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Abstract

The impacts of climate change on marine species are often compounded by other stressors
that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta)
breeding on Albatross Island, Tasmania, show an unusually restricted foraging range,
allowing easier discrimination between the influence of non-climate stressors (fisheries by-
catch) and environmental variation. Local environmental conditions (rainfall, air tempera-
ture, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing
stage, have been correlated with breeding success of shy albatrosses. We use an age-,
stage- and sex-structured population model to explore potential relationships between local
environmental factors and albatross breeding success while accounting for fisheries by-
catch by trawl and longline fisheries. The model uses time-series of observed breeding pop-
ulation counts, breeding success, adult and juvenile survival rates and a bycatch mortality
observation for trawl fishing to estimate fisheries catchability, environmental influence, natu-
ral mortality rate, density dependence, and productivity. Observed at-sea distributions for
adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to
incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explana-
tory variables for annual chick mortality rate was statistically significant. Global climate mod-
els predict little change in future local average rainfall, however, increases are forecast in
both temperatures and upwelling, which are predicted to have detrimental and beneficial ef-
fects, respectively, on breeding success. The model shows that mitigation of at least 50% of
present bycatch is required to offset losses due to future temperature changes, even if up-
welling increases substantially. Our results highlight the benefits of using an integrated
modeling approach, which uses available demographic as well as environmental data within
a single estimation framework, to provide future predictions. Such predictions inform the de-
velopment of management options in the face of climate change.

PLOS ONE | DOI:10.1371/journal.pone.0127006 June 9, 2015

1/25


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0127006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.environment.gov.au
http://www.environment.gov.au
http://www.csiro.au

@’PLOS ‘ ONE

Effects of Climate Change and Fisheries Bycatch on Shy Albatross

had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Marine and atmospheric environmental factors, such as ocean productivity and air tempera-
ture, have been shown to affect the population status of many seabirds including albatrosses
[1-4]. Future change in key environmental factors will likely affect seabird populations in both
positive and negative ways (e.g. [5-6]). However, the impacts of climate change are often com-
pounded by other stressors. This makes direct attribution of life history changes to environ-
mental stressors, and prediction of their effects, difficult e.g. [7-8]. In the case of seabirds and
in particular for long-lived albatrosses, a strong driver of population trends is incidental by-
catch in longline and trawl fisheries [9-13] which has been reported to outweigh the effect of
environmental drivers e.g. [5]. Any study of the impact of future climate on such populations
must, therefore, account for such non-climate interactions. Fortunately, studies of long-lived,
central place foragers such as albatrosses, offer an opportunity to differentiate historical envi-
ronmental effects from non-climate factors and thus more accurately infer the potential im-
pacts of climate change [4-5].

Shy albatrosses (Thalassarche cauta) are endemic to Australia, where they breed on just
three Tasmanian islands: Pedra Branca, Mewstone and Albatross Island. Of these, the Alba-
tross Island population in Bass Strait is the best studied with a 20-year time-series of counts of
occupied nests, fledglings and banding data from which adult and juvenile survival rates have
been estimated [14] along with sporadic counts from earlier times [15-17]. During the first
half of the 19™ century, adult shy albatrosses on Albatross Island were heavily harvested for
their feathers and eggs [14,18,19], with the population reduced to as few as 400 pairs [20]. Shy
albatrosses from the Albatross Island population have an unusually limited foraging range for
an albatross, typically restricted to waters between the western boundary of the Great Austra-
lian Bight where they forage in waters enriched by the Bonney Upwelling and the eastern limit
of Bass Strait (Fig 1) [21-22]. In these regions they come into contact with a limited number of
fisheries, for which relatively complete fishing effort data exist with little concern regarding
sizeable unknown catches from illegal, unreported and unregulated fisheries. Thus, resolving
the historical influence of climate and non-climate drivers (i.e. fishing) may be possible for this
species, allowing improved predictions of population trajectories.

Many authors have demonstrated correlation between demographic parameters of seabirds
and environmental or climatic measures [2,4,5,23]. Some researchers involved in long-term al-
batross studies have also used population models (usually matrix population models) to fore-
cast the effect of future changes in the environment on the seabird population size [6,24,25,26].
When the effects of fishing were included in these models they were generally greater than
those of the environment [4,5]. Disease has also been identified as an important threat to the
stability of albatross populations with virulence linked to environmental variables, in particular
to rainfall and temperature [26-28].

These studies typically quantify relationships between environmental variables and demo-
graphic parameters (breeding success or survival) and then incorporate the parameter values of
any significant relationships found into population models in order to translate the effect of
these relationships into a rate of population growth or decline [6,24-26]. Here we present an
analysis framework in which all sources of data, i.e. environmental, demographic, and fisheries,
are incorporated into an estimation framework. This improves on earlier work in two impor-
tant ways (i) it incorporates error from all steps in the process, and (ii) it partitions variability
due to environmental factors from variability due to other processes such as density depen-
dence and trend in the size of the population [29-30]. Breeding success on Albatross Island, for
example, has declined over the past 13 years; both rainfall and breeding population size in-
creased over the same time period and these are significantly correlated. However, this
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Fig 1. The foraging range for (A) 11 juvenile and (B) 55 adult shy albatrosses from the Albatross Island population. White dots show the locations
returned from satellite transmitter (PTT) tracking devices and the colour scale shows percentage utilization calculated using the kernel density method. A 1
degree grid is imposed; black outlines indicate grid cells that have been excluded from the calculation because they substantially cover land. A red dot marks
the location of Albatross Island.

doi:10.1371/journal.pone.0127006.g001

correlation does not account for decreases in breeding success expected to result from density
dependent effects as the population recovers from depletion due to egg and feather harvesting.
Even if population size were included in a general linear modeling framework alongside rain-
fall, data available from earlier population counts, before the collection of breeding success in-
formation, could not be included. Here we attempt to overcome these problems using an
integrated analysis framework that incorporates all sources of error and accounts for demo-
graphic, environmental and fisheries processes in the same model [29-30]. We apply an inte-
grated model to shy albatrosses breeding on Albatross Island, Tasmania, Australia, that allows
the estimation of environmental factors on breeding success within the model. The resulting
parameter estimates were combined with predictions of future rainfall and temperature pat-
terns from climate models to forecast future population sizes for this seabird under a range of
future management strategies, including mitigation of incidental catch by fishing operations.
The shy albatross (listed as vulnerable under the IUCN criteria [31]) population on Albatross
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Island is recovering from past heavy anthropogenic impact, is subject to incidental mortality in
fishing operations, and, is potentially vulnerable to altered climatic conditions at the breeding
site. The model we have developed can provide key management insights into the potential im-
pacts of fisheries and climate change on population conservation status, and can also be applied
to similarly impacted species such as other seabird species, turtles, and marine mammals [32].

