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abstract

 

Mechanical stress induces auto/paracrine ATP release from various cell types, but the mechanisms
underlying this release are not well understood. Here we show that the release of ATP induced by hypotonic stress
(HTS) in bovine aortic endothelial cells (BAECs) occurs through volume-regulated anion channels (VRAC). Vari-
ous VRAC inhibitors, such as glibenclamide, verapamil, tamoxifen, and fluoxetine, suppressed the HTS-induced

 

release of ATP, as well as the concomitant Ca

 

2

 

�

 

 oscillations and NO production. They did not, however, affect Ca

 

2

 

�

 

oscillations and NO production induced by exogenously applied ATP. Extracellular ATP inhibited VRAC currents
in a voltage-dependent manner: block was absent at negative potentials and was manifest at positive potentials, but
decreased at highly depolarized potentials. This phenomenon could be described with a “permeating blocker

 

model,” in which ATP binds with an affinity of 1.0 

 

�

 

 0.5 mM at 0 mV to a site at an electrical distance of 0.41 in-
side the channel. Bound ATP occludes the channel at moderate positive potentials, but permeates into the cytosol
at more depolarized potentials. The triphosphate nucleotides UTP, GTP, and CTP, and the adenine nucleotide
ADP, exerted a similar voltage-dependent inhibition of VRAC currents at submillimolar concentrations, which
could also be described with this model. However, inhibition by ADP was less voltage sensitive, whereas adenosine
did not affect VRAC currents, suggesting that the negative charges of the nucleotides are essential for their inhib-
itory action. The observation that high concentrations of extracellular ADP enhanced the outward component of
the VRAC current in low Cl

 

�

 

 hypotonic solution and shifted its reversal potential to negative potentials provides
more direct evidence for the nucleotide permeability of VRAC. We conclude from these observations that VRAC is
a nucleotide-permeable channel, which may serve as a pathway for HTS-induced ATP release in BAEC.
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I N T R O D U C T I O N

 

Mechanical stimuli, such as shear stress (Bodin et al.,
1991), mechanical strain (Sauer et al., 2000), and hypo-
tonic stress (HTS)* (Oike et al., 2000), evoke a release
of ATP from a variety of cells, including vascular endo-
thelial cells. It is also known that mechanical stress in-
duces the release of the P

 

2

 

 agonist UTP in various cell
types (Lazarowski and Harden, 1999). The released nu-
cleotides bind to P

 

2

 

 receptors in an autocrine and/or
paracrine manner and regulate cellular functions such
as NO production (Kimura et al., 2000), chloride secre-
tion (Grygorczyk and Hanrahan, 1997), and cell vol-
ume regulation (Braunstein et al., 2001).

The cystic fibrosis transmembrane conductance reg-
ulator (Reisin et al., 1994; Schwiebert et al., 1995; Can-
tiello et al., 1998) and the mdr-1 gene product P glyco-

protein (Abraham et al., 1993; Roman et al., 1997)
have been proposed as putative candidates for the me-
chanically or HTS-induced ATP release pathway, but
more recently evidence has been presented that these
proteins are modulators of ATP release through an
ATP channel (Grygorczyk and Hanrahan, 1997; Braun-
stein et al., 2001; Roman et al., 2001). Recently, it has
been reported that the large conductance anion chan-
nel (Sabirov et al., 2001) may be the pathway for HTS-
induced ATP release in cultured mammary tumor cells,
and that the mechanosensitive ATP release in 

 

Xenopus

 

oocyte might be mediated by a membrane trafficking
mechanism that is suppressed by brefeldin A and cyto-
chalasin D (Maroto and Hamill, 2001).

The ubiquitously expressed volume-regulated anion
channel (VRAC) (Nilius et al., 1996), which has been
shown to be permeable for large anions (Strange et al.,
1996; Nilius et al., 1997a; Okada, 1997), is an alterna-
tive putative pathway for the release of negatively
charged nucleotides, including ATP and UTP, all the
more so because VRAC currents and the ATP release
pathway share a number of common properties: (a)
The HTS-induced ATP release in bovine aortic endo-
thelial cells (BAEC) (Koyama et al., 2001) and the acti-
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vation of VRAC (Voets et al., 1998; Nilius et al., 1999)
are both mediated by Rho/Rho-kinase and tyrosine ki-
nase. (b) The HTS-induced ATP release and activation
of VRAC are concurrent, i.e., both responses are acti-
vated within 1 min after starting hypotonic challenge
and reach their maximum after a few minutes (Nilius et
al., 1994a; Koyama et al., 2001). (c) Extracellular ATP is
a voltage-dependent blocker of VRAC (Ackerman et
al., 1994; Jackson and Strange, 1995; Tsumura et al.,
1996), which is reminiscent for open pore block, and a
number of open pore blockers with dimensions even
larger than those of ATP have been shown to permeate
through VRAC (Droogmans et al., 1998, 1999).

