of new
cases in the last considered day (Fig. 1). At the end of
the temporal window, prevalence of the disease was
quite different among the three considered countries:
we registered 250, 180, and 45 current SARS-CoV-2
cases ×100.000 people in the United States, Italy, and
Iceland, respectively.

In the literature, the incubation duration of the
SARS-CoV-2 was estimated as η = 5.2 (Wang et al.,
2020), and therefore, we set the specific parameter
σ = 1/η = 0.192.

Table I. Estimated Values of the γ Parameter and Its Relative
95% Confidence Interval

Country γ (95% CI)

United States 0.012 [0.009–0.015]
Italy 0.025 [0.023–0.027]
Iceland 0.080 [0.063–0.101]

The overall mortality rate μ was calculated as
1/(lifespan) = 1/(365.25 × LE) where the life ex-
pectancy (LE) is 78.5 years in the United States, 83.2
years in Italy, and 82.2 years in Iceland, respectively.
The total population (N) in 2020 was 329.23 million
(United States), 60.32 million (Italy), and 0.36 mil-
lion (Iceland) of inhabitants. The starting values S(0),
E(0), I(0), and R(0) for the numerical resolution of
the system (2) were set as follows:

• I(0) = Y (1), i.e., the number of currently in-
fected on the first day of the data set (United
States: 142, Italy: 155, Iceland: 1);

• R(0) equal to the number of currently recovered
on the first day of the data set (United States: 7,
Italy: 0, Iceland: 0);

• E(0) = Z(1)/σ where Z(1) is the number of
new infected on the first day of the data set
(United States: 68, Italy: 66, Iceland: 2);

• S(0) = N − E(0) − I(0) − R(0).

We have tried several values for the number of
basis function K, i.e., from 3 to 8, and we found that
K = 5 and K = 3 minimize the value of CLIC for
Italy/United States and Iceland, respectively.

The estimate of β(t) (see Fig. 2) showed an over-
all decreasing pattern of the transmission rate across
the selected countries. In particular, in the United
States, the estimate of β(t) reached a peak close to
0.8 after about 10 days by the beginning of the epi-
demic outbreak, denoting an uncontrolled situation,
moving to values of approximately 0.1 after about 45
days of the epidemic, with a predicted scenario of a
slightly decreasing trend and a great amount of un-
certainty. In Italy, the estimate of β(t) was moving
from initial values of 0.75 to value close to 0.05 af-
ter about 50 days of observations. The estimate of
β(t) was lower than those reported for the United
States. The estimate of β(t) in Iceland showed a fast
decreasing trend from values a bit over 1.0 to about
0 at day 40. The 30-days prediction for β(t) is prac-
tically zero, denoting the end of the current phase of
the epidemic.
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Fig 1. Daily new (solid black line) and current (dashed red line) cases of SARS-CoV-2 in (a) the United States, (b) Italy, and (c) Iceland.

The estimates of γ ranged from a low rate in the
United States and Italy, 0.012 and 0.025, respectively,
to a higher rate in Iceland, 0.080 (Table I). Then the
removal duration, i.e., the reciprocal of γ , was es-
timated at 85.0 days (95% CI: 65.5–110.5) for the
United States, at 40.2 days (95% CI: 37.6–43.1) for
Italy, and at 12.5 days (95% CI: 9.9–15.9) for Iceland.

The model fitting was deemed satisfactory
(Figs. 3 and 4) both with respect to the number of new
cases and to the cumulative positive cases. Our major
findings were: in the United States, the current pos-
itive cases were going to increase, reaching a proba-
ble maximum after the window of the next 30 days.
In Italy, the epidemic outbreak had known its max-
imum in the number of positive cases around April
20th, and the tendency was for a slight decline. In
Iceland, the peak of positive cases was registered on
April 10th, associated with a rapid decreasing phase

and a low number of new cases in the last observed
days; in this case, the SARS-CoV-2 epidemic was go-
ing to be overcome approximately at the end of May.

The estimated trend for RO(t) appears quite dif-
ferent among the selected countries (see Fig. 5). The
value RO(t) = 1 was reached on different dates in
Iceland (March 28th) and in Italy (April 16th), while
in the United States is expected to be achieved only
in the end of May.