Materials and Methods
Fishing Data

Seabirds are captured during longline fishing operation through seizing baits and subsequently
becoming entrapped on hooks [33]. During trawl operations seabirds, including albatrosses,
can be either tangled in the net, or dragged under by net sonde or warp cables, particularly dur-
ing offal discharge [13]. Fishing effort data were obtained for all notable fisheries operating
within the core foraging area of the Albatross Island shy albatross population. Of these, trawl
and longline vessels are believed to be the main operations that affect seabirds through inciden-
tal capture [33-35]. The majority of data were sourced (during 2012) from the Commonwealth
logbook database held by the Australian Fisheries Management Authority (AFMA). AFMA
data can be requested through the AFMA data manager (see www.afma.gov.au). AFMA data
may be released subject to confidentiality and other criteria set out in AFMA’s information dis-
closure policy. Data were also sourced (during 2012) from a CSIRO held database containing
research fishing effort and from the Department of Primary Industries (DPI), Victoria (contact
CSIRO, www.csiro.au and www.dpi.vic.gov.au). Fishing effort that overlaps with the shy alba-
tross foraging range is shown in Table 1. We grouped all trawl fisheries into a single trawl
super-fleet and divided all line fisheries into pelagic and demersal longline super-fleets (Fig 2).
This division reflects the assumption that vessels of a particular super-fleet have the same
chance of catching a shy albatross if present. Additional information on the fishing effort used
and the underlying fleets is given in S1 Appendix (Supporting Information).

Biological data

Annual monitoring of the shy albatross population on Albatross Island was implemented by
the Department of Primary Industries, Parks, Water and the Environment (DPIPWE) in 1980.
The primary focus of this program is to monitor trends in the number of breeding pairs, annual
breeding success and survival and recruitment rates via capture-mark-recapture. Foraging
studies have also been undertaken using satellite telemetry and geolocation, with additional in-
formation obtained from band returns [14,21,22,36]. More information can be found in S2
Appendix.

Tracking data. Satellite tracking data were obtained from 11 post-fledging juveniles and
from 55 adults during all phases of the breeding cycle (pre-breeding, incubation and chick-
rearing) ([21-22] and DPIPWE unpublished data for 2004 and 2005). These were used to
derive utility distributions for the Albatross Island population. Shy albatross tracks can be
obtained from the BirdLife International Tracking Ocean Wanderers database (www.
seabirdtracking.org). These were calculated using a kernel density method based on that de-
scribed by [37]. The R argosfilter package [38] was used to apply speed and ‘spike’ filters. Line-
ar interpolation was applied when any two fixes were more than 1 and less than 24 hours apart
to ensure an even spread of locations before applying the kernel filter. The resulting utility dis-
tributions were rasterized into a 1 degree square grid for calculation of overlap with the similar-
ly gridded fisheries effort data.

Demographic data. Data on the estimated number of annual breeding pairs, chicks
fledged (and therefore breeding success), and adult and juvenile survival rates for the Albatross
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Table 1. Fisheries included in the model, showing the super-fleets they have been grouped into and

their total effort within the bird foraging area.

Trawl super-fleet

South East Trawl Fishery 1985-2011
Great Australian Bight

Victorian Trawl Fishery—state records (1978-1997)

CSIRO trawl research

Victorian Inshore Trawl Fishery—commonwealth records

Victorian Trawl Fishery—state records, fish trawl
Small Pelagic Fishery

CSIRO trawl research in AFMA database
AFZIS Foreign trawl 1974_1997

High Seas South East Trawl

Jack Mackerel Trawl

AFMA AFZIS Radio Reporting database
Pelagic longline super-fleet

Victorian snapper fishery—state records
Tuna Fishery

AFMA AFZIS Radio Reporting database
Southern and Western tuna and billfish fishery
Eastern Tuna & Billfish Fishery

Demersal longline super-fleet

Gillnet, Hook and Trap Fishery (auto-line)
Victorian shark fishery—state records

South East Non-Trawl Fishery *auto-line)
Gillnet, Hook and Trap Fishery (bottom line)
Southern Shark Fishery (bottom line)

South East Non-Trawl Fishery (bottom line)
Southern Shark Hook Fishery (bottom line)
Southern Shark Gillnet Fishery (bottom line)

Effort overlapping with birds

276933 operations
82104 operations
19984 operations
3135 operations
956 operations
*759 operations
754 operations
180 operations
80 operations

49 operations

49 operations

49 operations

12.0 million hooks
8.8 million hooks
7.7 million hooks
0.6 million hooks
0.07 million hooks

52.9 million hooks
9.7 million hooks
5.2 million hooks
4.0 million hooks
1.1 million hooks
0.7 million hooks
0.12 million hooks
0.01 million hooks

* 209 days converted to number of trawl shots using the ratio of days to trawls in the Victorian otter

trawl fishery.

doi:10.1371/journal.pone.0127006.t001

Island population were sourced from [14] and references therein (Table 2). A previous study
[14] used a multi-state capture-mark-recapture (CMR) model implemented in M-SURGE [39]
to estimate survival rates. Of the range of model architectures applied by [14], we used esti-
mates from the one that had the most support (lowest quasi-AIC), which allowed a fixed annu-
al adult survival rate value, estimated to be 96.1% (SE 0.45) [14], see S2 Appendix. The number
of breeding pairs in 1972 was estimated from a report of the number of occupied nests ob-
served [16]. We assumed that this represented the number of nests containing a chick. Howev-
er, it might have been the number observed to be in use in the recent past, or the number that
contained a chick or an adult, either of which would give a higher count. Our estimate of 12
000 breeding pairs is therefore a possible overestimate. For this reason we tested model sensi-
tivity to a value of 1500 breeding pairs (the lowest number observed during the monitoring
period).

