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ABSTRACT

Motivation: Microarray expression data reveal functionally
associated proteins. However, most proteins that are associated
are not actually in direct physical contact. Predicting physical
interactions directly from microarrays is both a challenging and
important task that we addressed by developing a novel machine
learning method optimized for this task.
Results: We validated our support vector machine-based method
on several independent datasets. At the same levels of accuracy,
our method recovered more experimentally observed physical
interactions than a conventional correlation-based approach. Pairs
predicted by our method to very likely interact were close in the
overall network of interaction, suggesting our method as an aid for
functional annotation. We applied the method to predict interactions
in yeast (Saccharomyces cerevisiae). A Gene Ontology function
annotation analysis and literature search revealed several probable
and novel predictions worthy of future experimental validation. We
therefore hope our new method will improve the annotation of
interactions as one component of multi-source integrated systems.
Contact: ts2186@columbia.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

1.1 Protein interactions are crucial to medical biology
Networks of protein–protein interactions provide a framework for
the understanding of biological processes and can give insights
into the mechanisms of diseases. Interaction networks can assist
in designing drugs that modulate specific disease pathways (Ofran
et al., 2005; Ryan and Matthews, 2005). The identification of
protein–protein interactions is, therefore, of primary importance.

Recent years have seen great advancements in experimental
techniques, such as yeast two-hybrid (Y2H) and coimmunopreci-
pitation (CoIP) that probe protein interactions in a high-throughput
fashion (Gavin et al., 2006; Giot et al., 2003; Ho et al., 2002; Ito
et al., 2001; Uetz and Pankratz, 2004; Uetz et al., 2000). Y2H
focuses on physical interaction between two proteins, while CoIP
detects groups of proteins that are part of the same permanent or
temporary complex. Most interactions are deposited in databases,
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such as IntAct (Kerrien et al., 2007), DIP (Salwinski et al., 2004),
BIND (Bader et al., 2003) and MIPS (Guldener et al., 2006). In this
study, we focus on physical protein–protein interactions.

1.2 Physical interaction versus association
The term ‘protein interaction’ has different meanings. We consider
two proteins to interact physically if and only if some of their
residues are in contact at some point in time. Assume, protein A
activates B at time T1, separates from B at T2 and B regulates C
at T3. A and C do not interact by our definition; instead, they are
associated. Even for T1 = T2 and the three proteins form a somehow
stable complex, by our definition A and C would still not physically
interact.

1.3 Expression correlation poorly predicts physical
interactions

The Gene Expression Omnibus (GEO) database (Barrett et al.,
2005) at the National Center for Biotechnology Information (NCBI)
holds >200 000 microarray experiments (February 2008), and this
is only one resource (Parkinson et al., 2005; Sherlock et al.,
2001). Microarray data has been widely used in elucidating
biological mechanisms, specifically in discovering functional
modules, pathways (Bar-Joseph et al., 2003; Segal et al., 2003a)
and reverse engineering regulatory networks (Hartemink, 2005;
Margolin et al., 2006; Segal et al., 2003c).

Microarrays provide noisy measures for the states of a
complex biological system. Various types of systematic and
stochastic fluctuations contribute to noise during biological sample
preparation, hybridization, expression measurement and image
processing (Schuchhardt et al., 2000). Another level of noise
originates from the fact that each microarray experiment measures a
single value for a gene that reflects its activity averaged across many
biological processes. This mixing of underlying signals renders the
inference of interactions particularly challenging. One approach
to filtering systematic noise is the projection technique, which
includes methods such as principal component analysis (PCA)
and independent component analysis (ICA). They transform high-
dimensional input data into lower dimensional components that
capture the most important variations in the original data (Alter et al.,
2000; Lee and Batzoglou, 2003; Liebermeister, 2002).

Since interacting proteins need to be present at the same time and
place to physically contact each other, their expression as measured
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at the mRNA level by microarrays does not predict protein–protein
interactions very well. In fact, many associated proteins showed
levels of correlations almost indistinguishable from non-associated
ones (Jansen et al., 2002). Associations through permanent protein
complexes such as the ribosome and the proteosome are exceptions
to this (Jansen et al., 2002).

