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Background: Tumour budding and poorly differentiated clusters (PDC) represent forms of tumour invasion.
We hypothesised that T-cell densities (reflecting adaptive anti-tumour immunity) might be inversely associ-
ated with tumour budding and PDC in colorectal carcinoma.
Methods: Utilising 915 colon and rectal carcinomas in two U.S.-wide prospective cohort studies, and multi-
plex immunofluorescence combined with machine learning algorithms, we assessed CD3, CD4, CD8, CD45RO
(PTPRC), and FOXP3 co-expression patterns in lymphocytes. Tumour budding and PDC at invasive fronts
were quantified by digital pathology and image analysis using the International tumour Budding Consensus
Conference criteria. Using covariate data of 4,420 incident colorectal cancer cases, inverse probability weight-
ing (IPW) was integrated with multivariable logistic regression analysis that assessed the association of T-cell
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subset densities with tumour budding and PDC while adjusting for selection bias due to tissue availability
and potential confounders, including microsatellite instability status.
Findings: Tumour budding counts were inversely associated with density of CD3+CD8+ [lowest vs. highest:
multivariable odds ratio (OR), 0.50; 95% confidence interval (CI), 0.35�0.70; Ptrend < 0.001] and
CD3+CD8+CD45RO+ cells (lowest vs. highest: multivariable OR, 0.44; 95% CI, 0.31�0.63; Ptrend < 0.001) in
tumour epithelial region. Tumour budding levels were associated with higher colorectal cancer-specific mor-
tality (multivariable hazard ratio, 2.13; 95% CI, 1.57�2.89; Ptrend < 0.001) in Cox regression analysis. There
were no significant associations of PDC with T-cell subsets.
Interpretation: Tumour epithelial naïve and memory cytotoxic T cell densities are inversely associated with
tumour budding at invasive fronts, suggesting that cytotoxic anti-tumour immunity suppresses tumour
microinvasion.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The tumour invasive front is an important interface of tumour-
host interactions and its properties are thought to regulate tumour
progression. In particular, tumour budding is a histological manifes-
tation of initiating invasion and metastasis cascade along the
tumour invasive front [1]. By International tumour Budding Consen-
sus Conference (ITBCC) criteria, it is formally defined as a single
tumour cell or a cluster of fewer than five tumour cells dissociated
from the main tumour at the invasive front, whereas clusters of five
or more tumour cells without gland formation are defined as poorly
differentiated clusters (PDCs) [2,3]. Studies have demonstrated that
tumour budding was an independent prognostic factor in colorectal
cancer [2].

In recent years, immunotherapy has emerged as a promising ther-
apeutic modality for cancer [4,5]. Accumulating evidence suggests
that adaptive immune response, represented by cytotoxic T cells,
plays a crucial role in suppressing tumour invasion and metastasis [6],
and a high density of tumour infiltrating cytotoxic T cells is associated
with favourable prognosis in colorectal cancer [7]. A few studies have
shown that anti-tumour immune response might restrict tumour
budding and indicated that a combined budding-immune cell score
might be a stronger predictor of survival than either parameter alone
[6,8,9]. However, the interplay between anti-tumour immunity and
tumour budding/PDCs in the colorectal cancer microenvironment has
not been adequately elucidated in terms of specific T-cell subsets driv-
ing the associations, as well as tumour molecular features such as
microsatellite instability (MSI) status, CpG island methylator pheno-
type (CIMP) status, long-interspersed nucleotide element-1 (LINE-1)
methylation, CTNNB1 (catenin beta 1) and CDH1 (cadherin 1, E-cad-
herin) expression, and KRAS, BRAF, and PIK3CAmutations.

In this study, we utilised two U.S. nationwide prospective cohort
studies with covariate data of 4420 colorectal cancer cases and a
molecular pathological epidemiology database of 915 cases to evalu-
ate relationship between tumour budding, PDCs, and T-cell densities.
We evaluated tumour budding using ITBCC criteria [2] and PDCs using
a corresponding approach [3], and we characterised densities and
location of specific T-cell subsets with multiplex immunofluorescence
assay by simultaneously measuring expression levels of CD3, CD4,
CD8, CD45RO (PTPRC), and FOXP3 in immune cells in tumour intraepi-
thelial and stromal regions. Using this database, we tested the hypoth-
esis that specific T-cell subsets in tumour are inversely associated
with tumour budding at the invasive front. In addition, we analysed
the prognostic role of tumour budding and PDCs in these cohorts, as
well as their prognostic interactions with specific T-cell subsets.

2. Materials and methods

2.1. Study population

We collected data on colorectal cancer cases within two prospec-
tive cohort studies in the U.S.: the Nurses’ Health Study (NHS;

http://creativecommons.org/licenses/by-nc-nd/4.0/
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121,701 women aged 30�55 years, who have been followed since
1976) and the Health Professionals Follow-up Study (HPFS; 51,529
men aged 40�75 years, who have been followed since 1986) [10].
Every two years, questionnaires have been sent to participants to
update information on their lifestyle factors and medical history,
including incidence of colorectal cancer. For both cohorts, the
response rate for each follow-up questionnaire has been more than
90%. The National Death Index was used to ascertain deaths of study
participants and to identify unreported lethal cases of colorectal can-
cer. Medical records were reviewed by study physicians to confirm
the diagnosis of colorectal cancer and to record tumour characteris-
tics [e.g., size, location, and the American Joint Committee on Cancer
(AJCC) tumour, node, and metastases (TNM) classification] as well as
the causes of death for deceased participants.