We estimated age at recruitment into the breeding population manually from the mark-re-
capture dataset by calculating the proportion of individuals recorded as breeding for the first
time in each age class. The distribution of ages-at-first breeding is likely to be skewed towards
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Fig 2. Annual totals for fishing effort in millions of hooks or thousands of trawl operations for pelagic
longline, demersal longline, and trawl fishing within the area modelled.

doi:10.1371/journal.pone.0127006.9002

older ages due to the likelihood that the first breeding attempt is not observed for all birds
(Table 3). The breeding frequency, or rate at which birds breed following an attempt in the pre-
vious season, is likely to be influenced by environmental conditions in the foraging habitat
such that the decision to breed will depend in part on the physical body condition that the
birds attain during the non-breeding period. Annual breeding frequency was estimated for the
2000 to 2011 breeding seasons (Alderman unpublished data) (Table 2). Outside of those years
the average (95%) was used.

Bycatch data. An observed ‘shy-type’ albatross capture rate of 36 birds per thousand
trawls (31 birds from 856 trawls) was reported in 2006 for the Commonwealth Trawl Sector
(CTS) of Australia’s Southern and Eastern Scalefish and Shark Fishery (SESSF) [40] (taken to
be in the region between 37°S and 45°S latitude and 135°E and 151°E longitude). According to
population estimates for the mid-2000s, the colony on Albatross Island represents approxi-
mately 35% of the total number of shy albatrosses (5200 on Albatross Island, 9500 on Mew-
stone and 170 on Pedra Branca) [14]. Therefore the bycatch rate for the Albatross Island
population alone was taken to be 35% of the observed rate, or 13 birds per 1000 trawls. Here
we make two assumptions: (1) the observed number of kills represents the total number of shy
albatrosses killed and (2) birds from all colonies were caught in proportion to their colony size
and none were the essentially morphologically indistinguishable white-capped albatrosses
(Thalassarche steadi). These assumptions, if incorrect, would lead first to an underestimate due
to unsighted/unreported deaths, and secondly to an overestimate due to the presence of white-
capped albatrosses ([41] found 32% of longline caught shy-type birds in Tasmanian waters
were white-capped albatrosses). Although much of the longline effort was outside the core for-
aging areas identified for Albatross Island birds in this study, [40] predominantly recorded visi-
ble mortalities (i.e. birds impaled on warp splines or captured in fishing nets), not those
associated with cryptic warp strikes [20]. Given these inaccuracies, relatively low weight was
given to the bycatch estimate when fitting the model and the sensitivity of the model to this by-
catch rate is tested.
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Table 2. Biological data available from long-term monitoring studies on Albatross Island (taken from [14]).

Year

1972-73
1981-82
1982-83
1983-84
1984-85
1985-86
1986-87
1987-88
1988-89
1989-90
1990-91
1991-92
1992-93
1993-94
1994-95
1995-96
1996-97
1997-98
1998-99
1999-00
2000-01
2001-02
2002-03
2003-04
2004-05
2005-06
2006-07
2007-08
2008-09
2009-10
2010-11

Breeding pairs?®
2300°

3736 °
4057 ¢

3703
3699
4326
4797
4687
5145
5640
5614
5074
5134
5212
5233

Fledged®

1889
1517
2033
2542
2437
2933
2707
2414
1776
2105
2241
2041

Breeding success®

0.51
0.41
0.47
0.53
0.52
0.57
0.48
0.43
0.35
0.41
0.43
0.39
0.38

Juvenile survival’

0.69
0.70
0.66
0.85
0.72
0.86
0.57
0.73

0.48

0.63
0.67
0.68
0.29
0.71
0.48
0.30
0.30
0.24
0.11
0.09

Return rates?

0.96

0.98
1

1

1
0.9
0.9
0.9
0.95
0.93

Estimated number of breeding pairs, number of chicks fledged at the end of the breeding season, breeding success (number fledged divided by number of
pairs), juvenile survival rates to age 1, and annual return rates (proportion of birds that attempt to breed, having made an attempt in the previous season),
are shown. Missing data indicates that the information was not collected in that year.

& By chick extrapolation (unless otherwise stated)

b [14] report 1500 occupied nests on 24 January 1973; Alderman (unpublished data) found an average hatching failure of 66%, giving 2300 breeding pairs

¢ Ground counts
d Area density

¢ Calculated as number fledged over number of breeding pairs
f From a multi-state capture mark-recapture model [14]. Given the range in age at apparent recruitment (5 to 12, peak at 9 yrs) survival rates are not
estimated for cohorts from 2003 onwards and are likely underestimates in the last few years of the time-series presented. This is accounted for in the

population model.

9 From mark-recapture data (Alderman, unpublished data)

doi:10.1371/journal.pone.0127006.t002
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Table 3. Probability of first breeding at given age (unpublished data) expressed as a percentage.

Age First breeding (%)
5

6 7

7 21
8 39
9 54
10 67
11 78
12 86
13 91
14 94
15 96
16 100

This is likely to be skewed towards older ages because some birds may be missed in their first year of
breeding. Insufficient data are available to calculate gender specific values.

doi:10.1371/journal.pone.0127006.t003

Ethics statement

Ethics approval is given annually by the DPIPWE Animal Ethics Committee and all work was
conducted under the DPIPWE Scientific and Threatened Species Permit.

Environmental variables

Previous work showed that several environmental variables (rainfall, maximum temperature
and sea surface height anomaly) recorded during the chick rearing period, were correlated with
breeding success of Albatross Island shy albatrosses [20], see S2 Appendix. The observed values
for each of the environmental factors included in the model were standardized by subtracting
the mean and dividing by the standard deviations calculated across the available time series.

Rainfall. Rainfall data are available from 1888 to the present from the Cape Grim (North
West Tasmania) weather station approximately 35 km SE of Albatross Island (www.bom.gov.
au/climate, station 091011). Days where a reading was not available were allocated the average
rainfall for that day of the year calculated over the whole dataset (Fig 3A).

