PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Murray IA, Luyten YA, Fomenkov A, Dai
N, Corréa IR, Jr., Farmerie WG, et al. (2021)
Structural and functional diversity among Type 11
restriction-modification systems that confer host
DNA protection via methylation of the N4 atom of
cytosine. PLoS ONE 16(7): 0253267 . https://doi.
org/10.1371/journal.pone.0253267

Editor: Albert Jeltsch, Universitét Stuttgart,
GERMANY

Received: March 1, 2021
Accepted: June 1, 2021
Published: July 6, 2021

Copyright: © 2021 Murray et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and its Supporting
information files. SRA sequence read archives for
four of the six strains described: A. species H

(SRX10618618), P. lemoignei (SRX10565630 and

SRX10565631), E. coli NCTC86 (SRX2568521)
and F. nodosum Rt17-B1 (SRX1058899). Two
strains were sequenced by others and not
deposited so we cannot supply raw read archives.

RESEARCH ARTICLE

Structural and functional diversity among
Type lll restriction-modification systems that
confer host DNA protection via methylation of
the N4 atom of cytosine

lain A. Murray®'*, Yvette A. Luyten', Alexey Fomenkov®', Nan Dai', Ivan R. Corréa,
Jr.©', William G. Farmerie?, Tyson A. Clark®?, Jonas Korlach?, Richard D. Morgan',
Richard J. Roberts '

1 New England Biolabs, Ipswich, Massachusetts, United States of America, 2 Interdisciplinary Center for
Biotechnology Research, University of Florida, Gainesville, Florida, United States of America, 3 Pacific
Biosciences Inc., Menlo Park, California, United States of America

* murray @neb.com

Abstract

We report a new subgroup of Type Il Restriction-Modification systems that use m4C meth-
ylation for host protection. Recognition specificities for six such systems, each recognizing
a novel motif, have been determined using single molecule real-time DNA sequencing. In
contrast to all previously characterized Type Il systems which modify adenine to m6A,
protective methylation of the host genome in these new systems is achieved by the N4-
methylation of a cytosine base in one strand of an asymmetric 4 to 6 base pair recognition
motif. Type Ill systems are heterotrimeric enzyme complexes containing a single copy of
an ATP-dependent restriction endonuclease-helicase (Res) and a dimeric DNA methyl-
transferase (Mod). The Type Il Mods are beta-class amino-methyltransferases, examples
of which form either N6-methyl adenine or N4-methyl cytosine in Type Il RM systems. The
Type Il m4C Mod and Res proteins are diverged, suggesting ancient origin or that m4C
modification has arisen from m6A MTases multiple times in diverged lineages. Two of the
systems, from thermophilic organisms, required expression of both Mod and Res to effi-
ciently methylate an E. colihost, unlike previous findings that Mod alone is proficient at
modification, suggesting that the division of labor between protective methylation and
restriction activities is atypical in these systems. Two of the characterized systems, and
many homologous putative systems, appear to include a third protein; a conserved putative
helicase/ATPase subunit of unknown function and located 5’ of the mod gene. The function
of this additional ATPase is not yet known, but close homologs co-localize with the typical
Mod and Res genes in hundreds of putative Type Ill systems. Our findings demonstrate a
rich diversity within Type Ill RM systems.
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Introduction