Despite this limitation, microarray data has been widely
combined with other evidence such as sequence homology,
function annotations and sequence motifs to predict protein–protein
interactions (Jansen et al., 2003; Rhodes et al., 2005). Those attempts
did not distinguish between associations and physical interactions,
and they all relied on correlations in the microarray data.

Here, we hypothesized that we could squeeze physical
interactions out of microarray data. We introduced a novel method
that effectively improved the direct inference of physical protein–
protein interactions from microarrays, with the ultimate goal of
providing a better plug-in for integrated systems (Ben-Hur and
Noble, 2005; Jansen et al., 2003; Rhodes et al., 2005). We collected
many yeast microarray experiments from GEO and extracted
principal components by PCA. Using trusted interaction data from
DIP, we applied support vector machines (SVMs) (Vapnik, 1998) to
effectively learn from our supervised training data (DIP) which types
of correlations reveal physical interactions and which do not. Our
method predicted physical protein–protein interactions better than
the conventional correlation method, and it discovered meaningful
new physical interactions.

2 MATERIALS AND METHODS

2.1 Microarray data
We used microarray data as a proxy for protein expression and downloaded
349 yeast microarray experiments (Affymetrix S98 chipset, GPL 90 GEO
platform) from GEO. Expression values were log2 transformed and quantile-
normalized to render measurements from different sources and conditions
more comparable. Missing expression values were filled in using k-nearest-
neighbor imputation (Troyanskaya et al., 2001). Affymetrix probe identifiers
were converted to SWISS-PROT identifiers (Boeckmann et al., 2003); data
without corresponding identifiers were discarded. When multiple probes
corresponded to the same SWISS-PROT identifier, we averaged over all
probe intensities. The 349 experiments covered a total of 5823 unique
proteins.

2.2 Protein–protein interaction data
We downloaded the core yeast dataset from DIP (Deane et al., 2002;
Salwinski et al., 2004) as our set of trusted interaction network. The
set/network consisted of 5299 interactions between 2312 proteins. DIP
considers these interactions to be of high quality; they mostly originated from
Y2H or detailed experiments. These interactions constituted the body of all
positives. Since current databases do not document negatives, we generated
5299 non-interactions by randomly pairing the 2312 proteins and excluding
those known to interact (i.e. annotated in DIP). Our solution provides a
more conservative estimate of accuracy than common approaches that pair
proteins from different compartments (Ben-Hur and Noble, 2006; Jansen and
Gerstein, 2004; Jansen et al., 2003).

2.3 Noise removal and feature extraction: expression
modes

PCA and ICA are statistical techniques for revealing hidden factors that
underlie sets of random variables, measurements or signals. It has been
demonstrated that by processing microarray data through PCA or ICA,

proteins with extremely high or low activity in a principal component
are usually involved in related biological processes (Lee and Batzoglou,
2003). Mathematically, the transformation of microarray data into principal
components is:

PX = Y (1)

where X is a 349 × 5823 matrix containing the original microarray expression
values, P is a 349 × 349 matrix discovered by PCA or ICA representing
the important directions of variation in the microarray data and Y is a
349 × 5823 matrix of principal components containing the relative protein
activity along these directions. The rows of Y are by convention sorted by
their importance (i.e. corresponding eigenvalues). We refer to each row of
Y as an expression mode and use the top n to represent proteins. We applied
PCA to our microarray dataset without using any knowledge of protein
function. As expected (Lee and Batzoglou, 2003), we found proteins with
highly activated or repressed activity in an expression mode to usually have
coherent biological roles (Supplementary Material). In our context, PCA
slightly outperformed ICA (T.T. Soong and B. Rost, unpublished data). For
simplicity, we only present PCA results here.