Maximum temperature. Maximum daily temperature records are available from the Cape
Grim weather station from 1985 (www.bom.gov.au). As reported for a range of other surface
nesting seabirds high temperatures affect breeding success through overheating and subse-
quent mortality [32], and are similarly likely to affect shy albatross chicks [20]. Overall temper-
ature stress was calculated as the number of days with a maximum temperature exceeding
23°C. This threshold was chosen because in exploratory analysis it showed higher correlation
with breeding success than any other threshold value and much higher correlation (correlation
coefficient of -0.78) than the mean maximum temperature over the chick rearing period (corre-
lation coefficient of -0.44). The decadal average number of days over 23°C is shown in Fig 3B.
Decadal averages are used to facilitate comparison with output from global climate models.

Sea Surface Height Anomaly (SSHA). Historical sea surface height anomaly values for
each year, averaged over three spatial and temporal scales matching foraging times and areas
for shy albatrosses [20] were extracted from a gridded product of MSLA (Maps of Sea Level
Anomaly) produced by AVISO based on TOPEX/Poseidon, Jason 1, and ERS-1, ERS-2, Envisat
and GFO [42]. This product provides sea level anomalies relative to a seven-year mean from
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Fig 3. Decadal averages for (A) rainfall and (B) number of days over 23°C at Albatross Island during
the chick rearing season for the historical period (red), and hind- and forecasts from climate models
using the B1 (black lines) or A2 (grey lines) scenarios. Six variants are available for each of the B1 and
A2 scenarios.

doi:10.1371/journal.pone.0127006.g003

1993 through 2003. It consists of maps produced every seven days on a 1/3x1/3° Mercator
grid, and has been corrected for all geophysical errors.

Climate projections. Projected values for future environmental variables were obtained
from several sources. Daily rainfall and air temperature time series were sourced from the Cli-
mate Futures Tasmania data repository (https://dl.tpac.org.au/tpacportal/#category=17) for
the pixel overlying the location of Cape Grim. Six different global climate models for each of
two future IPCC emission scenarios (A2 “high” and B1 “low”) have been dynamically down-
scaled to produce fine-resolution (approximately 10 km x 10 km) projections of key climate
variables for Tasmania over the 21* century [43]. Model derived total rainfall (decadal aver-
ages) during the chick rearing period is shown in Fig 3A. The models also back calculate rain-
fall to 1960 so that an overlap exists with observations for the 1960 to 2010 period. During this
period the average rainfall during the chick rearing period from the climate models is 61.5 mm
higher than that of the observations; consequently the forecasts were adjusted downwards by
61.5 mm [44]. Decadal averages for the observed and model-derived rainfall totals during the
chick rearing period are shown in Fig 3.

Future average daily temperatures from the climate models had to be converted to maxi-
mum daily temperatures for use in the population model. This was achieved by regressing aver-
age temperature from all models pooled, against observed maximum daily temperature and
applying this correction to all temperature values from the climate models. The regression was
achieved by calculating the percentiles (5, 6™ . . .94, 95) for each dataset for the overlap-
ping period (the first four months of each year 1986-2012) and regressing those, rather than at-
tempting to match the observed maximum with the modelled average for particular days of the
year. Decadal averages for the resulting estimate of the number of days over 23°C during the
chick rearing period are shown in Fig 3.

Future sea surface height data, averaged for the same spatial and temporal regions as for his-
torical data, were obtained from a dynamically downscaled GCM projection based on the
CSIRO MK3.5 A2 scenario (see [45] for the years 2063-73). The GCM projection is dynamical-
ly downscaled using the Ocean Forecasting Australia Model (OFAM) [46]. OFAM is eddy
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resolving in the Australian region (0.11 of longitude and latitude), which allows representation
of mesoscale features that influence sea surface height in the region.

The OFAM model suggests that there will be more negative SSHA in the future, but as there
is considerable drift in these model forecasts and the baseline conditions for SSH are unclear,
these quantitative data were not included. Instead, we considered the effect of stronger negative
SSHA values (i.e. increased future eddy-related upwelling) into the future based on increases
from observed values of up to 300%.

Since the 1970s, Tasmania has experienced a general trend of reduced annual average rain-
fall, and greater year-to-year variability in rainfall [43]. The modelling of changes to rainfall
under the A2 (high) emissions scenario suggests a change in the total annual rainfall for Tas-
mania of less than 100 mm by the end of the 21* century. This minor state-wide change masks
significant changes in regional and seasonal rainfall patterns. Both emissions scenarios project
significant regional differences in rainfall, with an increase in rainfall projected for the west
coast of Tasmania. During summer and autumn, the west coast, which is closest to Albatross
Island, is anticipated to experience reduced rainfall while during winter and spring, rainfall in
the west is expected to increase [43]. For both the B1 and A2 scenarios, only 12% of the pre-
dicted future annual rainfall values (at Cape Grim during the four months of the chick rearing
period) exceed the historical range (Fig 4).

Throughout the first half of the 20™ century, Tasmania experienced a stable mean land tem-
perature. Since 1950, mean land surface temperatures in Tasmania have increased by an aver-
age of 0.10°C per decade, which is a slower rate of increase than for mainland Australia (0.16°C
per decade) [43]. Projections for changes over the 21°*' century indicate that average annual
temperatures across Tasmania will increase between 1.6°C- 2.9°C by 2100. Increases in temper-
ature for Tasmania are less than that projected for global average temperatures and for the
Australian mainland, mainly due to the moderating effect of the Southern Ocean. Increases in
average land surface temperatures are matched by increases in both maximum and minimum
temperatures, with daily minimum temperatures projected to increase slightly more than daily
maximum temperatures. Notwithstanding existing variations in temperature based on changes
in elevation, the average annual increase is anticipated to be relatively uniform across Tasma-
nia. There are, however, seasonal spatial differences in projected temperature rises, with the
west coast of Tasmania experiencing greater increases during summer [43]. Of the predicted
future temperature “threshold” counts (days over 23°C at Cape Grim during the four months
of the chick rearing period) 23% of those for the B1 scenario and 38% of the A2 scenario exceed
the historical range (Fig 4).