The Type II restriction enzymes EcoPI and EcoP15I—originally isolated from coliphage P1
and E.coli plasmid P15, respectively—are among the earliest examples of RM systems to be
identified and characterized [1, 2]. Type III systems are typically composed of two functionally
distinct proteins, Mod and Res. The Mod subunit is responsible for specific DNA sequence
recognition and host-protective DNA methylation. The Res subunit contains the endonuclease
domain for DNA cleavage and an ATP hydrolysis domain related to SF2 helicases. Restriction
requires both mod and res subunits, whereas methylation generally requires only the mod
enzyme. In all previously known systems, the mod subunit confers host DNA protection via
N6-methylation of a deoxyadenosine base located within just one strand of a non-palindromic
target DNA sequence. The protein sequences of the EcoPI and EcoP15I Res subunits are
almost identical and the corresponding Mod subunits are also closely related. However, the
amino acid sequences encoding the specificity-defining target recognition domains (TRD)
within each of the Mod subunits are divergent. M.EcoPI methylates the adenine base at the
third position of 5/ ~AGACC-3’ sequences and M.EcoP15I methylates the adenine base at
the fifth position of 5/ ~-CAGCAG-3" sequences [3, 4]. In the absence of cognate methylation,
substrate DNAs are restricted by a Mod-Res complex in a reaction that requires ATP hydroly-
sis and the presence of two or more recognition sites arranged in an inverse orientation—
either head-to-head or tail-to-tail [5-8]. Initial models of Type III enzymes—invoking a het-
erotetrameric structure comprised of two Mod and two Res subunits per active complex [9]—
were subsequently revised in favor of a heterotrimeric Mod-2/Res-1 architecture [10, 11].
Structural analyses of EcoP15I—using small-angle X-ray scattering [12] and X-ray crystallog-
raphy [13]—are also consistent with a single Res subunit associated with a Mod homodimer.
In the crystal structure one subunit of the Mod dimer appears to be primarily responsible for
DNA binding while the second catalyzes methylation of the adenine at the 5th position in the
EcoP15I target sequence. Res-catalyzed phosphodiester bond hydrolysis of unmethylated sub-
strates typically yield products with two base-pair (bp) 5-extensions at a position 25 and 27
base-pairs 3’ of the Mod motif [3, 4]. Several additional Type IIT RM systems have been charac-
terized, including HinfIII which methylates the second A in the sequence 5’ ~-CGAAT-3",
PstIl which methylates the A at the fourth position in the sequence 5’ ~CTGATG-3", and
BceSI that methylates the A at the fourth position of the sequence 5’ ~CGAAG-3 [14-16].
However, in contrast to the Type II RM systems that provided the critical tools for the develop-
ment of recombinant DNA technologies, relatively few Type III RM systems have been charac-
terized in detail. This reflects the difficulty of characterizing cleavage sites by the Res
component, which often gives incomplete cleavage. In addition, the analyses typically required
to define the sequence motifs recognized by Mod subunits—and the identity of the specific A
that was methylated—were technically challenging. However, with the introduction of Single
Molecule Real Time (SMRT) sequencing technology it is now possible to identify N6-methyl-
deoxyadenosine (m6A) and N4-methyldeoxycytosine (m4C) modifications on a genome-wide
scale thereby providing a direct readout of Mod specificities [17-19].

Based on SMRT sequencing observations of asymmetric, single strand m4C modification
motifs in organisms that harbor putative Type III RM systems, we characterized the recogni-
tion specificity for six Type III systems that use m4C methylation for host protection and con-
firmed endonuclease cleavage typical of Type III enzymes for one of these systems.
Additionally, we identify putative recognition motifs for 24 additional Type III m4C systems
from methylome analyses of SMRT sequenced genomes and identify hundreds of Type III sys-
tems highly similar to the characterized MTases that likely also depend upon m4C modifica-
tion. These findings demonstrate Type III RM systems can employ either m6A or m4C for
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host protection, allowing even greater diversity of their recognition target as they evolve to
defend against phage predation, along with an expanded potential for phase-variable transcrip-
tion regulation.

Materials and methods
Materials

Restriction endonucleases, T4-DNA ligase, Phusion-HF and Q5 DNA polymerases, Gibson
and HiFi assembly reagents, S-adenosylmethionine, Nucleoside Digestion Mix and competent
E. coli cells were from New England Biolabs (Ipswich, MA, USA). Plasmid DNAs and PCR
products were purified using spin-column reagents from New England Biolabs. DNA oligonu-
cleotides (for use in PCR or DNA sequencing applications) and a codon-optimized synthetic
gene were purchased from Integrated DNA Technologies (Coralville, IA, USA). Genomic
DNAs of D. thermolithotrophum and F. nodosum Rt17-B1 were purchased from the
DSMZ-German Collection of Microorganisms and Cell Cultures GmbH.