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were col-
lected from hospitals where participants were diagnosed colorectal
cancer and underwent tumour resection. We included 915 patients
with available data on T-cell densities, tumour budding, and PDCs in
colorectal cancer tissue. On the basis of the colorectal continuum
model, both colon and rectal carcinomas were included [11]. Patients
were followed until death, or until the end of follow-up (January 1,
2014 for HPFS; May 31, 2014 for NHS), whichever came first. We
used covariate data of 4420 incident colorectal cancer cases to adjust
for selection bias in the 915 cases. A previous study has shown that
there are no substantial demographic or clinical differences between
cases with tumour tissue and cases without tumour tissue [12�14].

Informed consent was obtained from all study participants, and
the study was approved by the institutional review boards of the
Brigham and Women’s Hospital and Harvard T.H. Chan School of
Fig. 1. Quantification of tumour budding and poorly differentiated clusters (PDCs) using Int
specific T-cell subsets using multiplex immunofluorescence. (a)-(b) Evaluation of tumour bu
were scanned at medium power to identify the most intensive areas of budding and PDCs. (
microscope field (0.785 mm2) were counted. (c)-(f) Evaluation of the densities and location o
(c), included tissue category classification (d), cell segmentation (e), and cell phenotyping (f)
ITBCC, International Tumour Budding Consensus Conference; PDC, Poorly differentiated clust
Public Health (Boston, MA), and those of participating registries as
required.

2.2. Assessment of tumour morphology and immunohistochemistry

A single pathologist (S.O.), who was unaware of other data, per-
formed a centralised review of haematoxylin and eosin-stained tissue
sections from all colorectal carcinoma cases [15]. Tumour differentia-
tion was categorised as well to moderate or poor (> 50% vs. � 50%
glandular area, respectively). Four components of lymphocytic reac-
tion to tumours, including tumour-infiltrating lymphocytes, intratu-
moural periglandular reaction, peritumoural lymphocytic reaction,
and Crohn’s-like lymphoid reaction were scored as 0, 1+, 2+, 3+, and
graded as negative/low (0), intermediate (1+), or high (2+, 3+) [15].

Tumour budding was assessed according to recommendations of
the ITBCC [2] and PDCs were assessed according to similar conven-
tional criteria (Fig. 1) [3]. A single hotspot at the invasive front, as
well as tumour centre, was identified for counting, and tumour
budding was categorised into three grades; low (Bd1,
0�4 buds/0.785 mm2), intermediate (Bd2, 5�9 buds/0.785 mm2),
and high (Bd3, �10 buds/0.785 mm2). Similarly, PDCs, consisting of
five or more tumour cells without gland formation, were categorised
into three grades; low (0�4 clusters/0.785 mm2), intermediate
(5�9 clusters/0.785 mm2), and high (�10 clusters/0.785 mm2). All
cases were assessed by a single pathologist (J.P.V.) blinded to other
data. A consecutively selected subset (n = 140) within our overall
case set was independently reviewed by a second pathologist (D.J.P.),
and the correlation coefficient by Spearman’s correlation test
between the two pathologists was 0.79 (continuous, buds/0.785
ernational tumour Budding Consensus Conference (ITBCC) criteria and the densities of
dding and PDCs using haematoxylin and eosin-stained sections. (a) Whole slide images
b) The number of tumour buds (black arrowheads) and PDCs (yellow arrow head)/20x
f T cells with multiplex immunofluorescence. Machine learning-based image processing
to identify different T-cell subsets in intraepithelial and stromal regions. Abbreviations:
ers.
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mm2) for tumour budding and 0.61 (continuous, PDCs/0.785 mm2)
for PDC (both P < 0.0001). Weighted-Kappa was 0.66 (3 categories)
for tumour budding and 0.33 (3 categories) for PDCs (both P <

0.0001). As previously described [16, 17], immunohistochemistry
was performed to evaluate membranous CDH1 expression and
nuclear CTNNB1 expression in tumour cells, using anti-CDH1 (clone
NCH-38, 1:75 dilution, Dako, Carpinteria, CA, USA) and anti-CTNNB1
antibodies (clone 14, 1:400 dilution; BD Transduction Laboratories,
Franklin Lakes, NJ, USA), respectively.

2.3. Assessment of T-cell densities

We constructed tissue microarrays (TMAs) consisting of up to four
tumour cores [18,19]. We developed a multiplex immunofluores-
cence assay to simultaneously measure the expression of CD3, CD4,
CD8, CD45RO (one isoform of PTPRC gene products), and FOXP3 in
immune cells within intraepithelial and stromal regions. The follow-
ing antibody/fluorophore combinations were used for the staining:
anti-CD3 (clone F7.2.38; Dako; Agilent Technologies, Carpenteria,
CA)/Opal-520, anti-FOXP3 (clone 206D, Biolegend, San Diego, CA)/
Opal-540, anti-CD45RO (clone UCHL1, Dako)/Opal-650, anti-CD8
(clone C8/144B, Dako)/Opal-570, anti-CD4 (clone 4B12, Dako)/Opal-
690, anti-KRT (Keratins, pan-keratins; mixture of clones AE1/AE3,
Dako and C11, Cell signalling, Denvers, MA)/Opal-620 (Supplemen-
tary fig. S1). Digital images of all TMA cores were acquired at 200x
magnification using an automated multispectral imaging system
(Vectra 3.0, Akoya Biosciences, Hopkinton, MA). Using supervised
machine learning algorithms (Inform 2.4.1, Akoya Biosciences), T-cell
subset densities were calculated through the process of tissue seg-
mentation (classifying tissue regions into tumour epithelium, stroma,
and other), cell segmentation (detecting cells and their nuclear, cyto-
plasmic, and membranous compartments), and cell phenotyping
(classifying cells based on cell phenotypic features including fluoro-
phore intensities and cytomorphology) (Fig. 1). The data were
extracted at the single-cell level and used to calculate T-cell subset
densities within tumour epithelial and stromal regions. T-cell densi-
ties were initially classified into quartile categories (C1-C4). If more
than 25% of all cases had zero density (0/mm2) of a specific cell type,
these cases were grouped together (C1 category), and the remaining
(non-zero) cases were divided into tertiles (C2-C4). For sensitivity
analysis, T-cell densities were binarised (high vs. low; with a cut-
point at a median value).