6. DISCUSSION

International health organizations recommend
to implement public health and social measures to
slow or stop the spread of SARS-CoV-2, reach-
ing the full engagement of all members of society
(World Health Organization, 2020). Countries have
adopted different public health and social measures



An SEIR model with time-varying coefficients for analyzing the SARS-CoV-2 epidemic 7

Fig 2. The estimate of β(t) curves and 95% confidence bands (in gray color) for the United States, Italy, and Iceland. The dashed line
represents the 30-day predicted evolution.

depending on the local specific historical evolution
of the SARS-CoV-2 pandemic and on their health
system capacity. Our analysis considers data of three
countries, the United States, Italy, and Iceland, which
have, on one side, different geographic and demo-
graphic characteristics and, on the other one, as many
dissimilar approaches in terms of public health poli-
cies and restrictive measures concerning the ongo-
ing epidemic.

Our proposal allows us to estimate an epidemi-
ological SEIR model with a time-varying transmis-
sion rate (β(t)) with the scope to assess the time-
line and the strength of the effects produced by the
adopted restrictive measures. The removal rate γ was
estimated, considering both two different time series
(daily new and current positive cases). We avoided
considering estimates of clinical SARS-CoV-2 recov-

ery rate and specific mortality rate calculated by oth-
ers, with the scope to comment on the knowledge
provided by the analyzed data on the removal rate
estimated by our model.

In the United States, the transmission rate of
SARS-CoV-2 was very high at the beginning of the
considered temporal window, and its reduction ap-
pears to be later and slower in comparison with those
observed in Italy and even more in Iceland. This dif-
ference may be viewed as a result of the approach
adopted by the United States in the epidemic onset
based only on a limited and nonhomogeneous con-
tainment measures (Parodi & Liu, 2020).

The adoption of this strategy in the United States
was a decision of particular importance since the
COVID-19 onset began a few days later than Italy,
where, on March 9, 2020, the Italian Government
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Fig 3. The expected number of exposed, infected, and recovered subjects for the United States, Italy, and Iceland, based on the model
parameter estimates. The dotted points indicate the observed number of infected cases.

set Europe’s first nationwide restriction on move-
ment due to the incoming SARS-CoV-2 epidemic.
The estimates on the Italian transmission rate con-
firm the control of the epidemic wave after approxi-
mately 20 days of home restrictions, but with a high
mortality toll in comparison with the preceding Chi-
nese epidemic (Rubino, Kelvin, Bermejo-Martin, &
Kelvin, 2020). A social distancing and passive testing
of symptomatic cases was the Italian strategy to con-
tain the epidemic. Positive cases with few symptoms
were confined in home isolation. However, there
was a consistent amount of asymptomatic, which re-
mained undetected, contributing to spread the epi-
demic (Flaxman et al., 2020; Lavezzo et al., 2020).

Iceland has the advantage that the epidemic out-
break started later than Italy; we observed that the
Icelandic transmission rate quickly moved to values

close to 0 after only 15 days of the restrictive mea-
sures (Gudbjartsson et al., 2020). These results were
mainly attributable to an active searching strategy
of asymptomatic positive cases organized by the Na-
tional Health Service, which lead to be tested about
6% of the Iceland population at the date of April 2,
2020. However, the presence of a free voluntary pri-
vate screening program estimated that the fraction
of undetected infections by the Icelandic health ser-
vice ranged from 88.7% to 93.6% (Stock, Aspelund,
Droste, & Walker, 2020).

The comparison between the United States,
Italy, and Iceland was certainly affected by a re-
gional/state variation to COVID-19 response. How-
ever, this administrative-level granularity plays a role
in the diffuseness of nonpharmacological health mea-
sures in the first phase of an epidemic outbreak. A
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Fig 4. The expected number of new infected cases for the United States, Italy, and Iceland, based on the model parameter estimates. The
dotted points indicate the observed number of new infected cases. The dashed line indicates the last day observed.

faster and more aggressive response of each local
administrative unit helps to contain the contagious
spread and to achieve a relative control of the disease
(Lancet, 2020). Despite fears of the negative conse-
quences on their economy, Italy and Iceland experi-
enced a contagion control in a relative short period.
With a rapid and structured stay-at-home order and
an assertive infection control measures, Iceland re-
duced the required time to flatten the curve.