Identification of candidate Type III systems. A group of putative Type III RM systems
that use m4C modification for host DNA protection were identified using Pacific Biosciences
single-molecule real-time (SMRT) sequencing of bacterial genomic DNAs to identify asym-
metric motifs having m4C methylation in one DNA strand [17]. SMRT sequencing was per-
formed on the RSII platform and m4C methylation was characterized using the
"RS_Modification_and_Motif_Analysis.1" program from the SMRT Analysis 2.3.0 software
package. Raw sequence data is available from the SRA sequence read archives for four of the
six strains described: A. species H (SRX10618618), P. lemoignei (SRX10565630 and
SRX10565631), E. coli NCTC86 (SRX2568521) and F. nodosum Rt17-B1 (SRX1058899). Puta-
tive Type III RM systems were predicted using the SeqWare software in REBASE, based on
sequence similarity between the predicted protein sequences and known Type III Mod and
Res proteins.

Isolation of genomic DNAs. A. species H, C. inhibens subspecies gilichinskyi [20] and P.
lemoignei genomic DNA samples were isolated using phenol-chloroform extraction followed
by isopropanol precipitation. Genomic DNA of E. coli NCTC86 was a gift from Dr Swaine L.
Chen.

Cloning and recombinant expression of mod genes. Candidate mod genes from each of
the six bacterial strains were amplified from their respective genomic DNAs using Q5 high-
fidelity DNA polymerase—and introduced into the high-copy pRRS plasmid vector using the
HiFi in vitro DNA assembly method (NEB). DNA sequencing of the cloned genes and flanking
vector sequences was used to confirm production of the bona fide recombinant plasmids. In
the case of the P. lemoignei mod gene a non-canonical TTG initiation codon in the native
strain was replaced with ATG for expression in E. coli. Cloned mod genes were expressed
using either E. coli ER2683 (K strain, dam+/dcm+), E.coli C2523 (B strain, dam+/dcm-) or E.
coli ER2796, a K strain which lacks all host-encoded methyltransferase activities [21].

Confirmation of methylation status of DNAs isolated from E. coli cells expressing Type
ITI mod genes. Pacific Biosciences SMRT sequencing of plasmid and/or genomic DNA sam-
ples was used to confirm sites of incorporation of m4C modifications catalyzed by each of the
Mod enzymes.

Quantitative analyses of Mod activities using an LC-MS assay. Relative abundances of
unmethylated (dC) and methylated (m4C) were determined using liquid chromatography and
mass spectrometry (LC-MS). In this case DNA samples were isolated from a dcm- E.coli host
strain to eliminate m5C contamination which would otherwise confound the analyses. DNA
samples were hydrolyzed to nucleosides using the Nucleoside Digestion Mix (NEB). LC-MS/
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MS analysis was performed in duplicate by injecting digested polynucleotide samples on an
Agilent 1290 UHPLC equipped with a G4212A diode array detector and a 6490A Triple Quad-
rupole Mass Detector operating in the positive electrospray ionization mode. UHPLC was car-
ried out using a Waters XSelect HSS T3 XP column (2.1 x 100 mm, 2.5 pm) with the gradient
mobile phase consisting of methanol and 10 mM aqueous ammonium formate (pH 4.4). Data
acquisition was performed in the dynamic multiple reaction monitoring (DMRM) mode.
Each nucleoside was identified in the extracted chromatogram associated with its specific MS/
MS transition: dC [M+H]" at m/z 228 — 112 and m4C [M+H]" at m/z 242 — 126. External
calibration curves with known amounts of the nucleosides were used to calculate their ratios
within the samples analyzed.

Restriction analyses. Two grams of Escherichia coli NCTC86 cells were suspended in 20
ml sonication buffer (20 mM Tris pH8.0, 50 mM NaCl, 0.1 mM EDTA), sonicated to create a
cell extract and clarified by centrifugation at 30,000g for 15 minutes at 4°C. The extract was
applied to a 5 ml Heparin HiTrap HP column equilibrated in sonication buffer and 3 ml frac-
tions were collected during a 100 ml gradient from 50 mM to 1M NaCl in the same buffer.
Fractions were assayed for endonuclease activity in 1X CutSmart buffer (NEB) supplemented
with 1 mM ATP. A fraction containing Eco86II was identified and used to map cut sites on
pUC19 and pBR322 plasmids. The Eco86I1 fraction was incubated with the closed circular
plasmid DNA for 30 minutes, the reaction mixture was divided and one of several REases that
cut each plasmid once at different positions around the plasmid was added and the reaction
continued for 30 minutes more. DNA fragments were analyzed by electrophoresis on 1% aga-
rose gels.