2.4. Analyses of tumour molecular characteristics

Genomic DNA was extracted from FFPE colorectal carcinoma tis-
sue blocks. MSI status was determined by polymerase chain reaction
(PCR) of 10 microsatellite markers (D2S123, D5S346, D17S250,
BAT25, BAT26, BAT40, D18S55, D18S56, D18S67, and D18S487); MSI-
high was defined as the presence of instability in � 30% of the
markers, as previously described [11, 20]. Methylation status of eight
CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1,
NEUROG1, RUNX3, and SOCS1) [21] was determined by MethyLight
assay using bisulphite-treated DNA, as previously described [22].
CIMP-high was defined as � 6 methylated promoters of eight pro-
moters, and CIMP-low/negative as 0�5 methylated promoters, as
previously described [11, 23]. LINE-1 methylation levels were mea-
sured by pyrosequencing using bisulphite-treated DNA, as previously
described [24,11]. PCR and pyrosequencing were performed for KRAS
(codons 12, 13, 61 and 146), BRAF (codon 600), and PIK3CA (exons 9
and 20) [25�27].

2.5. Statistical analyses

All statistical analyses were performed using SAS software (ver-
sion 9.4, SAS Institute, Cary, NC, USA). All P values were two-sided.
We used the stringent two-sided a level of 0.005 to decrease false
positive findings and improve the reproducibility [28]. Our primary
hypothesis testing was the assessment of the association of intraepi-
thelial and stromal T-cell densities (four ordinal categories, C1-C4)
with extent of tumour budding and PDCs (tertile categories) in the
multivariable ordinal logistic analyses. All the other hypotheses were
tested as secondary analyses. We used the Chi-squared test to assess
the associations of clinicopathological characteristics with tumour
budding, as well as PDC grade. Moreover, we used Spearman’s corre-
lation test to assess the relationships of the raw densities of T-cell
subsets with the number of tumour buds, as well as PDCs. In the sur-
vival analyses, cumulative survival probabilities were estimated with
the Kaplan-Meier method the differences between categories were
compared using the log-rank test for trend. Survival time was defined
as the period from diagnosis of colorectal cancer to death or the end
of follow-up, whichever came first. For the analyses of colorectal can-
cer-specific mortality, deaths due to other causes were censored. Uni-
variable and multivariable Cox proportional hazard regression
analyses were conducted to assess the mortality hazard ratios (HRs).
To reduce the potential bias due to the availability of tumour tissue
samples, we used the inverse probability weighting (IPW) method
for logistic regression, Cox regression, and Kaplan-Meier analyses uti-
lising covariate data of 4420 incident colon and rectal carcinoma
cases in the two prospective cohort studies [12�14,29]. Detailed
description of the statistical methods is included in Supplementary
methods.

3. Results

We included 915 colorectal cancer patients with available data on
tumour budding grade and T-cell densities among 4420 incident
colorectal cancer cases in the two prospective cohort studies. The
tumour budding grade at the invasive front was low, intermediate,
and high in 538 (59%), 204 (22%), and 173 (19%) cases, respectively.
Table 1 summarises clinical, pathological, and molecular characteris-
tics according to tumour budding at the invasive front. Tumour bud-
ding grade was positively associated with depth of tumour invasion
(pT stage) (P< 0.001), the number of positive lymph nodes (pN stage)
(P < 0.001), AJCC disease stage (P < 0.001), and poor tumour differen-
tiation (P < 0.001) and inversely associated with tumour-infiltrating
lymphocytes (P < 0.001), intratumoural periglandular lymphocytic
reaction (P = 0.001), and peritumoural lymphocytic reaction (P <

0.001). PDC grade at invasive front was positively associated with
depth of tumour invasion (pT stage) (P < 0.001), the number of posi-
tive lymph nodes (pN stage) (P < 0.001), AJCC disease stage (P <

0.001), poor tumour differentiation (P < 0.001), and BRAF mutation
(P = 0.002) (Supplementary table S1). Tumour budding and PDCs at
invasive front were positively correlated with each other [Spearman
correlation coefficient (r) = 0.73, P < 0.001]. There was also a strong
correlation between tumour budding at the invasive front and
tumour centre (r = 0.86, P < 0.001), as well as PDCs at the invasive
front and tumour centre (r = 0.81, P < 0.001). Considering the well-
established ITBCC criteria for the evaluation of tumour budding and
the strong correlations of the number of tumour buds between at
tumour invasive front and at tumour centre, the following analyses
were conducted with only tumour budding at the invasive front.

Table 2 shows the correlation between intraepithelial and stromal
T-cell densities and tumour budding at the invasive front. Intraepi-
thelial CD3+, CD3+CD8+, and CD3+CD8+CD45RO+ T-cell densities were
inversely correlated with the density of tumour buds at the invasive
front (P � 0.003); the strongest negative correlation (r = �0.16, P <

0.001) was observed with CD3+CD8+CD45RO+ cells, the most specifi-
cally defined T-cell subset of the three, representing cytotoxic mem-
ory T-cell phenotype. A similar correlation of T-cell densities with
tumour budding at tumour centre was observed. Density of PDCs at
the invasive front or tumour centre did not show statistically



Table 1
Clinical, pathological, and molecular characteristics of colorectal cancer cases according to tumour budding at invasive front .