In this study, we first examined the effects of VRAC
inhibitors on the HTS-induced ATP release and the
concomitant cellular responses in BAEC. Since the cur-
rently available VRAC inhibitors are not selective, we
have used four different chemicals with distinct physic-
ochemical properties and structure that have been re-
ported to inhibit VRAC, i.e., tamoxifen (Nilius et al.,
1994b), fluoxetine (Maertens et al., 1999), verapamil
(Nilius et al., 1994a), and glibenclamide (Yamazaki and
Hume, 1997), and found that as well as their blocking
action on VRAC currents, they all inhibited HTS-
induced ATP-release but not the responses to exoge-
nously applied ATP. In a second series of experiments,
we performed a detailed quantitative analysis of the
voltage-dependent inhibition of the VRAC current by
various nucleotides (ATP, ADP, UTP, CTP, GTP) using a
permeating blocker model. This model does not only
predict the binding of these nucleotides at an electri-
cal distance of 0.4 inside the channel, but also their
permeation across the membrane. Furthermore, we ob-
served that high concentrations of extracellular ADP
enhanced the outward component of the VRAC current
and shifted its reversal potential to more negative val-
ues under conditions where the contribution of Cl

 

�

 

ions to the VRAC current was minimized by reducing
intra- and extracellular Cl

 

�

 

 concentrations. It is con-
cluded that VRAC is permeable for these nucleotides,
and provides a pathway for HTS-induced ATP release
in BAEC.

 

M A T E R I A L S  A N D  M E T H O D S

 

Cell Culture

 

Bovine thoracic aorta was obtained from the local slaughter-
house, and endothelial cells were cultured as reported previously
(Oike et al., 2000). The cells of the first subculture were used for
the present study.

 

Measurement of Intracellular Ca

 

2

 

�

 

 Concentration

 

[Ca

 

2

 

�

 

]

 

i

 

 was measured at room temperature (20–25

 

�

 

C) with fura-2
fluorescence using an Attofluor digital fluorescence microscopy
system (Atto Instruments) as described previously (Koyama et al.,
2001).

 

Measurement of the Intracellular Production of NO

 

NO was measured with diaminofluorescein-2 (DAF-2), an NO-
sensitive fluorescent dye (Kojima et al., 1998), as reported previ-
ously (Kimura et al., 2001). Since DAF-2 fluorescence increases
almost linearly with NO concentration (Kojima et al., 1998), the
fluorescence intensities in each experiment were normalized to a
reference image recorded before hypotonic challenge (Kimura
et al., 2001).

 

Measurement of Extracellular ATP Concentration by 
Luciferase Bioluminescence

 

The extracellular ATP concentration ([ATP]

 

o

 

) was measured us-
ing luciferin–luciferase bioluminescence as described previously
(Koyama et al., 2001). ATP concentration in the presence of
VRAC inhibitors was calculated from calibration curves in the
presence of these inhibitors.

 

Measurement of Membrane Current

 

Whole cell membrane current was recorded in the conventional
ruptured whole cell configuration (Hamill et al., 1981) with an
EPC-9 amplifier (Heka Elekronik GmbH). The pipette solution
for examining the effects of VRAC inhibitors and brefeldin A
contained (in mM): KCl 40, K-aspartate 100, MgCl

 

2

 

 1, Na

 

2

 

ATP 5,
HEPES 10, and EGTA 5 (pH adjusted to 7.3 with KOH). For the
effects of 1 mM extracellular nucleotides (Figs. 4 and 5), the pi-
pette solution contained (in mM): CsCl 45, Cs-aspartate 100,
MgCl

 

2

 

 1, Na

 

2

 

ATP 5, HEPES 10, BAPTA 5, and CaCl

 

2

 

 1.436 (to
give free [Ca

 

2

 

�

 

]

 

i

 

 of 30 nM, pH adjusted to 7.3 with CsOH). To ex-
amine the contribution of extracellular ADP to the VRAC cur-
rent (see Fig. 6), we have used a pipette solution with reduced
Cl

 

�

 

 concentration containing (in mM): Cs-aspartate 145, MgCl

 

2

 

1, Na

 

2

 

ATP 1, HEPES 10, BAPTA 5, and CaCl

 

2

 

 1.503 (to give free
[Ca

 

2

 

�

 

]

 

i

 

 of 30 nM, pH adjusted to 7.3 with CsOH). The osmolarity
of each solution was adjusted to 300 mOsm with a freezing point
depression osmometer (OM-801; Vogel) by adding mannitol. In
the experiments with extracellular nucleotides, we pretreated
the cells with 1 

 

�

 

M thapsigargin for 30 min to deplete intracellu-
lar Ca

 

2

 

�

 

 stores in order to avoid a possible contamination with
Ca

 

2

 

�

 

-activated chloride currents (Nilius et al., 1997b) that might
be activated by nucleotide-induced Ca

 

2

 

�

 

 release.