Sequence alignments. Protein sequence alignments of Type III restriction enzymes
described in this study were constructed using PROMALS3D: a tool for multiple protein
sequence and structure alignments [22].

Results

We characterized the recognition sequence motif, and the base modified to m4C within that
motif, for six m4C Type III restriction-modification (RM) systems, each recognizing a novel
target motif (Table 1). These systems were identified based upon observing an asymmetric,
single-strand-modified motif typical of Type III RM systems, but having m4C methylation
rather than m6A, in the SMRT sequencing methylome analyses of six diverged bacteria: Car-
nobacterium inhibens subspecies gilichinskyi, Pseudomonas lemoignei, Desulfurobacterium
thermolithotrophum, Fervidobacterium nodosum Rt17-B1, Eschericia coli NCTC86 and Acine-
tobacter species H (formerly Bacillus species H, thus systems are named BspHI, BspHII, etc.)
(Fig 1). Putative Type III RM system genes were identified within the genome sequences of

Table 1. Characterized m4C Type III R-M systems.

Enzyme *Specificity Host Organism gDNA source
BspHIV CGCCC Acinetobacter species H. NEB 394

Cinl GAACT Carnobacterium inhibens DSM 13024

DthLIII CACC Desulfurobacterium thermolithotrophum DSM 11699

Eco86I1 GAGCC Escherichia coli NCTC86 Dr. Swaine L. Chen
FnoB1III CGCC Fervidobacterium nodosum Rt17-B1 DSM 5306

Plell CACCGC Pseudomonas lemoignei NEB 418

*The cytosine base methylated in the recognition motif is underlined.

https://doi.org/10.1371/journal.pone.0253267.t001
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Fig 1. Identification of six Type III restriction-modification (RM) systems that methylate the N4 atoms of deoxycytosine bases. Four systems share a
common architecture with previously-identified Type III systems comprised of Res and Mod subunits, whereas two additional systems appear to encode a
third protein subunit located 5 of their respective mod genes. Note that in the case of the BspHIV system there is approximately 140bp of non-coding
sequence between the 3’-end of the helicase-like ATPase subunit and the 5-end of the mod gene. SMRT-sequencing was employed to identify derived
consensus methylation motifs for each of the six Type III RM systems. The tall blue bars indicate the Inter-Pulse Duration (IPD) values associated with
positions of N4C methylation.

https://doi.org/10.1371/journal.pone.0253267.9001

these strains by a sequence similarity search comparing putative protein sequences to known
Type III RM systems, using SeqWare software from the REBASE database [23]. Five of these
six strains contained just one putative Type III system, while the Acinetobacter species H strain
contained two putative Type III systems.

Each of these RM systems contains a Mod subunit with conserved amino-methyltransferase
motifs, including the AdoMet binding motif I (FGG) and catalytic motif IV (DPPY/F) (Fig 2).
Similarly, the Res subunit of each system contains conserved Walker A (GSGKT) and Walker
B (DEXH) motifs typical of ATP-dependent helicase domains, and a canonical PD-(D/E)XK
endonuclease catalytic motif in the carboxy terminal portion of the protein (Fig 3).

To match the identified specificity motif having m4C methylation to the putative Type III
systems, and to identify which BspH system is responsible for the m4C-modified motif, each
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Colored PROMALS3D alignment of m4C-Type III Methyltransferase proteins (sequences in aligned order)
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MTase catalytic motif IV "DPPY/F" and AdoMet binding motif I "F-G-G" highlighted in yellow.
red text indicates predicted helices, blue text indicates predicted beta strands.

Fig 2. Alignment of the six characterized Type III Methyltransferases that methylate the N4 atom of cytosine. Each of the six Mod proteins are beta-
class methyltransferases and contain conserved sequence motifs corresponding to the methyltransferase catalytic motif IV (DPPY) and the AdoMet binding
motif I (FGG) described by Malone et al., [24].

https://doi.org/10.1371/journal.pone.0253267.9002

Mod gene, or both Mod plus Res gene, was PCR amplified, ligated into a suitable vector and
transformed into an E. coli host. The transformed cells were grown to allow methylase expres-
sion and host modification, then total genomic and plasmid DNA was isolated and methyla-
tion motifs were identified using SMRT sequencing and methylome analyses.