Tumour budding at invasive front

Total No. Low Intermediate High
Characteristicsa (n = 915) (n = 538) (n = 204) (n = 173) P valueb

Sex 0.40
Female (NHS) 503 (55%) 297 (55%) 105 (51%) 101 (58%)
Male (HPFS) 412 (45%) 241 (45%) 99 (49%) 72 (42%)

Mean age § SD (years) 69.1 § 8.8 69.4 § 8.8 69.2 § 8.9 68.1 § 8.6 0.23
Year of diagnosis 0.74

1995 or before 290 (32%) 168 (31%) 64 (31%) 58 (34%)
1996�2000 303 (33%) 174 (32%) 67 (33%) 62 (36%)
2001�2014 322 (35%) 196 (36%) 73 (36%) 53 (31%)

Family history of colorectal cancer in a first-degree relative 0.76
Absent 715 (79%) 425 (79%) 161 (80%) 129 (77%)
Present 192 (21%) 112 (21%) 41 (20%) 39 (23%)

Tumour location 0.12
cecum 165 (18%) 106 (20%) 34 (17%) 25 (15%)
Ascending to transverse colon 299 (33%) 168 (31%) 64 (31%) 67 (39%)
Descending to sigmoid colon 268 (29%) 149 (28%) 73 (36%) 46 (27%)
Rectum 179 (20%) 112 (21%) 33 (16%) 34 (20%)

pT stage (depth of tumour invasion) < 0.001
pT1 (submucosa) 66 (7.8%) 60 (12%) 3 (1.6%) 3 (2.0%)
pT2 (muscularis propria) 176 (21%) 125 (25%) 32 (17%) 19 (12%)
pT3 (subserosa) 560 (66%) 303 (60%) 141 (76%) 116 (75%)
pT4 (serosa or other organs) 46 (5.4%) 20 (3.9%) 10 (5.4%) 16 (10%)

pN stage
(number of positive lymph nodes)

< 0.001

pN0 (0) 504 (61%) 354 (71%) 98 (54%) 52 (36%)
pN1 (1�3) 202 (25%) 97 (20%) 58 (32%) 47 (33%)
pN2 ( � 4) 115 (14%) 46 (9.3%) 24 (13%) 45 (31%)

AJCC disease stage < 0.001
I 193 (23%) 152(30%) 27 (14%) 14 (8.8%)
II 281 (33%) 187 (37%) 60 (31%) 34 (21%)
III 251 (29%) 121(24%) 64 (34%) 66 (42%)
IV 126 (15%) 41 (8.2%) 40 (21%) 45 (28%)

Tumour differentiation < 0.001
Well to moderate 830 (91%) 503 (94%) 186 (92%) 141 (82%)
Poor 84 (9.2%) 34 (6.3%) 18 (8.8%) 32 (19%)

MSI status 0.046
Non-MSI-high 736 (83%) 421 (81%) 165 (83%) 150 (89%)
MSI-high 154 (17%) 102 (20%) 33 (17%) 19 (11%)

CIMP status 0.71
Low/negative 693 (81%) 407 (80%) 151 (83%) 135 (83%)
High 159 (19%) 99 (20%) 32 (17%) 28 (17%)

Mean LINE-1 methylation 62.5 § 9.6 63.0 § 9.9 62.1 § 9.0 61.6 § 9.5 0.20
level § SD (%)
KRASmutation 0.41

Wild-type 524 (59%) 313 (60%) 110 (55%) 101 (59%)
Mutant 364 (41%) 205 (40%) 90 (45%) 69 (41%)

BRAFmutation 0.50
Wild-type 759 (85%) 451 (86%) 168 (85%) 140 (82%)
Mutant 137 (15%) 76 (14%) 30 (15%) 31 (18%)

PIK3CAmutation 0.035
Wild-type 699 (84%) 407 (83%) 146 (79%) 146 (90%)
Mutant 137 (16%) 82 (17%) 38 (21%) 17 (10%)

Membrane CDH1 (E-cadherin) expression 0.97
Intact 272 (47%) 159 (47%) 60 (48%) 53 (46%)
Lost 306 (53%) 180 (53%) 65 (52%) 61 (54%)

Nuclear CTNNB1 (b-catenin) expression 0.17
Negative 473 (54%) 292 (56%) 96 (48%) 85 (53%)
Positive 407 (46%) 228 (44%) 102 (52%) 77 (48%)

Tumour-infiltrating lymphocytes < 0.001
Negative/low 651 (72%) 352 (66%) 163 (80%) 136 (80%)
Intermediate 151 (17%) 103 (19%) 29 (14%) 19 (11%)
High 102 (11%) 76 (14%) 11 (5.4%) 15 (8.8%)

Intratumoural periglandular reaction 0.002
Negative/low 126 (14%) 59 (11%) 33 (16%) 34 (20%)
Intermediate 670 (74%) 393 (74%) 152 (75%) 125 (73%)
High 109 (12%) 79 (15%) 18 (8.9%) 12 (7.0%)

Peritumoural lymphocytic reaction 0.001
Negative/low 145 (16%) 69 (13%) 37 (18%) 39 (23%)
Intermediate 620 (69%) 362 (68%) 141 (69%) 117 (68%)
High 138 (15%) 98 (19%) 25 (12%) 15 (8.8%)

(continued)
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Table 1 (Continued)

Tumour budding at invasive front

Total No. Low Intermediate High
Characteristicsa (n = 915) (n = 538) (n = 204) (n = 173) P valueb