 

Drugs and Solutions

 

The extracellular solution used for Figs. 1, 2, and 3 was a modi-
fied Krebs solution (1.5 mM Ca

 

2

 

�

 

 solution) containing (in mM):
NaCl 132, KCl 5.9, MgCl

 

2

 

 1.2, CaCl

 

2

 

 1.5, glucose 11.5, HEPES
11.5; pH adjusted to 7.3 with NaOH. The solution was made hy-
potonic by adding an appropriate amount of distilled water. The
isotonic (300 mOsm) and hypotonic (250 mOsm) solutions used
for the measurement of 1 mM nucleotide-induced inhibition of
VRAC currents (Figs. 4 and 5) had the following ionic composi-
tion (in mM): NaCl 75, CsCl 6, CaCl

 

2

 

 1.5, glucose 10, HEPES 10,
and 151 and 65 mM mannitol were added to adjust their osmo-
larity. To examine the effects of extracellular ADP, we have used
an extracellular solution of reduced Cl

 

�

 

 concentration, which
contained (in mM): CsOH 5, MgCl

 

2

 

 1, Ca(OH)

 

2

 

 1.5, glucose 10,
HEPES 10, and a solution of the same composition with NaCl 60
as a normal Cl

 

� 

 

hypotonic solution. Mannitol was added to both
solutions to adjust the osmolarity to 250 mOsm. ADP-containing
low Cl

 

�

 

 solutions were prepared by replacing the adequate
amount of mannitol with 1, 10, or 20 mM NaADP, and adjusting
the osmolarity to 250 mOsm.

Fluoxetine was purchased from RBI Research Biochemicals In-
ternational. All other drugs were from Sigma-Aldrich.
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Data Analysis

 

The voltage dependence of current inhibition in the presence of
extracellular nucleotides was fitted to Eqs. 1 and 2 using Origin
software (OriginLab Corp.).

Data are given as mean 

 

�

 

 standard error of the mean. Statisti-
cal significance between two groups was determined by using Stu-
dent’s unpaired 

 

t

 

 test. Probabilities less than 5% (

 

P

 

 

 

� 

 

0.05) were
regarded as significant.

 

R E S U L T S

 

Effects of VRAC Inhibitors on Hypotonic Stress (HTS)-induced 
Responses in BAEC

 

First, we examined the effects of VRAC inhibitors on
the HTS-induced current and ATP release. Fig. 1 A, a

and b, illustrates the gradual development of an out-
wardly rectifying current during HTS and its reversible
inhibition by 100 

 

�

 

M glibenclamide. The effect of glib-
enclamide was concentration-dependent, as shown in
Fig. 1 C, a. Fluoxetine also inhibited this current in a
concentration-dependent manner (Fig. 1 C, b), as did
tamoxifen (10 

 

�

 

M) and verapamil (10 

 

�

 

M) (unpub-
lished data).

The time course of activation and the pharmacologi-
cal properties of this current indicate that it is probably
due to activation of the ubiquitously expressed VRAC
channels (Nilius et al., 1996). Because it was recorded
using a pipette solution containing 5mM EGTA, it is
unlikely that it was due to activation of Ca

 

2

 

�

 

-activated
Cl

 

�

 

 channels by the concomitant HTS-induced Ca

 

2

 

�

 