SMRT sequencing and LC-MS identification of m4C modification and
recognition motifs

In contrast to all previously characterized Type III RM systems which form m6A, each of the
newly identified systems methylate deoxycytosine bases yielding m4C. The methyltransferase
of C. inhibens subspecies gilichinskyi (M.Cinl) methylates the C at the fourth position of 5’ -
GAACT-3" when expressed in E. coli, though the SMRT methylome analysis indicates methyl-
ation of this particular construct is partial (Table 2). The methyltransferase of P. lemoignei (M.
PleII) methylates the C at the fourth position of 5’ ~CACCGC~-3" . In this case expression of
the Mod gene from the high copy plasmid pRRS resulted in full methylation of the natural tar-
get motif, CACCGC, but also additional methylation at near cognate sites representing relaxed
specificity or ’star’ activity. The methylome analysis indicated significant methylation at
CACCNC sites (Table 2), and lesser modification at CACCGT and CAACGC. This increased
modification is likely a result of over-expression in a non-native context, as no modification of
the extra star sites was observed in the native host. The methyltransferase of E. coli NCTC86
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Colored PROMALS3D alignment of m4C-Type III Endonuclease proteins (sequences in aligned order)
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Helicase Walker A motif GSGKT and Walker B motif DEAH highlighted in yellow.
PD-ExK endonuclease motifs BB and BBE (or EBE/EBH) highlighted in magenta.

red text indicates predicted helices, blue text indicates predicted beta strands.

Fig 3. Alignment of the six characterized Type III endonucleases. The Res subunit of each system contains a conserved Walker A (GSGKT) and Walker
B DEAD-BOX/DEXH motif typically associated with ATP-dependent DNA helicase proteins, and a canonical PD-(D/E)XK endonuclease catalytic motif

located toward the carboxy terminus.

https://doi.org/10.1371/journal.pone.0253267.9003

(M.Eco86II) methylates the C at the fourth position of 5/ ~GAGCC-3" . Perhaps unsurpris-
ingly, recombinant expression of this E. coli gene in our laboratory E. coli strain gave full meth-
ylation that was specific for the native site, even when expressed from the high copy vector,
Table 2. We expressed the methyltransferase of both of the putative Type III systems found in
A. species H and performed methylome analysis. M.BspHIV, locus tag HUK62_04085, was
found to efficiently methylate the C at the fourth position of 5/ ~CGCCC-3’ when expressed
in E. coli. The other putative Type III system from this strain was found to modify adenine to
m6A in the recognition motif AGCACC and was designated BspHIII (MTase gene locus tag is
HUK62_00355) Table 2. The D. thermolithotrophum and F. nodosum Rt17-B1 systems (M.
DthLIII and M.FnoB1III) were confirmed to methylate the Cs at the third position of 5 -
CACC-3’ and 5’ ~CGCC-3", respectively, the latter motif having been previously reported

by Blow et al., [25].

Recombinant expression of the mod gene alone for M.BspHIV, M.Cinl, M.Eco86II and M.
PlelI was sufficient to generate cytosine methylation in a laboratory E. coli strain lacking any
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Table 2. Modification detection by SMRT sequencing.
(dam GATC m6A reported for E. coli clones expressing dam MTase)

Enzyme MTase construct “m4C % detected Coverage dam m6A %
BspHIV CGCcC

Native organism 98.5 181x na

M.BspHIV-pRRS 97.6 90x 99.9
CinI GAACT

Native organism 98.4 146x na

M.CinI-pRRS 25.3 82x 99.9
DthLIII CACC

Native organism 85.5 550x na

M.DthLIII-pRRS 0 93x 99.9

M.DthLIII+R.DthLIII-pRRS 90.6 2954x 100
Eco86l11 GAGCC

Native organism 92.3 77x 99.6

M.Eco86II-pRRS 98.9 76x 99.9
FnoB1III CGCC

Native organism 47 not reported na

M.FnoBI1III-pRRS 0 81x 99.9

M.FnoBI1III+R.FnoB1III-pRRS 63.7 163x 99.9
Plell CACCGC

Native organism 99.9 158x na

M.PlelI-pRRS 73.9 86x 99.9

M.PlelI-pRRS CACCNC "star" 69.3 86x 99.9

an

m4C percent detected" is percent of m4C motifs called as modified using the standard PacBio methylome analysis with default settings. Coverage is per strand for the

motif. dam m6A methylation calls are shown as a control for systems expressed in E. coli carrying the dam methyltransferase.