Crohn’s-like lymphoid reaction 0.28
Negative/low 577 (74%) 314 (71%) 145 (78%) 118 (79%)
Intermediate 139 (18%) 87 (20%) 30 (16%) 22 (15%)
High 60 (7.7%) 39 (8.9%) 11 (5.9%) 10 (6.7%)

a Percentage indicates the proportion of patients with a specific clinical, pathological, or molecular characteristic among all patients
or in the strata of tumour budding at invasive front.

b To compare categorical data between the tumour budding grade, the chi-square test was performed. To compare continuous varia-
bles, an analysis of variance was performed.
Abbreviations: AJCC, American Joint Committee on Cancer; CIMP, CpG island methylator phenotype; HPFS, Health Professionals Follow-
up Study; LINE-1, long-interspersed nucleotide element-1; MSI, microsatellite instability; NHS, Nurses’ Health Study; SD, standard
deviation.

Table 3
Inverse probability weighting (IPW)-adjusted logistic regression analysis to
assess the associations of intraepithelial T-cell densities (predictor) with
tumour budding at invasive front (outcome) .

Univariable OR
(95% CI)b,c

Multivariable OR
(95% CI)b,c

Intraepithelial CD3+ cell density
(cells/mm2)
C1 (lowest) 1 (referent) 1 (referent)
C2 (second) 0.75 (0.52�1.09) 0.74 (0.51�1.08)
C3 (third) 0.62 (0.43�0.89) 0.61 (0.43�0.88)
C4 (highest) 0.64 (0.44�0.93) 0.60 (0.41�0.88)
Ptrend

d 0.010 0.005
+ +
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significant correlation with the densities of any T-cell subset (Supple-
mentary table S2).

In our primary hypothesis testing, we used a logistic regression
analysis to assess the association of intraepithelial T-cell densities
with the extent of tumour budding (Table 3 and Supplementary table
S3). Sensitivity analyses of the association of binary categories of
intraepithelial T-cell densities with the extent of tumour budding
were shown in Supplementary table S4. In multivariable analysis,
intraepithelial CD3+CD8+ T-cell density [lowest vs. highest density
category: multivariable odds ratio (OR) 0.50, 95% confidence interval
(CI), 0.35�0.70; Ptrend < 0.001] and intraepithelial CD3+CD8+CD45RO+

cell density (lowest vs. highest density category: multivariable OR
0.44, 95% CI, 0.31�0.63; Ptrend < 0.001) were inversely associated
with the extent of tumour budding. Similar results were obtained by
multivariable logistic regression analysis without the IPW (Supple-
mentary table S5). As MSI status and T-cell densities in tumour tissue
were strongly correlated (Supplementary table S6), we conducted
the analysis to see the association of T-cell densities with tumour
budding in strata of MSI status. There was no significant interaction
between MSI status and intraepithelial CD3+CD8+ or
CD3+CD8+CD45RO+ density in relation to tumour budding (P > 0.24)
(Supplementary table S7).

In the survival analyses, using a dataset of 943 cases with available
survival data, we examined the prognostic impact of the tumour
Table 2
Correlation between intraepithelial and stromal T-cell
densities and tumour budding at invasive front.

Tumour buddinga

Intraepithelial region
CD3+ cells r = �0.10, P = 0.003
CD3+CD4+cells N.S.
CD3+CD8+cells r = �0.14, P < 0.001
CD3+CD4+FOXP3+ cells N.S.
CD3+CD4+CD45RO+ cells N.S.
CD3+CD4+CD45RO� cells N.S.
CD3+CD8+CD45RO+ cells r = �0.16, P < 0.001
CD3+CD8+CD45RO� cells N.S.

Stromal region
CD3+ cells N.S.
CD3+CD4+cells N.S.
CD3+CD8+cells N.S.
CD3+CD4+FOXP3+ cells N.S.
CD3+CD4+CD45RO+ cells N.S.
CD3+CD4+CD45RO� cells N.S.
CD3+CD8+CD45RO+ cells N.S.
CD3+CD8+CD45RO� cells N.S.

a Correlation coefficient and P value were calcu-
lated by the Spearman’s correlation test between T-
cell densities (cells/mm2; as continuous variables) and
tumour budding at invasive front (number of tumour
buds/0.785 mm2, as continuous variable).
Abbreviation: N.S., not significant.
budding and PDC grade, and their survival interactions with T-cell
densities. During the median follow-up time of 12.3 years (interquar-
tile range, 8.7 to 16.3 years), 577 all-causes deaths, including 296
colorectal cancer-specific deaths, were observed. Kaplan-Meier anal-
ysis shows that both high tumour budding and PDC grade at the inva-
sive front were associated with higher colorectal cancer specific and
overall mortality (Log-rank P < 0.001) (Fig. 2 and Supplementary fig.
S2). Multivariable Cox regression models (Table 4 and Supplementary
table S8) indicated that tumour budding showed an adverse prognos-
tic association independent of tumour molecular features, patient
Intraepithelial CD3 CD8 cell
density (cells/mm2)a

C1 (zero) 1 (referent) 1 (referent)
C2 (low) 0.92 (0.64�1.32) 0.92 (0.64�1.32)
C3 (intermediate) 0.57 (0.40�0.82) 0.57 (0.40�0.81)
C4 (high) 0.52 (0.37�0.73) 0.50 (0.35�0.70)
Ptrend

d
< 0.001 < 0.001

Intraepithelial
CD3+CD8+CD45RO+ cell
density (cells/mm2)a

C1 (zero) 1 (referent) 1 (referent)
C2 (low) 0.73 (0.51�1.06) 0.73 (0.50�1.05)
C3 (intermediate) 0.58 (0.41�0.82) 0.57 (0.40�0.81)
C4 (high) 0.47 (0.33�0.67) 0.44 (0.31�0.63)
Ptrend

d
< 0.001 < 0.001

a As intraepithelial CD3+CD8+ (377 cases) and CD3+CD8+CD45RO+ (424
cases) cell densities were 0/mm2 (consisting the largest category C1), the
remaining cases were divided into tertiles according to density (C2-C4).