 re-
lease. Moreover, its outward rectification is less promi-

Figure 1.  VRAC inhibitors on ATP release induced by HTS from BAEC. (A) VRAC activation by HTS (20%) and its reversible inhibition
by 100 �M glibenclamide. Current amplitudes at �50 mV were obtained from voltage ramps from �150 to 100 mV applied every 20 s (a).
The current-voltage relationships (b) taken at the points marked by the filled symbols in (a) show that glibenclamide inhibits both inward
and outward components of the VRAC current. (B) Inhibition of 20% HTS-induced ATP release by various VRAC inhibitors. Fluoxetine
(1 �M), glibenclamide (100 �M), tamoxifen (10 �M), and verapamil (10 �M) were present throughout the measurements. Luciferin
chemiluminescence was measured for 10 min after starting hypotonic challenge, and was converted into [ATP]o by using standard curves
obtained in the presence of each inhibitor. Numbers in parentheses indicate the number of measurements. (**, P � 0.01) (C) Dose–
response relationships of glibenclamide (a) and fluoxetine (b) on VRAC current at �50 mV (open symbols) and HTS-induced [ATP]o in-
crease (closed symbols). HTS of 20% was used for both measurements. The solid lines represent the fit of the logistic equation to the
[ATP]o data points with IC50 values of 17.1 �M (a) and 0.24 �M (b). Numbers of measurements are 5 for VRAC currents and 6–8 for [ATP]o.
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nent than that of Ca

 

2

 

�

 

-activated Cl

 

�

 

 channels (Nilius et
al., 1997b). Because it is inhibited by tamoxifen, this
current is also different from the tamoxifen-activated
large conductance Cl

 

�

 

 channel current in endothelium
(Li et al., 2000). Also, exogenous ATP did not activate a
similar current in isotonic solutions, indicating that it
was not activated by an autocrine action of ATP re-
leased from the cell during the hypotonic challenge.

The current in isotonic solution was insensitive to
VRAC inhibitors, and was not suppressed in hypertonic
solution (unpublished data), indicating that it is not
due to a partial activation of VRAC in isotonic solution.

These VRAC inhibitors also suppressed the HTS-
induced release of ATP, assessed from the increase in
extracellular ATP concentration ([ATP]

 

o

 

, 9.7 

 

�

 

 0.5 nM)
(Fig. 1 B). Glibenclamide and fluoxetine inhibited this
ATP release in a concentration-dependent manner that
was similar to their effects on VRAC inhibition (Fig. 1
C). Furthermore, glibenclamide (Fig. 2 A, b), fluoxe-
tine, and verapamil abolished HTS-induced Ca

 

2

 

�

 

 oscilla-

 

tions (Fig. 2 A, a), and the HTS-induced NO produc-
tion (Fig. 2 B, a) in BAEC, which are both mediated by
the released ATP (Oike et al., 2000). Because of its au-
tofluorescence, we could not use tamoxifen in these
fluorescent dye assays. These VRAC inhibitors did, how-
ever, not affect the responses downstream of ATP re-
lease, since they had no effect on Ca

 

2

 

�

 

 transients (Fig. 2
A, c) and NO production (Fig. 2 B, b) induced by exog-
enously applied ATP (1 

 

�

 

M).

 

Effects of Brefeldin A on HTS-induced ATP Release
and VRAC Current

 

It has been proposed recently (Maroto and Hamill, 2001)
that the HTS-induced ATP release in 

 

Xenopus

 

 oocytes rep-
resents a vesicular transport process sensitive to brefeldin
A, an inhibitor of vesicular transport (Klausner et al.,
1992). Brefeldin A did not, however, affect HTS-induced
ATP release (Fig. 3 A) or VRAC currents (Fig. 3 B), indi-
cating that membrane trafficking does not contribute to
HTS-induced ATP release in BAEC.

Figure 2. Effects of VRAC inhibitors on HTS-induced Ca2� oscillations and NO production in BAEC. (A) HTS (40%) induced Ca2� os-
cillations in control cells (a), which were reversibly inhibited by glibenclamide (100 �M) (b). Similar results were obtained in five other
cells. Glibenclamide did not affect Ca2� transients induced by exogenously applied ATP (1 �M) (c). (B) Inhibition by VRAC inhibitors of
HTS-induced (a), but not of exogenous ATP (1 �M)-induced (b), NO production, assessed by DAF-2. Numbers in parentheses indicate
the number of cells examined. (**, P � 0.01).
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Voltage-dependent Inhibition of VRAC with Extracellular ATP 
in BAEC

 

The close correlation between the effects of VRAC in-
hibitors on current activation and ATP release in BAEC
is compatible with the release of ATP through VRAC
channels. The most compelling evidence for perme-
ation of ATP through VRAC would be the demonstra-
tion of VRAC currents under conditions where ATP is
the only permeant anion. Single-channel and whole-
cell ATP currents have been measured through P-glyco-
protein (Abraham et al., 1993), the cystic fibrosis trans-
membrane conductance regulator (Reisin et al., 1994),
and through large conductance chloride channels (Sa-
birov et al., 2001). Unfortunately, all our attempts to

record single channel ATP currents from BAEC cells
failed so far, whereas application of extracellular ATP at
concentrations of 10 mM or higher induced membrane
leakiness. We have therefore used an alternative ap-
proach to provide more direct evidence for ATP per-
meation that is based on a quantitative analysis of the
voltage-dependent block of VRAC by extracellular ATP
(Ackerman et al., 1994; Jackson and Strange, 1995;
Tsumura et al., 1996). As shown in Fig. 4, A and B, ex-
tracellular ATP (total concentration of 1 mM; free con-