The estimated values for γ reflect both the lo-
cally adopted swab policy and the specific phase of
the epidemic wave: in fact, the active monitoring in
Iceland provides a reliable value for the removal rate
that is of about 12 days in line with that measured in
China (14 days, Wang et al., 2020). In Italy, the con-
trolling strategy implies that after a first positive swab
test, a control swab will be repeated after a period of

home isolation and this fact implies a longer time to
obtain the healing confirmation.

In the United States, the low number of removed
subject in comparison with the high increase in the
incidence makes challenging a reliable estimation of
the removal rate.

The proposed model has become a standard ap-
proach to estimate the transmission rate in a dynamic
context (Godio, Pace, & Vergnano, 2020; Hong & Li,
2020; Loli Piccolomini & Zama, 2020; Petropoulos &
Makridakis, 2020; Wu et al., 2020; Zhang et al., 2020).
The model has the double scope of having a real-time
monitoring and of supplying possible evolution sce-
narios. The estimated fluctuations of β(t) were driven
by gradual changes in the behavior of the population
at risk as a consequence of the adopted restrictions.
With respect to other specifications, our approach has
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Fig 5. Estimated RO(t) values for the United States, Italy, and Iceland and predicted evolution. The Y-axis is in the log-scale. The dashed
lines indicate RO = 1 and the last day observed, respectively.

the advantage of employing a basis of splines that al-
low us a high grade of flexibility for the estimation.

We estimated the parameters for β(t) and γ

through a composite likelihood considering the in-
formation provided by both the occurrence of new
SARS-CoV-2 cases and the current positive cases;
in order to cope with the possible presence of het-
eroscedasticity and autocorrelation in the data, we
estimated consistent standard errors combining a
sandwich variance estimator and an HAC correction.
Even though the model formulation has some an-
cestors, our proposal differs in two aspects from the

aforementioned literature: we allow the data to indi-
cate the shape of the function β(t) using a semipara-
metric approach. This feature could help to identify
the best health intervention policy in a country; HAC
variance estimators permit to reduce the bias allows
to correct the underestimation of the variance of the
estimator and therefore to produce future scenarios
with a more appropriate margin of uncertainty.

There are several other limitations to our anal-
ysis. We used plausible biological SARS-CoV-2 pa-
rameters for the SEIR model based on updated num-
bers (i.e., σ ), but these values may be refined as more
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comprehensive data become available. The predicted
values for β(t) are valid only in the absence of future
changes to the restrictions, which is not likely to hap-
pen if an intermittent social distancing measures will
be adopted (Ferguson et al., 2020).

Our results point out that the transmission rate in
the United States, Italy, and Iceland showed a decline
after the introduction of restriction measures. De-
spite this common trend, some differences in terms
of timeline and impact are present. In particular, U.S.
experts argue that more helpful tools are needed
in order to reach the control of the epidemic wave
(Parmet & Sinha, 2020).

The adoption of restrictive measures results in
flatten epidemic curves and thus the distribution of
the SARS-CoV-2 cases in a more extended period,
with respect to an uncontrolled epidemic outbreak.
In the absence of a specific vaccine, the high num-
ber of susceptibles and the relaxation of restrictions
taken represent a cause of future outbreaks.
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Appendix

Data Sources Accessed on April 28, 2020

Iceland: John Hopkins University (github.
com/datasets/covid-19), CSSE
(2020).

Italy: Italian Civil Protection, (github.
com/pcm-dpc/COVID-19), Moret-
tini, Sbrollini, Marcantoni, and Bu-
rattini (2020).

United States: John Hopkins University (github.
com/datasets/covid-19), CSSE
(2020).

Software

The statistical analysis was carried using the
R software (R Core Team, 2019) and some its
package: the minimization of the previous quan-
tity was performed by means of a nonlinear min-
imization process using the function nlm; package
deSolve to resolve the standard ODE and package
ggplot2 to enhance the quality of the figures. Re-

sults and figures can be reproduced using the com-
panion code in github.com/Paolin83/SARS-CoV-2_
SEIR_TV_model.
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