b IPWwas applied to reduce a bias due to the availability of tumour tissue
after cancer diagnosis (see “Statistical analysis” subsection for details).

c The multivariable ordinal logistic regression model initially included
age, sex, year of diagnosis, family history of colorectal cancer, tumour loca-
tion, microsatellite instability, CpG island methylator phenotype, long-inter-
spersed nucleotide element-1 methylation level, KRAS, BRAF, and PIK3CA
mutations, CDH1 expression, and CTNNB1 expression. A backward elimina-
tion with a threshold P of 0.05 was used to select variables for the final
model.

d Ptrend was calculated by the linear trend across the ordinal categories of
the intraepithelial T-cell densities (four ordinal predictor variables: C1-C4)
in the IPW-adjusted ordinal logistic regression model for the number of
tumour buds/0.785 mm2 at invasive front (tertile variables).



Fig. 2. Inverse probability weighting (IPW)-adjusted Kaplan-Meier curves of colorectal cancer-specific and overall survival according to tumour budding at invasive front.
The P values were calculated using the weighted log-rank test for trend (two-sided). The table (bottom) shows the number of patients who remained alive and at risk of death at

each time point after the diagnosis of colorectal cancer. .
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characteristics, as well as lymphocytic reaction patterns and intraepi-
thelial CD3+CD8+CD45RO+ T-cell density, whereas PDC grade did not
remain in the final multivariable Cox regression model (Supplemen-
tary table S8). Compared to patients with low tumour budding grade,
those with high tumour budding grade were associated with shorter
colorectal cancer-specific survival (multivariable HR 2.13 95% CI,
1.57�2.89; Ptrend < 0.001). Considering the strong association of
CD3+CD8+CD45RO+ T-cell density with favourable prognosis (Supple-
mentary fig. S3), we examined the prognostic association of tumour
budding at invasive front in strata of intraepithelial CD3+CD8+ and
CD3+CD8+CD45RO+ T-cell densities. High-grade tumour budding was
associated with poor prognosis in patients with both low and high
densities of those T-cell subsets (Pinteraction > 0.56) (Supplementary
table S9). In a multivariable model without tumour budding as a
covariate, high PDC grade was associated with shorter colorectal can-
cer-specific survival (multivariable HR 1.97; 95% CI, 1.36�2.84; Ptrend
< 0.001) (Supplementary table S10). Considering the strong associa-
tions of both tumour budding and T-cell densities with patient sur-
vival, we conducted the survival analyses of the composite variables
of tumour budding and intratumoural CD3+CD8+CD45RO+ T-cell
Table 4
Tumour budding at invasive front and patient survival with inverse probability weighting.

Colorectal cancer-specific surviva

No. ofcases No. ofevents UnivariableHR (95% CI) Multivar

Tumour budding (n = 943)
Low 551 109 1 (referent) 1 (refere
Intermediate 209 77 2.33 (1.72�3.15) 1.75 (1.3
High 183 97 3.71 (2.78�4.97) 2.13 (1.5
Ptrend

c
< 0.001 < 0.001

a IPWwas applied to reduce a bias due to the availability of tumour tissue after cancer dia
b The multivariable Cox regression model initially included age, sex, year of diagnosis, f

microsatellite instability, CpG island methylator phenotype, long-interspersed nucleotide
CTNNB1 expression, tumour-infiltrating lymphocytes, intratumoural periglandular reactio
CD3+CD8+CD45RO+ T-cell densities, and poorly differentiated clusters. A backward eliminatio

c Ptrend was calculated by the linear trend across the ordinal categories of tumour buddin
sion model.
Abbreviations: CI, confidence interval; HR, hazard ratio; IPW, inverse probability weighting.
density. Tumours with low-grade tumour budding and high intratu-
moural CD3+CD8+CD45RO+ T-cell densities were associated with
favourable colorectal cancer-specific survival compared to tumours
with high-grade tumour budding and low intratumoural
CD3+CD8+CD45RO+ T-cell densities (Supplementary fig. S4).

4. Discussion

We conducted this study to test the hypothesis that specific sub-
set of T-cell densities in tumour might be inversely associated with
tumour budding in colorectal cancer. Utilising a molecular pathologic
epidemiology database of 915 colorectal carcinomas among 4420
incident colorectal cancer cases within two U.S. nationwide prospec-
tive cohort studies, we found that the densities of intraepithelial
CD3+CD8+ and CD3+CD8+CD45RO+ T cells were inversely associated
with the extent of tumour budding at invasive front. Our findings
suggest that anti-tumour immunity based on cytotoxic T cells may
suppress microinvasion. High-grade tumour budding was associated
with shorter colorectal cancer-specific survival independent of
tumour molecular features, disease stage, PDC grade, lymphocytic
la Overall survivala

iableHR (95% CI)b No. ofevents UnivariableHR (95% CI) MultivariableHR (95% CI)b

nt) 212 1 (referent) 1 (referent)
0�2.37) 115 1.86 (1.47�2.36) 1.50 (1.15�1.94)
7�2.89) 114 2.44 (1.88�3.16) 1.81 (1.38�2.38)

< 0.001 < 0.001

gnosis (see “Statistical analysis” subsection for details).
amily history of colorectal cancer, tumour location, tumour grade, AJCC disease stage,
element-1 methylation level, KRAS, BRAF, and PIK3CA mutations, CDH1 expression,
n, peritumoural lymphocytic reaction, Crohn’s-like lymphoid reaction, intraepithelial
n with a threshold P of 0.05 was used to select variables for the final models.
g grade at invasive front (low, intermediate, and high) in the IPW-adjusted Cox regres-
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reaction, and cytotoxic T cell density, supporting the value of tumour
budding as an independent prognostic factor in colorectal cancer.