Figure 3. Brefeldin A does not affect HTS (20%)-induced ATP
release and VRAC currents in BAEC. Cells were pretreated with 3
�g/ml brefeldin A for 2.5 h before each experiment. (A) Basal and
HTS-induced increase in [ATP]o were not different between control
and brefeldin A–pretreated cells. n.s., P � 0.05. (B) HTS-induced
VRAC currents in control and brefeldin A–treated cells at �50 mV
and 100 mV. Differences between are not significant (P � 0.05).

Figure 4. Effects of extracellular ATP on VRAC currents in
BAEC. Cells were pretreated with 1 �M thapsigargin for 30 min as
described in materials and methods. (A) Reversible inhibition
of the HTS (17%) -elicited VRAC current by extracellular ATP (to-
tal 1 mM, free 0.15 mM) at 100 mV. Current amplitudes were ob-
tained from voltage ramps from �150 to 150 mV applied every
20s. (B) Current-voltage relations, obtained at the points marked
with filled symbols in A. It is obvious that ATP inhibits only the out-
ward component of the current. (C) Current inhibition at positive
membrane potentials, calculated from the I-V curves (ii and iii) af-
ter correction for the current in isotonic solution (i) and ex-
pressed as a percentage of the current in hypotonic solution. Note
the prominent increase of inhibition by depolarization and its re-
lief at more pronounced depolarizing potentials. The solid and
dashed lines represent the fits of the data points to Eqs. 1 and 2,
respectively. Values for Kd(0), 	, and r of the fitted curves were 0.81
mM, 0.42, and 0.29 (solid line) and 1.17 mm, 0.43, and 0.22
(dashed line).
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centration of 0.15 mM) inhibited the outward current
through VRAC, but not the inward current. Current in-
hibition at positive potentials, expressed as the fraction
of hypotonic current blocked by extracellular ATP,
showed a marked voltage dependency, which is remi-
niscent of open pore block due to binding of ATP in-
side the VRAC pore. This inhibition reached a maxi-
mum of �30–40 mV and declined at more positive po-
tentials (Fig. 4 C).

A similar bell-shaped voltage-dependence of inhibi-
tion of endothelial VRAC currents has already been ob-
served with calix[4]arene and suramin (Droogmans et
al., 1998), and could be described by a model in which
the relief of inhibition at strongly positive potentials
was explained by the permeation of this large anion
through VRAC. We have used the same “permeating
blocker” model, which assumes binding of extracellular
ATP to a site at an electrical distance 	 inside the chan-
nel pore from which it can be released either to the in-
side or outside, to analyze the voltage-dependence of
VRAC inhibition by extracellular ATP, i.e.,

ATPo and ATPi represent extracellular and intracellular
ATP, and k01(V), k10(V), k12(V), and k21(V) represent
the voltage-dependent transition rate constants be-
tween the various states. The fraction of channels occu-
pied by ATP at extra- and intracellular concentrations
[ATP]o and [ATP]i and potential V is given by

where Kd(0) 
 k10(0)/k01(0) 
 k12(0)/k21(0) repre-
sents the dissociation constant of the ATP–VRAC com-
plex at 0 mV, r 
 k12(0)/k10(0) 
 k21(0)/k01(0), z
(equal to �4) the valence of ATP. R, T, and F have their
usual meaning. The predicted fraction of the current
inhibited by 0.15 mM extracellular ATP4� at a potential
V is given by

(1)

The calculated free [ATP]i in the pipette solution is 3.1
mM. This equation was fitted to the experimental data,
and shown as the solid line in Fig. 4 C.

From the pooled data from nine cells, we obtained
the following values for the parameters: Kd(0) 
 1.0 �
0.5 mM, 	 
 0.41 � 0.03, and r 
 0.38 � 0.08.

f ATP[ ]o, ATP[ ]i,V( )

1

1 Kd 0( ) exp zFδV
RT

------------ 
 ⋅+

1 r exp zFV–
2RT
------------ 

 ⋅+

ATP[ ]o ATP[ ]i r exp zFV
2RT
----------- 

 ⋅ ⋅+

---------------------------------------------------------------------------------⋅

----------------------------------------------------------------------------------------------------------------------------------------------

=

Inhibition 1
1 f ATP[ ]o 0.15, ATP[ ]i,V=( )–

1 f ATP[ ]o 0, ATP[ ]i,V=( )–
------------------------------------------------------------------------------.–=

We have also fitted the data to a simplified equation
(Eq. 2), which does not take into account the binding
of intracellular ATP inside the pore at positive poten-
tials (k21(V) � 0) (dashed line in Fig. 4 C).