Seabird Population Model

The seabird population dynamics model is based on the integrated modeling framework intro-
duced by [11] and [47] but a number of changes have been made. Estimation is achieved using
likelihood instead of least squares; the yearly time step for the age and stage structured model
has been changed to monthly, allowing for more accurate estimation of bird-fishery overlap;
environmental covariates are allowed to alter chick mortality and thereby, breeding success; a
breeding season of less than 12 months is allowed; male and female birds are modelled sepa-
rately, allowing differential fishing mortality, observed bycatch rates are used to condition the
model; and the population is not considered to be pristine at the commencement of significant
fishing activities.

At-sea bird distribution data collected using satellite trackers are combined with reported
spatial fishing effort data, to calculate bird-fishery overlap and consequent vulnerability to fish-
eries bycatch. Intensive feeding is required for the survival of an albatross chick [48] therefore
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doi:10.1371/journal.pone.0127006.9004

we assume that the death of either parent leads to breeding failure (the death of the chick).
The full specifications for the population model are given in S3 Appendix (Supporting
Information).

At least some life-history traits must be pliable and able to respond to changes in population
size so that populations have protection from extinction and cannot grow beyond the bounds
fixed by limiting factors (such as food resources or space) for extended periods [49]. This den-
sity-dependent compensation also allows populations to stabilize, albeit at lower population
sizes, when moderate levels of increased mortality (e.g. due to fisheries bycatch) occur. [47]
found that the wandering albatross (Diomedea exulans) colony on Possession Island showed
density-dependent compensation in both juvenile survival rates and breeding success [50-51],
the ecological basis for which might be a decrease in the intra-specific competition for re-
sources amongst juveniles and adults foraging for their chicks [52]. The model developed here
also allows both forms of density dependence, but initial investigations showed that the data
supported density dependent chick survival and not juvenile survival. Information on the ini-
tialization of the model, which commences in 1942, and the use of a parameter to describe har-
vesting pressure prior to that year, is given in S3 Appendix (Supporting Information).

The model year runs from the start of the breeding season, 1 October, to 30 September the
following year; for example, 1994 refers to the year that starts 1 October 1994. The breeding
season finishes at the end of May, when all surviving chicks have fledged. The model is applied
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to an area bounded by latitudes 45°S and 30°S and by longitudes 123°E and 151°E, which en-
compasses the unusually restricted foraging range for Albatross Island birds (Fig 1).

The pre-exploitation size of the Albatross Island population was estimated at 11 110 pairs
from the extent of old guano deposits coupled with the current known nesting density for these
birds [14]. We used this estimate to set the carrying capacity for the population at 12 000 pairs.
The estimates of juvenile survival derived from an M-SURGE [39] mark-recapture model in
which the assumption was made that juvenile birds had the adult mortality rate from age 2 to
5 (the earliest age at first breeding). Because birds are not re-sighted until their first breeding at-
tempt, it is difficult for a mark-recapture model to tease apart annual mortality rates for juve-
nile birds for each of the years they are at sea. However, our model applies annual fishing
mortality rates based on the annual distribution and intensity of fishing pressure overlapping
with the juvenile foraging distribution so that the juvenile survival rate differs each year. In
order to condition the model on the juvenile survival rates from the mark-recapture study we
adjusted the estimates of survival during the first juvenile year to survival to age 5 by adding 3
additional years of adult mortality. This figure is then compared with the model estimated sur-
vival to age 5.

The parameters of the model are: adult natural mortality rate, density dependence on juve-
niles and separately on chicks, breeding success in the pristine population (a measure of pro-
ductivity), and catchability parameters for the trawl and pelagic longline fisheries. In addition,
we estimate parameters that relate environmental variables to chick mortality and consequent-
ly breeding success.

We use the population model to quantify the impact of each environmental factor on breed-
ing success by allowing chick mortality in a given year to be a function of the environmental
factors. Suppressing subscripts for year (for clarity), chick mortality M) (which is calculated by
the model and is a density dependent function of the size of the breeding population, see S1
Appendix in the Supporting Information) is given by

M) = S f(x)

iel

where M » is the instantaneous annual rate of chick mortality (if environmental factors were at

their mean levels); and f(x;) is a functional relationship for environmental covariate x; (of the
set of factors I used by the model). A flexible, exponential, functional form was used

f(x;) = exp(0, xih) (1)

where 0; are estimated parameters and b is fixed at 0.5, 1 or 2, giving differing behaviours out-
side of the range of x; values observed during the historical period.

Although these functional forms can give quite different relationships, the model estimated
values that gave very similar results over the range of the observed data (Fig 4). However, each
gives quite different forecasts for higher future values for the environmental factors.

The time series data for each environmental covariate (x) was standardized by subtracting
the mean and dividing by the standard deviation for the time series. A value of zero (x = 0)
thus returns f{x;) = 1, so that ]\7[2 represents the chick mortality rate when all environmental

factors are at their mean values.

Shy albatross chicks on Albatross Island have been observed to suffer from a disease, proba-
bly avian pox virus [20]. It has only been observed in chicks and is most prevalent in one sub-
colony that represents approximately 12% of the total island population. Particularly bad out-
breaks in 1999 and 2006 influenced breeding success noticeably, but the effect has not been
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severe in other years. Breeding success data for the affected years were excluded from the data-
set, but other than this disease was not considered in the model.

Results
Fits to observations

The model using b = 1 (the power parameter for the relationship that relates environmental
variables to chick mortality in Eq 1) was used to examine the effect of including or excluding
climate variables and is examined in greatest detail below. If not otherwise specified, “the
model” refers to the version using b = 1. The models that used b values of 0.5 or 2 gave poorer
fits to the observed data (Table 4).

The counts of breeding adults are reasonably well matched and the model achieves a good
fit to the juvenile survival rates (Fig 5). Note that the apparent sharp drop in recent survival (in
both the observed and model expected values) is an artifact resulting from incomplete recruit-
ment to the breeding population of younger cohorts (Fig 5B), and thus does not necessarily re-
flect the true juvenile survival rates for those cohorts.

The model estimates an average adult annual survival rate of 94.1% (Fig 5), compared with
96.1% (SE 0.45) from the multi-state CMR model. A weakness of the Albatross Island mark-re-
capture dataset is that it contains spatial and temporal heterogeneity in search effort and there-
fore in probability of re-sighting individuals. [14] dealt with this by recognizing two recapture
states. However, additional subdivisions might have given more realistic results but would have
been difficult to identify and would have over-parameterised their CMR model.