2.4 Input features
We used the expression modes to represent individual proteins: each protein
i is a vector mi of n real values taken from the top n expression modes as
obtained via PCA (i.e. Y1:n,i). We then applied an idea from the prediction of
intra-chain residue contacts (Punta and Rost, 2005): a pair of proteins A and
B was represented by concatenating the expression modes mA and mB. We
also included the Pearson correlation rAB to reflect the information captured
by the single ‘expression component’ used conventionally when inferring
interactions from microarrays (Jansen et al., 2003; Rhodes et al., 2005). The
input features FAB for a protein pair A–B thus became:

FAB = mA ⊕mB ⊕rAB (2)

where ⊕ is the concatenation operator. To maintain symmetry (A–B identical
to B–A) we trained on both FAB and FBA. To infer unknown interactions, we
averaged the scores of A–B and B–A.

2.5 Using machine learning to improve prediction
The naïve Bayes algorithm in Jansen et al. (2003) and Rhodes et al. (2005)
integrates many types of evidence such as microarray expression and function
annotation. Given n types of evidence E1 ,…, En, whether two proteins
interact (posterior odds) depends on how each evidence Ei supports the
interaction (likelihood ratioi), and our knowledge of how often proteins
interact by chance (prior odds):

p(interact = T |E1,...,En)

p(interact = F|E1,...,En)︸ ︷︷ ︸
posterior odds

=
n∏

i=1

p(Ei|interact = T )

p(Ei|interact = F)︸ ︷︷ ︸
likelihood ratioi

· p(interact = T )

p(interact = F)︸ ︷︷ ︸
prior odds

, (3)

where each evidence Ei multiplicatively contributes likelihood ratioi

to posterior odds. When we use microarray data as evidence E1, the
corresponding likelihood ratio1 becomes:

likelihood ratiomicroarray = p(corr = r|interact = T )

p(corr = r|interact = F)
, (4)

where r is the Pearson correlation between two proteins’ microarray
expression. Improving this microarray component could thus directly add
to the performance of the integrative system.

Here, we used the SVM to improve this microarray component. The SVM
is a machine learning method based on statistical learning theory. It projects
the input data into a higher dimensional space and finds a hyperplane that
best separates the data. The SVM maximizes the shortest distance from
the data points to the hyperplane to minimize generalization error. SVMs
have been used extensively in computational biology (Liu et al., 2006;
Melvin et al., 2007; Nair and Rost, 2005). We used the LIBSVM package
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(Chang and Lin, 2001) with Gaussian RBF and default parameters. An SVM
score is reported for every protein pair [Equation (S2), Supplementary
Material].

We implemented the correlation-based module [Equation (4)] as the
baseline for comparison. For simplicity, we refer to it as the ‘Bayesian model’
and the likelihood ratio as the ‘Bayes score’. We used Gaussian kernel density
estimation to calculate the likelihoods for continuous levels of r. Note that
the prior odds do not affect the Bayes score calculation [Equation (4)] and
the classifier comparison.

2.6 Cross-validation
We performed standard 10-fold cross-validation experiments where the
positives and negatives were randomly split into 10 subsets of equal size; nine
subsets were used for training, and one for testing. We cycled through the
sets such that each example was used for testing exactly once. For the SVM,
to account for noise in the data, we used the default parameters (e.g. cost and
class weights) without further optimizing them by a grid search approach on
the training data (i.e. cross-training). All reported levels of performance are
valid for the test sets and reflect the expected performance for protein pairs
never encountered before.

2.7 Performance measures
We assessed performance through the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC). The true positive
rate (TPR) and the false positive rate (FPR) were compiled as follows:

TPR = TP

P
, FPR = FP

N
(5)

where TP is the number of correctly inferred interactions, P the total number
of all observed interactions, FP the number of incorrectly inferred interactions
and N the total number of all non-interactions. For each classifier, we
tried different threshold values above which protein pairs were classified
to interact, thereby yielding a complete ROC curve. The calculation was
performed using the ROCR program (Sing et al., 2005). Results were
reported over all protein pairs in all 10 cross-validation test sets.

3 RESULTS

3.1 SVM gets physical protein–protein interactions
from microarrays

We trained our SVMs with different numbers of expression modes
and evaluated the performance using 10-fold cross-validation. We
compared the SVMs to the conventional correlation method, which
we had implemented as a Bayesian model [Equation (4)] and
evaluated using the same data and cross-validation procedure.