(2)

The values of Kd(0) 
 1.0 � 0.3 mM, 	 
 0.42 � 0.02,
r 
 0.42 � 0.16 (n 
 9) obtained with Eq. 2 are similar
to those obtained with Eq. 1. We have therefore used
this simplified equation in subsequent fits (see below).

The value of r 
 0.38 indicates that the transition of
ATP from the cytoplasm to its binding site in the mem-
brane and vice versa represents the rate limiting step
for ATP permeation though the membrane. The prob-
ability that ATP bound to its site in the pore will be re-
leased to the extracellular side rather than into the cy-
tosol at 0 mV is given by k10(0)/[k10(0)�k12(0)] 
 1/
(1 � r) 
 0.72; i.e. 72% of the total amount of cytosolic
ATP entering the pore and binding at its intramem-
brane site will be released into the extracellular space
and contribute to net ATP release at 0 mV. This frac-
tion will be even larger at the resting potential of BAEC
cells of about �15 mV, as assessed from the reversal po-
tential of the VRAC current.

Effects of other Nucleotides on VRAC Current in BAEC

The three-dimensional structure of ATP is similar to
that of other negatively charged triphosphate nucle-
otides (UTP, GTP, and CTP) present in the cell. We
therefore used the same protocol as in Fig. 4 to exam-
ine whether these nucleotides as well as other ade-
nine nucleotides with a reduced number of phosphate
residues (ADP, AMP, and adenosine) also permeate
through VRAC. We have always used a total concentra-
tion of 1 mM for these nucleotides.

All molecules except adenosine inhibited the out-
ward component of the VRAC current (Fig. 5). The
block of AMP was weakly voltage-dependent, but all
other nucleotides exerted a substantial voltage-depen-
dent block. The current inhibition by all nucleotides
except adenosine and AMP could be fitted to Eq. 2,
which indicates that they permeate through VRAC
(Fig. 5 B). The values of Kd(0), 	, and r for the various
nucleotides from the fits to Eqs. 1 and 2 are summa-
rized in Table I.

ADP Permeation through VRAC

As mentioned above, our failure to record whole-cell
ATP currents was related to the fact that elevated con-
centrations of ATP induced membrane leakiness. Since

f ATP[ ]o,V( )

1

1
Kd 0( )
ATP[ ]o

------------------ exp zFδV
RT

------------ 
  1 r exp zFV–

2RT
------------ 

 ⋅+⋅ ⋅+

-------------------------------------------------------------------------------------------------------------------

=
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ADP is likely also permeating VRAC and it appeared
from a preliminary experiment that high concentra-
tions of ADP did not cause membrane leakiness, we
have tried to measure whole-cell ADP currents to pro-
vide more firm evidence for nucleotide permeation
through VRAC. To reduce the contribution of Cl� to
the VRAC current, we have decreased the extracellular
Cl� concentration from 60 to 2 mM and examined un-
der these conditions the effect of adding extracellular
ADP (1, 10, or 20 mM) on the outward component of
the VRAC current. It was our expectation that the inhi-
bition of the small Cl� component of the VRAC cur-

rent by extracellular ADP might be overcome at higher
ADP concentrations by a current component carried by
ADP, which in addition would induce a shift of the re-
versal potential to more negative values. Fig. 6 shows
that this was indeed the case. The VRAC current was
drastically lowered at reduced extracellular Cl� concen-
tration, and the outward component was still inhibited
by 1 mM ADP (Fig. 6 A). Adding 10 or 20 mM ADP to
the low Cl� hypotonic solution significantly enhanced
the outward current above the level in ADP-free solu-
tion, but had virtually no effect on the inward current
(Fig. 6 B). This ADP-induced outward current was sup-
pressed by 100 �M glibenclamide, as was also the case
for the VRAC current carried by Cl� (unpublished
data). These findings indicate that the effect of extra-
cellular ADP is not due to a nonspecific increase in
membrane permeability, and that ADP contributes to
the outward current. The concomitant shift of the re-
versal potential to more negative potentials, as well as
the clear dependence of these effects on the ADP con-
centration further support this contention.