https://doi.org/10.1371/journal.pone.0253267.t1002

endogenous methylation (ER2796). In addition to the SMRT sequencing methylome analyses,
the m4C modified cytosine was detected via hydrolysis of the plasmid DNA to individual
nucleosides, followed by quantitation using liquid chromatography and mass spectrometry
(LC-MS), Table 3. Methylated cytosine residues were detected for these four systems express-
ing Mod alone. The percentage of modified C bases detected closely matched the expected
value for full modification at the specific recognition motif for M.BspHIV and M.Eco8611
(Table 3), in agreement with the SMRT methylome analysis detection of 97.6% and 98.9% of
their sites as methylated (Table 2). An overabundance of modified cytosine relative to the
number of target sites in the M.Plell expressing strain. Table 3 reflects the additional modifica-
tion at near cognate ’star’ sites for this clone that is observed in the SMRT methylome analysis,
Table 2. For M.Cinl the LC-MS data showed only half the expected percentage of modified
cytosine, which again agrees well with the SMRT methylome analysis that detected only partial
modification.

Modification requirement for both MTase and ENase

In the case of the two systems isolated from thermophilic species, D. thermolithotrophum and
F. nodosum Rt17-B1, we were unable to detect activity of the respective mod genes in E. coli
using either SMRT methylome analyses or the LC-MS assay. Initially we assumed this was
most likely a consequence of expressing the genes at a temperature much lower than optimal
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Table 3. LC-MS analyses of m4C modification for Type III systems.

Enzyme Genes Specificity m4C% Target Plasmid Expected m4C%
(m4C/m4C+C) sites size(kb) sites/total “C”
BspHIV mod CGCCC 0.35% 9 59 0.36%
0.35%
Cinl mod GAACT 0.21% 9 4.7 0.43%
0.21%
DthLIII mod CACC 0.0% 28 5.3 1.34%
0.0%
mod-+res 1.00% 32 8.3 1.11%
1.00%
FnoB1III mod CGCC 0.0% 31 5.3 1.48%
0.0%
mod+res 1.31% 34 8.3 1.10%
1.35%
Eco8611 mod GAGCC 0.23% 6 5.9 0.24%
0.23%
Plell mod CACCGC 1.24% 5 53 0.18%
1.25%

Plasmid DNAs expressing Type III mod genes were isolated from stationary phase cultures of E. coli C2523 (dcm-/dam+). Two independent isolates of each plasmid
DNA were hydrolyzed to nucleosides using the Nucleoside Digestion Mix and resolved and quantified using LC-MS. m4C percentage methylation data indicate the
mean values for each pair of independent plasmid replicates. Expected m4C percentage indicates the percentage of recognition motif cytosine targets in the substrate
plasmid. The methylated bases from each isolate are highlighted in bold text. Note that in the case of the two thermophilic isolates co-expression of both mod and res

genes is required for expression of their cognate MTase activities.

https://doi.org/10.1371/journal.pone.0253267.t1003

for the native strains, or alternatively, that the codon preferences of the thermophile genes
were suboptimal for E. coli expression. In an attempt to address the latter, we obtained a syn-
thetic Desulfurobacterium mod gene with a sequence that was codon optimized for expression
in the heterologous E. coli host. However, when the synthetic gene was expressed in E. coli, we
were still unable to detect any evidence of m4C modification by LC-MS, Table 3. This sug-
gested that expression of the isolated mod gene alone was insufficient to confer methylation
competency.

Although we are unaware of any precedent among previously characterized Type III sys-
tems, we decided to address the possibility that expression of the cognate res gene might be
required to support methyltransferase activity. We therefore co-expressed the mod and res
genes of both the Desulfurobacterium and Fervidobacterium RM systems in E. coli and in each
case the previously absent m4C methyltransferase activity was detected upon co-expression of
mod with the cognate res genes, Table 3.