The Bayesian model alone inferred physical interactions from
microarrays slightly better than random (Fig. 1A, green line versus
diagonal). The SVM with only 20 expression modes (blue) already
improved significantly over the Bayesian model (green) using all
349 microarrays. Increasing the number of expression modes used
as SVM input improved performance until saturation at ∼150
expression modes (Table 1). The improvement originated from
two sources: the SVM and the expression mode extraction. A
small number of expression modes improved the performance over
using all microarray data (e.g. SVM20 >SVMALLMA), and the
performance continued to increase when we incorporated more
expression modes (e.g. SVM150 >SVM50 >SVM20, see Fig. 1,
Table 1).

High improvements in AUC may be meaningless if we failed
to identify at least some interactions without mistakes. Closer

A B

Fig. 1. ROC curves for inferring physical interactions. (A) The green line
marks the baseline Bayesian classifier trained on all 349 microarrays. The
other lines represent the SVMs, e.g. SVM20 used 20 expression modes
(blue); SVMALLMA (red) used all 349 original microarrays as input. In
addition to the expression modes or original microarray data, all SVMs
used the correlation information (see Section 2). Optimal predictions are
close to the top left, random predictions close to the diagonal (dotted gray
line). (B) A close-up of the ROC curves for the most confident predictions
(FPR <0.01, i.e. ∼50 false positives). For clarity, we only show the curves
for SVM150, SVMALLMA and the Bayesian model. Our best SVM model
SVM150 consistently outperforms SVMALLMA and Bayes at all confidence
levels.

Table 1. AUC for inferring interactionsa

Classifier AUC (all) AUC (FPR < 0.1) AUC (FPR < 0.01)

SVM20 0.748 0.241 0.052
SVM50 0.765 0.277 0.063
SVM100 0.768 0.290 0.067
SVM150 0.766 0.289 0.079
SVM200 0.766 0.286 0.076
SVM250 0.758 0.278 0.074
SVMALLMA 0.719 0.220 0.047
Bayesian model 0.630 0.157 0.039

aComparison of performance through AUC based on 10-fold cross-validation: AUC
(all): full ROC curve, AUC (FPR < 0.1): area for high accuracy (FDR < 0.1), AUC
(FPR < 0.01): area for highest accuracy (FDR < 0.01).

inspection of the low error region revealed that the SVM method
clearly recovered more true interactions in this realm than the
Bayesian model (Fig. 1B, FPR <0.01, i.e. ∼50 false positives).

3.2 SVM scores partially reflected network distance
We hypothesized that the SVM might have implicitly learned
important information not explicitly used for training, in particular,
that the SVM score might reflect biological relations such as network
distance. We defined the network distance between two proteins as
the number of interactions needed for one protein to pass information
to the other (e.g. A binds B, B binds C; A–C have a distance
of 2). If our assumption is correct, scores will be highest for
physically interacting proteins, lower for pairs associated through
one intermediate and much lower for pairs far apart in the network.

To examine the relationship between microarray-derived scores
and network distances, we trained the SVM and Bayesian classifiers
with our trusted interactions (see Section 2) and inferred two sets
of interaction scores for all remaining pairs in the DIP network.
The first set is from our final SVM (using 150 expression modes);
the other is from the Bayesian model. Technically, this provided two
sets of scores for all remaining 2 660 918 protein pairs. We calculated
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A B

C D

Fig. 2. The SVM captures network distance as shown by the relation between
interaction score and network distance for the SVM (A+C) and for the
Bayesian model (B+D). For clarity, we divided all protein pairs into eight
DIP-distance groups (dist = 2, …, 9, see Section 2); hue (A+B) is proportional
to data density; red lines trace the peaks of the score distributions. (C) SVM:
the scores of closely associated proteins (e.g. dist = 2, cyan) are considerably
higher than those of distantly associated proteins (e.g. dist = 9, blue). On
average the SVM score is indicative of the network distance. (D) Bayesian
model: the scores of closely associated proteins (e.g. dist = 2, cyan) mostly
overlapped with the scores of proteins of all other distances.

the network distances in DIP and compared them to our interaction
scores (Fig. 2A and B).