D I S C U S S I O N

We have reported previously that mechanosensitive
ATP release induces Ca2� transients (Oike et al., 2000)
and NO production (Kimura et al., 2000) in an auto/
paracrine manner in BAEC. We have shown in the
present study that glibenclamide, tamoxifen, verap-
amil, and fluoxetine, in addition to their blocking ac-
tion on VRAC currents, also suppress HTS-induced
ATP release (Fig. 1, B and C) and its downstream re-
sponses (Ca2� transient and NO production, Fig. 2).
However, the action of these blockers on the cellular
responses downstream of ATP release is indirect, be-
cause Ca2� transients and NO production induced by
exogenous ATP are not altered. Moreover, the concen-
tration-dependence of the inhibition of ATP release
and VRAC current induced by glibenclamide and flu-
oxetine is comparable (Fig. 1 C). The close correlation
between the effects of these inhibitors with distinct
physicochemical and structural properties on VRAC
and ATP release therefore suggests a causal relation be-
tween both processes. This observation, together with
the comparable time courses of VRAC activation and
ATP release (Koyama et al., 2001), provide convincing

Figure 5. Representative data showing the effects of adenine nu-
cleotides and triphosphate nucleotides other than ATP on VRAC
currents. Total concentration of each nucleotide is 1 mM, the cal-
culated free concentration is given in the figure. (A) Current-volt-
age relationships in isotonic (i), and in hypotonic solution in the
absence (ii) or presence (iii) of the nucleotide. Except for adeno-
sine, all nucleotides affect the outward current but have no virtual
effect on inward current. (B) Percent inhibition of VRAC by the
various nucleotides. It is obvious that the AMP-block is hardly volt-
age-dependent. Data of all other nucleotides except for AMP
could be fitted to Eq. 2 (solid lines). Values of Kd(0), 	 and r for
these fits were 0.81 mM, 0.40, and 0.26 for ADP; 4.1 mM, 0.44, and
0.057 for CTP; 0.41 mM, 0.44, and 0.24 for GTP; and 1.1 mM, 0.42,
and 0.13 for UTP.

T A B L E  I

The Kd(0), d, and r Values for the Various Nucleotides Calculated from 
Fits to Eqs. 1 (ATP) and 2 (other Nucleotides)

ATP ADP UTP GTP CTP

kd (0) (mM) 1.0 � 0.5 2.3 � 0.5 1.4 � 0.5 0.6 � 0.3 3.1 � 0.8

	 0.41 � 0.03 0.48 � 0.01 0.39 � 0.04 0.41 � 0.06 0.47 � 0.02

r 0.38 � 0.08 0.23 � 0.05 0.14 � 0.05 0.70 � 0.30 0.21 � 0.09

n 9 7 5 7 8
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but indirect evidence that the ATP release occurs
through VRAC.

VRAC inhibitors are not very specific, and their ef-
fects on ATP release appear to be cell specific in the
sense they inhibit ATP release in some tissues but are
ineffective in others, e.g., NPPB suppressed ATP re-
lease in prostate cancer cells (Sauer et al., 2000) and
cultured ciliary epithelial cells (Mitchell et al., 1998),
whereas tamoxifen was effective in prostate cancer cells
(Sauer et al., 2000) but not in ciliary epithelial cells
(Mitchell et al., 1998). The effects of these substances
on VRAC currents are also quite heterogeneous, and

the concentrations for half-maximal inhibition of VRAC
currents range, depending on the cell-type, from a few
�M to 1 mM (for review see Nilius et al., 1997a). For in-
stance, tamoxifen is a very potent inhibitor in most
tissues, but did not significantly inhibit VRAC cur-
rents in BC3H1 and C2C12 cells at concentrations up
to 100 �M (Voets et al., 1997). These heterogeneous re-
sponses therefore seem to point to a family of VRAC
channels with different biophysical and pharmacologi-
cal properties. Hazama et al. (1999) reported a number
of experimental findings in a cultured human epithe-
lial cell line that seem to contradict the correlation be-
tween VRAC currents and ATP release in this cell type,
indicating that ATP release may not be a general prop-
erty of all VRAC channels. It might therefore be useful
to analyze the voltage-dependence of ATP block of
VRAC in this cell type, as well as in other cell types,
such as intestinal epithelium (Tsumura et al., 1996),
glioma cells (Jackson and Strange, 1995), and Xenopus
oocytes (Ackerman et al., 1994), in which ATP exerts a
voltage-dependent block of VRAC.