Restriction endonuclease activity

To test if these systems have Type III endonuclease activity, we performed in vitro assays using
a protein extract prepared from the Eco86II system native strain. We prepared a crude protein
extract and partially purified this by ion exchange/affinity chromatography over a Heparin col-
umn. Heparin fractions were assayed for endonuclease activity by cutting either pUC19 or
pBR322 plasmid DNA, both of which have head to head (HtH) oriented 5’ ~GAGCC-3"
Eco86I1 sites. After allowing the Type III system to act on the circular plasmid DNA, which
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Fig 4. Eco86II endonuclease activity. Partially purified Eco861I enzyme was used to digest pUC19 plasmid substrate containing 3 sites: one in
the forward direction and two in reverse orientation. After cutting with Eco86II, the reaction was divided and cut with six REases that cleave
pUCI9 once at known positions. Although the Eco86II digestion is only partial, fragments having lengths corresponding to the distance
between the known REases and the Eco86II cleavage positions are observed, demonstrating specific Eco86II cleavage downstream from its
GAGCC recognition motif. The original gel photograph is available as S1 Raw image.

https://doi.org/10.1371/journal.pone.0253267.g004

enables 1D communication between HtH sites, the reaction was split and REases that cut once
at various locations were added to linearize the plasmid and drop out diagnostic fragments
generated by complete cutting at the linearizing REase site and any cutting by Eco86I1.
Although only partial Eco86II cutting was observed, the sites of cutting mapped to the
expected positions for Eco86II (approximately 25 bp 3’ to the GAGCC Eco861I recognition sites
in these DNAs), confirming that the Eco86II system has restriction as well as methylation
function (Fig 4).

Additional putative ATPase gene adjacent to MTase and ENase in some
systems

The genomic organization for four of the new systems is similar to that of previously charac-
terized Type III systems insofar as each contains a prototypical arrangement of mod and res
genes. The remaining two systems differ in that they each have an additional, highly conserved
gene located immediately 5’ of the mod gene and which has amino acid motifs typical of ATP-
dependent SF2 DNA helicases. This potential extra helicase-like ATPase gene was not required
for methyltransferase activity. We performed MS-MS peptide spectroscopy on the partially
purified Eco86II restriction enzyme isolated from native cells (Fig 4) which detected both the
mod and res proteins but no peptides from this putative additional helicase-like ATPase.
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Table 4. Putative m4C Type III R-M systems.

Enzyme Specificity Host Organism

Ahal03061V CCACG Acinetobacter haemolyticus NCTC10306
Bbr1054211 TCACCG Bordetella bronchiseptica NCTC10542
Bca785201 GAACCC Brevibacterium casei 3012STDY7078520
Bhi1320011 CACCGC Bordetella hinzii NCTC13200

Bpe5641 AGCCGCC Bordetella pertussis H564

EcoF97921 GAGCC Escherichia coli F9792

EcoB41031I GAGCC Escherichia coli O27:H7 B4103-1

Gel1640111 GGACCG Geopsychrobacter electrodiphilus DSM 15401
Kaq160711I GGACT Kangiella aquimarina DSM 16071

MspCY2I AGCGCC Microbacterium sp KROCY2

MspMMI1I CCACCC Microbulbifer species CCB-MM1

Pmi2911 GAACT Proteus mirabilis AR_0029

Sen6016I11 GAGCC Salmonella enterica NCTC6016

Sen105361V GAGCC Salmonella enterica NCTC10436

TmeBIV CGCC Thermosipho melanesiensis BI429 DSM 12029
VAIA211 CARCCC Vibrio fluvialis AK 1296-A2-1

Vnal637411 CCACCG Vibrio natriegens CCUG 16374

Vsp20II GCACCC Vogesella species NEB_P20

Additional Type III m4C systems predicted from SMRT methylome data and bioinformatics as reported in the REBASE database. These additional Type III m4C
systems are predicted from bacteria that have a single Type III system based on bioinformatic analysis of their predicted genes, and which have a single Type III-like
single strand m4C modified motif detected in SMRT methylome analysis. While these systems have not been verified by biochemical assays or by expressing the system

in a heterologous host and performing SMRT methylome analyses, the prediction of the recognition motif and function for these systems is of high confidence.