The observed breeding success is matched very well, especially when environmental factors
are taken into account (Fig 5). Chick mortality rates, and consequently breeding success, drop
from over 60% in the 1940s when the population was low due to harvesting for feathers, to the
roughly 40% observed in recent years. While there has been an average increase in the number
of days over 23°C and increased rainfall during incubation since 2010 (Fig 3) the primary cause
of this reduction has been density dependence, due to which estimated chick survival (indepen-
dent of adult survival, and before applying environmental influences) dropped from 69% y ™' to
50% y '. The observed bycatch rate of 13 birds of ‘shy-type’ per thousand trawls [40] was
matched by an estimate of 8 birds per thousand trawls. Similar results were obtained for the
two models using b = 0.5 and b = 2 (not shown). All models give much the same chick survival
rates over the range of the historical values of the environmental factors (Fig 4).

Parameter values

The best fit to the data is achieved with an instantaneous adult natural mortality rate of 0.041
(SE 0.004, Table 4), corresponding to a survivorship of 96% per annum (note that with addi-

tional fishing mortality, the average model estimate of adult survival over 1986-2008 is 93%).
Over the full time period, similar incidental bycatch is attributed to the trawl fishery and to

Table 4. Negative log likelihoods (-InL), estimated adult natural mortality rates (M) and productivity
(the breeding success rate for the pristine stock) with standard errors (SE) for the models that use
each of the three alternative values for b, the power parameter for the relationship that relates environ-
mental variables to chick mortality.

b -InL M (SE) Productivity
0.5 255.3 0.039 (0.003) 0.43 (0.04)
1 251.7 0.041 (0.004) 0.42 (0.03)
2 252.8 0.040 (0.005) 0.41 (0.07)

doi:10.1371/journal.pone.0127006.t004
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Year Year

pelagic longlining (each taking roughly 6 000 birds over the modelled period, which is 1964 to
2010). Greater overlap between the birds and the trawl fishery in recent years leads to the trawl
fishery taking 76%, pelagic longline 17% and demersal longline 8% of the incidental bycatch in
the most recent five years (2006-2010). Juvenile and chick survival (and therefore breeding
success) are estimated to have a density dependent component.

The estimated parameter values showed little change when the number of observed breed-
ing pairs in 1972 was reduced from 2300 to 1500 (not shown). Halving or doubling the single
bycatch rate observation for the trawl fishery has little influence on the estimated environmen-
tal parameters, with the greatest change being a 6% increase in the slope of the rainfall relation-
ship when the bycatch observation is halved. However, the catchability parameter for the trawl
fishery does change, resulting in total catches over the modelled time period of some 3 400, 5
600 and 6 100 birds for the cases where the bycatch observation was halved, unmodified, and
doubled, respectively. The model balances this change by manipulating the breeding success of
the pristine population (and therefore the extent of density dependent compensation that is al-
lowed) (0.43 in the half, 0.42 in the unmodified and 0.41 in the double case, standard errors are
shown in Table 4.).

Effect of environmental factors

The addition of all three environmental factors significantly improved the fit of the model to
the data (Table 5), both singly and in combination. The inclusion of any one, or any combina-
tion of, the environmental data time series with their associated parameters was statistically sig-
nificant (Table 5). The likelihood ratio tests (Table 5) evaluate the inclusion of environmental
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Table 5. Negative log-likelihood values (-InL) for each of the models considered, the improvement
over the null model (xxx) is shown (2*Diff) along with the significance (p) of the inclusion of n addi-
tional parameters calculated using the likelihood ratio test.

Model’ -InL 2+*Diff n p AIC

RTS 251.7 81.1 3 0.00 512.5
XTS 258.6 67.4 2 0.00 525.2
RTx 261.3 62.0 2 0.00 530.6
RxS 264.8 53.0 2 0.00 537.6
XxS 268.8 46.9 1 0.00 544.6
xTx 278.3 27.9 1 0.00 563.6
Rxx 280.9 227 1 0.00 568.9
XXX 292.3 590.5

" RTS indicates that rainfall (R), temperature (T), and SSHA (S) were included; an x indicates exclusion of
the variable. Thus xTS indicates that rainfall was excluded, but temperature and SSHA were included.

doi:10.1371/journal.pone.0127006.t005

time series relative to the model that has none (*xxx’). Comparisons between models contain-
ing a single environmental series (Rxx, xTx, xxS) and those containing that series and just one
other (xTS, RTx, RxS), were all statistically significant (p<0.005) indicating no notable co-lin-
earity between environmental series. Positive values were estimated for each environmental
slope parameter, indicating that breeding success is detrimentally affected by greater rainfall,
more days with maximum temperatures over 23°C, and downwelling (higher SSHA). This is in
accord with the significant relationships found using a GLM applied to the observed breeding
success and covariate data by [20]. There is no apparent pattern in the residuals after the effect
of the environmental factors has been taken into account (Fig 6A-6C, correlation coefficients
are -2%, -5% and -1% when 1999 and 2006 are ignored) in contrast with the noticeable negative
trends for the model that does not use environmental factors (Fig 6D-6E, correlation coeffi-
cients are -27%, -46% and -64% when 1999 and 2006 are ignored).

Although a linear relationship is apparent in the breeding success residuals for rainfall (Fig
6), a simple linear regression applied to these figures is not significant (p = 0.2). However,
when the breeding success observations for the two years most heavily affected by disease
(1999 and 2006) are excluded, the correlation becomes significant. These two values were ex-
cluded from the model fitting procedure.

Future climate change

The environment-related modifier applied to chick survival rates varies greatly depending on
the choice of b (Fig 4). A value of b = 0.5 gives less modification at extremes of the environmen-
tal range compared with a value of b = 2, and the b = 1 model falls in the middle.