CD8+ T cells, known as cytotoxic T lymphocytes, play an integral
part of the adaptive immune response against pathogens, as well as
tumour cells. Peri and intratumoural CD8+ T cells have previously
been identified as a major favourable prognostic factor in colorectal
cancer [30]. CD8+CD45RO+ memory T cells, which is a subpopulation
of cytotoxic T cells, may respond quickly to a previously encountered
antigen stimulus [31], and our previous study indicated that intratu-
moural CD45RO+ cells had prognostic value independent of other
(CD3+, CD8+, and FOXP3+) T-cell subsets [18]. Cytotoxic T cells can
perform antigen-specific lysis of tumour cells, leading to tumour cell
apoptosis, by exocytosis of granules containing PRF1 (perforin 1),
GZMA (granzyme A), and GZMB (granzyme B) [32]. Moreover, cyto-
toxic T-cell surface protein FASLG (Fas cell surface death receptor
ligand) may induce cell death by binding FAS (Fas cell surface death
receptor) molecules expressed on the tumour cells [33]. Accordingly,
high density of T cells in tumour were correlated with low frequency
of invasion and metastasis in colorectal cancer [30]. In line with these
clinical and experimental studies, our findings suggest that high den-
sities of intraepithelial CD3+CD8+ and CD3+CD8+CD45RO+ cytotoxic T
cells are associated with low tumour budding grade, potentially
reflecting the suppression of tumour progression by cytotoxic anti-
tumour immunity.

Tumour budding is one of the initial steps of cancer invasion and
metastasis, as budding cells migrate through the extracellular matrix,
invade lymphovascular structures, and form metastatic tumour colo-
nies in lymph nodes and distant organs [34�36]. During this process
called epithelial mesenchymal transition (EMT), activation of WNT/
CTNNB1 signalling occurs in tumour cells, which lose expression of
epithelial markers such as CDH1 expression and instead express
genes more commonly associated with mesenchymal cells, such as
CDH2 (cadherin 2, N-cadherin) and VIM (vimentin) [2,37,38]. Emerg-
ing evidence links EMT with increased stemness, therapeutic resis-
tance, and escape from immune surveillance [37,39]. In non-small
cell lung cancer, EMT was associated with increased expression of
multiple immunosuppressive cytokines including IL10 (interleukin
10) and TGFB1 (transforming growth factor beta 1) [38]. Tumour cells
that underwent EMT had reduced susceptibility to cytotoxic T cell
mediated lysis with PRF1 and GZMB proteins [40,41]. A consensus
molecular subtype (CMS) classification classifies colorectal cancer
into four main groups [42]: the CMS4 subtype is characterised by
stromal infiltration, matrix remodelling, and overexpression of EMT-
related and TGFB pathway genes [42], as well as low immune activa-
tion [38, 39]. Our finding of the inverse association between tumour
budding and intraepithelial CD3+CD8+ and CD3+CD8+CD45RO+ cyto-
toxic T-cell densities suggest that cytotoxic anti-tumour immunity
can suppress tumour budding; however, an alternate explanation is
that tumour budding cells with the EMT phenotype do not elicit a T-
cell response, and thus they can evade detection and are more likely
to lead to a poor prognosis.

PDCs and tumour buds form a continuum of histological features
with an arbitrarily set cut-point of 5 tumour cells to differentiate the
two [2, 3]. Therefore, PDCs and tumour budding share many tumour
molecular features, as well as clinical and pathological features
including mortality of colorectal cancer patients [3]. However, we
found that PDC grade, but not budding grade, was significantly asso-
ciated with BRAF mutation, while tumour budding, but not PDC
grade, had a tendency towards an inverse association with MSI-high
phenotype. This is in line with some previous studies that tumour
budding was inversely associated with MSI-high status [43,44], and
BRAF mutations were more frequent among tumours with high PDC
grade [45]. Emerging studies show that PDCs encompass heteroge-
neous morphologies such as micropapillary and medullary-like com-
ponents, mucinous differentiation, and solid growth [43,46�48].
Poor differentiation has frequently been associated with MSI-high
status and high densities of tumour-infiltrating lymphocytes and T
cells, contributing to the favourable prognosis [18, 49]. In our study,
while tumour budding was inversely associated with the densities of
intraepithelial CD3+CD8+ and CD3+CD8+CD45RO+ cytotoxic T cells, no
significant associations were observed between T-cell densities and
PDCs. Additionally, PDC grade showed less prognostic power than
tumour budding. We suggest that, although the two phenomena are
correlated, the morphological diversity of PDCs compared to tumour
budding might account for these divergent results.