https://doi.org/10.1371/journal.pone.0253267.1004

Type III systems that use m4C methylation are widespread. There are now 24 examples of
Type III RM systems in REBASE [23] that can confidently be predicted to match a SMRT
methylome m4C specificity motif. These enzymes recognize 17 different motifs and 5 different
patterns of bases that are specifically recognized 5’ (2, 3 or 4 base pairs) and 3’ (1, 2 or 3 base
pairs) to the cytosine that is methylated, Table 4.

Discussion

In this work we describe the first examples of Type III RM systems which exploit methylation
of the N4 atoms of deoxycytosine for host DNA protection. Using SMRT sequencing of geno-
mic DNAs we identified six candidate m4C Type III RM systems and defined the sequence
specificities of their respective mod genes.

The m4C Type III systems characterized have rather diverse Mod protein sequences
(Fig 2). This suggests either m4C methylation arose early in the evolution of Type III systems,
or that it has arisen multiple times within diverged families of Type III systems. Since m6A
and m4C MTases have identical chemistry in acting on an exocyclic nitrogen it seems likely
that m4C modification could readily evolve from m6A MTases. The Res proteins are also quite
diverse, also suggesting ancient lineage (Fig 3).

These six Type III RM systems characterized appear to fall into three groups. The C. inhi-
bens and P. lemoignei group have a typical Type III architecture consisting of two genes, mod
and res. In each case, recombinant expression of the respective mod gene alone was sufficient
to confer robust m4C methyltransferase activity.
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The second group is comprised of two systems isolated from the thermophilic bacteria D.
thermolithotrophum and F. nodosum Rt17-B1. Robust methyltransferase activity was only
detected in these systems when both the mod and res genes were co-expressed, suggesting that
unlike other Type III systems mod alone is insufficient for methylation.

The third group of Type III systems, identified in the genomes of A. species H and E. coli
NCTCS86, differ from the other systems by virtue of an additional gene located 5’ of the mod
and res genes. This additional gene contains sequence motifs typically associated with ATP-
dependent helicase enzymes but does not contain a PD-ExK or another endonuclease motif.
This putative ATPase is not homologous to the RES subunit of the adjacent Type III system.
The biological role of this additional putative helicase-like ATPase gene is unclear although it
appears to be intimately associated with its neighboring Type III system through the logic of
guilt by association based on their consistently close proximity in more than 500 genomes.
The Res subunits of Type III systems function by using the energy of ATP hydrolysis to rear-
range the Mod2Res complex into a translocation competent complex that diffuses along the
DNA to contact another Mod2Res complex bound at an inverted site. Whether this potential
additional helicase-like ATPase supplements the translocase activities of the canonical Res sub-
unit remains to be seen, but the intimate genomic association with the Mod and Res in these
systems suggests this additional helicase-like ATPase plays some role in these systems. We
examined the partially purified Eco86II enzyme preparation that gave partial cutting in vitro
(Fig 4) using Mass Spec and did not observe any peptides from this additional helicase-like
ATPase gene, indicating this extra protein is not required for Eco86II cleavage. Any role it
may have will require further investigation.

Type III m6A methylation has been shown important in regulating gene expression and
thus virulence through phase variable on-off expression in a number of bacteria [26]. The
m4C Type III Mod systems extend this capability, but to date no examples have been
described.

With these findings, m4C modification is now found across Type I, Type II and Type III
RM systems. The Type I m4C systems have gamma-class MTases and all known such systems
have one m6A and one m4C MTase protein and modify one strand to m6A and one to m4C.
The Type I MTase proteins and their corresponding S recognition domains are highly similar,
suggesting recent evolution of the m4C MTase from an m6A MTase ancestor. In contrast, the
Type III m4C systems reported here are highly diverged and thus likely of ancient origin. Type
IT beta-class MTases are also quite diverged and likewise include enzymes that methylate either
m6A or m4C. SMRT methylome analyses strongly suggest m4C modification also functions in
further bacterial defense systems such as BREX systems.
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