Future rainfall shows effectively no trend so that values vary erratically from year to year
and do not translate into an overall change in population size (Figs 7 and 8). In contrast, future
temperatures show a strong increasing trend resulting in greater depression of breeding success
(Fig 4) and consequent lower population sizes which in turn, through the density dependent
mechanism, give rise to higher breeding success values (Fig 7). Because rainfall varies erratical-
ly, instead of smoothly, over time, density dependence cannot act to offset its effect so that the
addition of future rainfall along with future temperatures adds greater variation to the esti-
mates of future breeding success as compared with the model that uses future temperature
alone (Figs 7 and 8).
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having been years of notable pox infestation.

doi:10.1371/journal.pone.0127006.9006

As expected, the b = 0.5 model shows least spread in the estimates of number of breeding
pairs in 2100, and the b = 2 model shows the most (Fig 8). Future rainfall caused least change,
resulting in almost negligible increases in future population size compared with large decreases
for estimated future temperatures. As expected, the hotter A2 estimates result in lower popula-
tion size than the B1 models. When climate model estimates for rainfall and temperature are

combined, median future albatross population sizes of 82-97% (of the median of the climate
neutral scenario) result for the B1 scenario, and 39-95% for the A2 scenario (Fig 8). Under the
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doi:10.1371/journal.pone.0127006.9007

most extreme case, namely the A2 scenario with b = 2, the population is reduced to 1 865 pairs
(16% of the pristine size) in 2100.

Mitigation of incidental bycatch from trawl fisheries must exceed 50% of the rate estimated
by the model (for the years to 2010) in order to offset the effect of climate change, with two of
the B1 futures and none of the A2 futures showing higher population size in 2100 in the ab-
sence of mitigation (Fig 9). It is not possible to translate the climate model predictions of
strengthening of upwelling within the foraging range of the shy albatrosses into SSHA values,
however, it is clear that the increase in food production resulting from greater future upwelling
may help to offset population size reduction due to future temperatures (Fig 9). An increase of
300% in upwelling seems very large in comparison with historical values, but is insufficient to
fully offset other climate-related losses.

Discussion

Predicting the range of future population trajectories for species is critical in evaluating poten-
tial management actions, as is resolving the contribution of different stressors on populations.
In many regions, management of threatened and protected species is a high priority, with cli-
mate change potentially compounding existing problems. Here we have shown that both cli-
mate and fisheries impact the population status of shy albatrosses, and that the situation may
become worse under a changing climate.
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Fig 8. Projected number of shy albatross breeding pairs on Albatross Island in year 2100 if rainfall
(“Rain”) and temperature (“TT”) are drawn from a normal distribution with historical mean and
variance (“Both zero”) or if either or both are taken from the six B1 and A2 climate projections.
Standard box and whisker plots are shown with the actual projected population sizes overlaid (grey circles).
Horizontal black lines show the median population size in the climate neutral scenario. Results are shown for
the models thatuse (A) b=0.5; (B) b=1;and (C) b =2.

doi:10.1371/journal.pone.0127006.g008

To date, few studies have combined the impacts on seabirds as a result of climate and fisher-
ies into a single fully parameterized population model [4]. [24] and [53] estimate the relation-
ships between environmental factors and life history characteristics and then introduce these
quantified relationships into matrix population models [54] to investigate their impact on a
population. [55] allow climate to influence transition probabilities within a stochastic matrix
population model initialized using observed population age distribution and size observed in
1962. Demographic parameters are also usually estimated outside of the population model
using mark-recapture models such as MARK [56] and M-SURGE [39] and the resulting values
are used without error [25,26]. Few, if any, parameter values are estimated and these are condi-
tioned on a single time series of counts e.g. [57]. To the best of our knowledge, our study is the
first to have incorporated the estimation of climate impacts into a population model that also
estimates fisheries bycatch. In addition, our population model does not use fixed survival rates,
and breeding success values from mark-recapture models but treats these as observations with
inherent observation error, estimating a range of parameter values conditioned on population
counts as well as survival and breeding success estimates. At-sea observations of seabird by-
catch are also not used as known values but are compared with estimates. We have constructed
a truly integrative framework from which to make predictions and assess management adapta-
tion options for seabirds. This framework is also adaptable for studies of other species, includ-
ing seabirds, turtles and marine mammals.

The accuracy of the predictions made here are a function of the accuracy of parameter esti-
mation, both in the population dynamics component of the model and in the quantification of
the relationships with fishing and with climate variables. First, the observed patterns in the de-
mographic time series are, on the whole, well estimated, giving confidence in the model’s esti-
mated parameter values. Second, the model achieves a good match to the single observation of
bycatch rate from a trawl fishery, but attributes virtually all bycatch mortality to that super-
fleet and none to the pelagic longline fishery, which seems unrealistic. No observed bycatch
rate is available for the pelagic longline fishery, which allows the model the flexibility to greatly
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doi:10.1371/journal.pone.0127006.g009

alter the amount of mortality attributed to the longline fishery. The model estimates that the
trawl and pelagic longline fleets have similar catchabilities, with higher trawl than pelagic long-
line mortality during 2001 to 2010. This agrees with observations that incidental mortality in
the trawl fishery has been high, potentially higher than that in the pelagic longline fishery ([1],
Alderman, unpublished data), which is known to have caught a substantial number of alba-
trosses [33]. In the absence of an observed bycatch rate from the pelagic longline fishery for
this population, the model is reliant on comparing the pattern in fishing effort over time with
the population response in order to evaluate to what extent each fishery has contributed to by-
catch mortality [11]. In the absence of strong differences in the effort time series for the two
super-fleets, the data are not informative regarding the split of bycatch between fisheries. In ad-
dition, the model estimate of the extent of bycatch mortality in the trawl fishery is sensitive to
the value of a single observation of bycatch, which is likely to be poorly estimated. While this
parameter uncertainty is not influential on the climate forecast shown here or even on the
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fisheries mitigation options discussed below, it does mean that the effects of fishing by the
trawl and line sectors cannot be reliably disentangled so that the conclusions drawn here relate
to fishing in general, not to the trawl sector alone.

Third, the quantification of the relationship between climate factors and breeding success
are well estimated over the range of the historical data, but (as for any model) extrapolation
outside of this range is speculative and is not informed by data. We explored this by fitting
three alternative functional forms to the data, two of which gave noticeably different answers.
Therefore attention should be focused on the general trends shown in our results e.g. the popu-
lation size is low under future rainfall and climate forecasts, rather than on absolute changes.
We used a range of functional forms that gave a similar relationship between the climate vari-
ables and the breeding success residuals over the historical period, but quite different forecasts;
other functional forms could also have been used. As climate change progresses, with contin-
ued monitoring of the shy albatross population as well as of similar populations around the
world, we will observe the responses of populations to more extreme environmental conditions
than those encountered historically, and will therefore be able to reduce the range of candidate
functional forms. Specifically, seabird species have been shown to demonstrate plasticity in
their ability to respond to changing climate [3] e.g. by changing breeding phenology. The di-
verse diet of shy albatrosses and their year-round residency within a comparatively restricted
geographic range suggests this species has the capacity to respond to changes. Similarly, plastic-
ity in prey species, competing predator species, and disease, could influence the response of
this species to future climatic conditions. This highlights the need for effective, ongoing moni-
toring and appropriate adaptive management strategies.