The TNM classification system remains the gold standard for strat-
ification of colorectal cancer patients into prognostic subgroups,
while tumour budding is thought to be an independent poor prog-
nostic factor [50]. Recently, tumour budding has been included as an
additional prognostic factor to the eighth edition of the AJCC Cancer
Staging Manual. Similar to tumour budding, PDCs are associated with
high tumour grade, high lymph node and distant metastasis, and
higher patient mortality in colorectal cancer [3]. Our study is one of
the largest so far to simultaneously evaluate the prognostic value of
tumour budding, using the ITBCC criteria, and PDCs in colorectal can-
cer. Notably, our findings show that tumour budding grade had
stronger prognostic power than PDC grade, which was also indepen-
dent of tumour molecular features, lymphocytic reaction scores and
cytotoxic T-cell density. Taken together, our findings support the
value of tumour budding as an independent prognostic factor in colo-
rectal cancer. Although intratumour heterogeneity should be consid-
ered, counting tumour budding in the colorectal cancer biopsy
specimens may also be useful for the preoperative prediction of
patient mortality, considering the previous promising reports [51-
53], as well as high correlation we observed between intratumoural
budding and budding at the advancing edge.

There is increasing evidence supporting the prognostic signifi-
cance of tumour infiltrating immune cells in colorectal cancer. The
prognostic value of the Immunoscore, based on counting the densi-
ties of CD3+ and CD8+ cells in the invasive margin and tumour centre,
has been validated in a recent multicentre study [30, 54]. It is of note
that the previous studies using the Immunoscore [54, 55] did not
evaluate the value of examining tumour edges and tumour centre,
compared to examining a comparable number of separate areas in
the tumour centre. Our results indicate that microscopic tumour
invasive edges (including tumour budding) are present in tumour
centre areas to a similar degree to gross tumour invasive edges.
Therefore, our study can underscore the value of examining immune
cells in tumour centre areas containing microscopic tumour invasive
edges that are ubiquitous across tumour areas (regardless of gross
tumour edges or tumour centre areas). A few recent studies have
shown the combined measurements of tumour-infiltrating lympho-
cytes and tumour budding may have higher prognostic power than
either measurement alone [56, 57]. Our results are in accordance
with these reports, as lymphocytic infiltrates and tumour budding
had prognostic value independent of each other. Taken together,
these results support the significance of simultaneous measurements
of tumour budding and T-cell infiltration as prognostic biomarkers,
potentially providing more comprehensive estimate of the tumour-
host interactions than either parameter alone.

Our study has several limitations. First, we assessed T-cell densi-
ties using TMAs, which only allow for the examination of a small
tumour region. Due to intratumour heterogeneity, use of TMAs also
led to potential misclassification of T-cell densities; because this het-
erogeneity is expected to have a nearly random distribution, it would
tend to drive our results towards the null hypothesis. Additionally,
the TMAs were constructed from two to up to four tumour tissue
cores including tumour centre and tumour margin from each tumour
[18]. In a separate, ongoing study, we have determined that examina-
tion of at least two TMA cores can provide reasonably accurate
immune cell density measurements when compared to more exten-
sive sampling (unpublished data). These suggest that T-cell densities
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based on the TMAs can represent the overall T-cell densities of each
tumour, supporting our finding that inverse association of cytotoxic T
cells and tumour budding in the tumour microenvironment. Second,
despite using the ITBCC criteria, the evaluation of tumour budding and
PDCs was still subjective. The data used in this study was based on
visual evaluation by one pathologist. we evaluated the interobserver
agreement between two pathologists in a subset of 140 cases. The
agreement between two pathologists was relatively high for tumour
budding (Spearman’s correlation coefficient 0.79; weighted kappa
0.66) but lower for PDCs (Spearman’s correlation coefficient 0.61;
weighted kappa 0.33), which may favour the reproducibility of tumour
budding evaluation over PDC evaluation. Nonetheless, the agreement
we observed for PDCs is still in line with a multicentre study for PDC
grading, where the median weighted Kappa value amongst 12 institu-
tions was 0.52 (range, 0.23 to 0.77) [46]. Finally, the data on cancer
recurrence were not available in this study. However, given that
median time to colorectal cancer recurrence is approximately 10 to 20
months [58], colorectal cancer-specific survival is expected to be an
accurate surrogate of clinical outcome in a population-based study
with long-term follow-up. Lastly, data on cancer treatment were lim-
ited. However, high-grade tumour budding was associated with poor
survival even considering that the patient with high-grade tumour
budding was potentially treated aggressively.

The strength of the study included the availability of data pertain-
ing to many potential confounding factors in this rich molecular
pathological epidemiology [59-62] dataset, which were adjusted for
in the logistic regression model and Cox regression models. In addi-
tion to clarifying the relationships between tumour budding and
cytotoxic T-cell response, our study represents one of the most exten-
sive validations of the prognostic significance of ITBCC grading of
tumour budding, as well as an investigation of the molecular corre-
lates of tumour budding and PDCs. The study population was
recruited from a large number of hospitals throughout the U.S., which
facilitates the generalisability of our results. Moreover, multiplex
immunofluorescence enabled simultaneous examination of multiple
T-cell markers and identification of specific T-cell subsets not possi-
ble with single marker approaches. Indeed, our analysis indicated
that a specific type of T cell, CD3+CD8+CD45RO+ cytotoxic memory T
cell, defined by a combination of three markers, had the highest
inverse association with tumour budding. Importantly, single marker
CD45RO immunohistochemistry is not adequate for accurate identifi-
cation of this population, as CD45RO may also be expressed by other
immune cell types including macrophages and B cells [63].

In conclusion, we have shown an inverse association of intraepi-
thelial CD3+CD8+ and CD3+CD8+CD45RO+ cytotoxic T cells with the
extent of tumour budding, suggesting a role for cytotoxic anti-
tumour immunity in suppressing microinvasion. Our study, based on
two large U.S. nationwide prospective cohorts, also represents an
extensive validation of the prognostic value of ITBCC evaluation of
tumour budding in colorectal cancer, independent of tumour molecu-
lar features and immune cell densities.
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