Sabirov et al. (2001) reported recently that ATP re-
lease in cultured mouse mammary C127i cells occurs
through a large conductance anion channel (400pS). It
is, however, unlikely that this large conductance anion
channel contributes to ATP release in BAEC, because
(a) glibenclamide inhibits HTS-induced ATP release
(Fig. 1 C) but not the large conductance anion channel
(Sabirov et al., 2001), and (b) tamoxifen, which acti-
vates a similar large conductance anion channel (368
pS) in porcine aortic endothelial cells (Li et al., 2000),
inhibits HTS-induced ATP release (Fig. 1 C).

Our data also exclude a membrane trafficking–medi-
ated ATP release (Maroto and Hamill, 2001) in BAEC,
since brefeldin A did not affect ATP release or VRAC
currents (Fig. 3). In addition, we have reported previ-
ously that disruption of the actin cytoskeleton with cy-
tochalasin B does not inhibit HTS-induced ATP release
(Koyama et al., 2001).

The analysis of the ATP-induced, voltage-dependent
inhibition of VRAC currents (Fig. 4) provides more di-
rect evidence for permeation of ATP through VRAC. It
is unlikely that these effects result from the activation
of purinergic receptors, resulting in the activation of
protein kinase C and/or Ca2� mobilization, because
these intracellular messengers do not affect VRAC (Nil-
ius et al., 1996). The Kd(0) value of ATP binding of 1.0
mM is within a reasonable range considering the milli-
molar concentration of intracellular ATP. Also, the
value of r (
 k12(0)/k10(0) 
 0.38) indicates that 72%
of cytosolic ATP that binds to the channel permeates
through the membrane at 0 mV. The three-dimen-
sional structure of ATP consists of a centered ribose
with arms of adenine (9.2 Å) and triphosphate (13.5 Å)
residues. Permeation of ATP through the VRAC pore is

Figure 6. Effects of extracellular ADP on VRAC currents in low
Cl� solution. (A) Current-voltage relationships in isotonic (a) and
hypotonic (b) solutions with normal Cl� concentrations, and in
low Cl� hypotonic solutions in the absence (c) and presence (d) of
1 mM extracellular ADP. Note the reduced outward current com-
ponent in the presence of ADP. (B) Current-voltage relationships
in low Cl� hypotonic solutions in the absence and presence of ex-
tracellular ADP (10 and 20 mM), obtained from the same cell as A.
Note the increased outward current and shift in reversal potential
with increasing ADP concentration. Similar results were obtained
in five other cells.
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therefore also compatible with the lower and upper
limits of the cross-sectional area of 11 � 12 and 12 � 17 Å2

of the VRAC pore, as derived from the permeation
properties of calixarenes in endothelium (Droogmans
et al., 1999). From these evidences for ATP permeation
through VRAC, we conclude that this channel is the
major candidate of the ATP release pathway during hy-
potonic stimulation in BAEC. This model also predicts
that the interaction of intracellular ATP with the chan-
nel may account for the outward rectification of VRAC
currents.

CTP, GTP, UTP, and ADP also showed a bell-shaped
voltage-dependent inhibition of VRAC current, that
could be fitted to the permeating blocker model (Fig.
5), suggesting that these nucleotides permeate through
VRAC by binding to a common site that is located at
�40% of the electrical field (Table I). The observation
that adenosine does not inhibit VRAC currents indi-
cates that the negatively charged phosphate residues of
the nucleotides might be essential for their interaction
with the binding site in the VRAC pore. This is also
consistent with the weak voltage dependence of the in-
hibition by AMP. Since these nucleotides, at least ADP
and UTP, have been reported to induce Ca2� transients
in endothelium (Viana et al., 1998), the release of nu-
cleotides other than ATP may also contribute to the
HTS-induced Ca2� transients (Fig. 2 A, a) and NO pro-
duction (Fig. 2 B, a) in BAEC.

Because of the skinning effects of high extracellular
ATP concentrations, we were unable to directly demon-
strate ATP permeation through VRAC. However, our
experimental data with high ADP concentrations pro-
vide compelling evidence for the nucleotide permeability
of VRAC. Together with the observed close correlation
between inhibition of VRAC currents and HTS-induced
ATP release and the voltage-dependent inhibition of
VRAC currents by ATP and other nucleotides, our data
provide unequivocal evidence that VRAC provides a
pathway for HTS-induced release of ATP and presum-
ably of other purinergic agonists in BAEC. It might be
the subject of future investigations to find out whether
VRAC is also the pathway for ATP release induced by
other mechanical stimuli, such as shear stress (Bodin et
al., 1991) and mechanical strain (Sauer et al., 2000),
since it has been reported that shear stress activates a
chloride conductance similar to VRAC in vascular endo-
thelial cells (Barakat et al., 1999).
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