Although the population model has a built-in carrying capacity, and density dependence re-
lationships that move the population towards this level, the effects of the environmental covari-
ates are added independently of the density dependent mechanism, effectively changing the
carrying capacity as a function of mean climatic conditions. This seems a realistic assumption
as density dependence is likely to be the result of environmental factors which influence food
availability and nesting success as well as of unrelated factors such as space limitations for nest-
ing sites. The carrying capacity used here (of 12 000 breeding pairs) does not represent full use
of available nesting sites. Based on the size of the island and nesting density, some 23 000 pairs
could potentially nest on the island [14].

Forecast changes in maximum temperatures in the region of Albatross Island during the
chick rearing season are predicted to reduce the breeding success and consequently the size of
the shy albatross population compared with the climate neutral projection. A slight reduction
in forecast rainfall does little to offset this. The A2 scenario predicts greater reduction than the
B1 scenario. These population size losses could be offset, to an unknown degree, by increases in
upwelling and consequent likely increases in prey availability. Further research forecasting this
oceanographic phenomenon and its linkages with prey availability would be valuable. If inci-
dental bycatch across all fishing operations were reduced by less than 50%, we predict that
these reductions will not be completely offset (Fig 9). For the climate functional form used here
(b = 1), population sizes were double (B1 scenario) or quadruple (A2 scenario) those forecast
in the absence of any bycatch mitigation but remained below those of the climate neutral sce-
nario in which no mitigation was implemented. Until the effect of increased upwelling is better
understood, there is a need to consider further adaptation strategies such as drainage around
nesting sites, shading of nests, supplementary feeding at colony sites and reduction in the
spread of avian pox [58,59]. These adaptation strategies may offset the impacts of changes
in climate.

Mitigation of seabird bycatch in longline fisheries has been an issue of conservation concern
for some time [9,33]. More recently, attention has been focused on incidental bycatch in trawl
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fisheries [13,57,60,61]. Longline fisheries have a range of case studies to draw on when selecting
mitigation devices that are both effective and operationally practical. Some of this experience is
transferable to trawl operations. All longline vessels in Australia come under the Threat Abate-
ment Plan (TAP, [62]) which requires that line vessels adopt mitigation measures. It sets in
place bycatch trigger levels to ensure that action is taken when rates become excessive; its ob-
jective is to reduce the seabird bycatch rate in all areas, and seasons to below 0.05 birds per
1000 hooks for pelagic and 0.01 for demersal and new fisheries [62]. In 2011 (note that our
model ends with 2010) AFMA introduced seabird management plans (SMPs) for all trawl ves-
sels under their authority, and increased on-board monitoring of incidental bycatch on trawl
vessels to reduce bycatch in the trawl sector of the SESSF (Mike Gerner, AFMA, pers comm).
As such, bycatch is expected to reduce in the near future. Unfortunately studies into the levels
of seabird bycatch prior to the adoption of these measures are not extensive [40] so that quanti-
fying the effectiveness of recent changes relative to past practices will be problematic.

The identification of relationships between environmental factors and specific life history
parameters or the spatial distribution of animal species is a first step in guiding effective seabird
conservation in the face of climate variability. Enhanced understanding is achieved, where suf-
ficient data are available, by models such as ours that synthesize long-term population studies,
comprehensive life history characteristics, and that make use of the natural experiments that
arise from past environmental fluctuation [58,63]. Such models are best placed to guide the se-
lection of appropriate climate adaptation responses. Ideally, the next step would be to intro-
duce aspects of the food web and predator-prey relationships into our models [58,63]. Another
advance would be the integration of the processes of the mark-recapture models into the inte-
grated framework [64] so that instead of conditioning the model on estimated survival and
breeding success probabilities, the original banding data can be used and all the error associat-
ed with those (such as the risk of not observing a bird even when it has returned to breed)
would be retained and translated into the future predictions. This would be particularly desir-
able in this shy albatross study because of difficulties with adult survival estimates

The effect of pulse perturbations on population demographics, in particular, the impacts of
disease (avian pox) was not considered in this study. We removed two unexpectedly low breed-
ing success rates that are likely to have been largely driven by disease prevalence (which is pri-
marily evident during the stage immediately prior to fledging when large numbers of dying
and dead chicks are observed in the colony). The mechanisms affecting pox outbreaks on Alba-
tross Island are poorly understood but likely to be multi-factorial and complex [65] and al-
though some environmental link is likely, are beyond the scope of the current project.
However, such extreme events do influence population size and are likely to become more fre-
quent under increased climate variability [66]. Pox years could be incorporated into the model
as offsets that occur sporadically and could thus be propagated into the future. This could be
done by linking the probability that an offset would occur in any given year with an environ-
mental time series e.g. [67].

We did not evaluate the impacts of the environment on all possible demographic elements
however, breeding success is considered to have the strongest response to environmental con-
ditions [6,68]. Future work could include relationships with adult and juvenile survival rates,
at-sea distributions, timing of breeding, recruitment to the breeding colony, and the breeding
success of inexperienced birds relative to those of experienced birds, all of which have been
shown to respond to environmental variability in some seabirds [22,69,70].

By simultaneously estimating the effects of fishing and the relationships between climate
variables and breeding success within an integrated modeling framework that includes a popu-
lation model, we were able to partition observed variability amongst these major influences.
Moreover, we projected the population into the future using the outputs from climate forecast
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models to show that mitigation by fisheries must achieve at least a 50% reduction in bycatch
rate in order to offset losses due to predicted future rainfall and temperature. Such an integrat-
ed modeling approach is recommended for future investigations of the effects of climate
change on vulnerable populations, where multiple stressors exist.
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