The distances d between proteins in the DIP network ranged
between 2 and 13, with an average of 5.2. We further plotted the
score distributions with respect to distance for visual clarity (Fig. 2C
and D). SVM scores and network distance were somehow correlated,
i.e. the higher the score, the closer the proteins in the network and
vice versa (e.g. cyan, d = 2 versus blue, d = 9). The scores for the
Bayesian model on the other hand overlapped almost completely,
although there were slightly more low scores for distant protein pairs
(cyan lower than blue). The relationship between distance and score
was much stronger (P � 0.05) for the SVM (Spearman r = −0.29)
than for the Bayesian model (Spearman r = −0.04) as verified using
(Cohen et al., 2003).

3.3 Performance on independent datasets
In addition to comparing the performance by cross-validation (Fig. 1,
Table 1), we also evaluated our methods on two independent
datasets: (i) 29 133 interactions from IntAct, and (ii) 68 755
interactions from known protein complexes in MIPS. A better
method should assign higher interaction scores to important
interactions. Using the SVM and Bayesian classifiers trained on the
previous datasets (see Section 2), we now scored the interactions in
IntAct and MIPS. Since the SVM and the Bayesian scores differed
in their absolute scale, we converted raw interaction scores into
estimated confidence levels (accuracies). In contrast to calculations
of the AUC [Equation (5)], the estimation of accuracy (TF/TP + FP)
depends on the relative numbers of interactions and non-interactions.
This opens up the question of how many interactions exist in yeast:
if the numbers of interactions and non-interactions were similar

A B

Fig. 3. Performance on independent datasets. We tested the accuracy-
coverage (or precision-recall) performance on unseen interactions in two
independent datasets: (A) IntAct and (B) MIPS. The SVM (black) in
general outperformed the Bayesian model (gray), classifying real IntAct
interactions as more likely to occur. The SVM and the Bayesian model mostly
performed equally well for the MIPS interactions of protein complexes.
The error bars indicate assigned accuracies estimated using different
positive:negative ratios (top = 1:1, bottom = 1:284; Supplementary Material).
Asterisks indicate statistical significance (P <0.05; t-test).

(positives:negatives ≈1:1), a random predictor would achieve
∼50% accuracy. We do not know the true numbers, but it has been
suggested that most proteins do not interact with each other (Bader
and Hogue, 2002; Kumar and Snyder, 2002). As some publications
nevertheless use the 1:1 ratio to evaluate accuracy, we estimated the
interaction score versus accuracy relation in two extreme scenarios:
1:1 and 1:284 (Fig. S1 and Fig. S2, Supplementary Material). We
ranked the interactions in each database by SVM or Bayesian score
and looked at the minimum confidence (accuracy) corresponding to
the strongest n retrieved interactions (Fig. 3).

For the IntAct dataset, the interactions were mostly classified as
more likely to occur by the SVM (Fig. 3A). For the MIPS dataset,
the strongest 5000 pairs were rated similarly by the SVM and the
Bayesian model (P >0.05; Fig. 2B). This result might be due to
the large variation in high-accuracy score estimates (Figures S1
and S2, Supplementary Material). More likely, however, this result
confirmed our hypothesis that the SVM-based method improves for
transient physical interactions, while the correlation-based method
already captures very stable complexes that are over-represented in
the MIPS dataset.

The experiments on independent datasets also demonstrated
the challenge of identifying the drops (new interactions) in the
ocean (non-interactions): despite the improved performance (50-fold
increase over random), the SVM still was bound to <20% accuracy
on a genomic scale (Fig. S2, Supplementary Material).

3.4 SVM explored different aspects of protein
interaction

For all 2312 proteins in the core DIP network, we used the
SVM (trained on all previous trusted data; Section 2) to identify
interactions not annotated in DIP. We compared our predictions
to BioGRID (Breitkreutz et al., 2008). BioGRID contains high-
throughput as well as literature-derived data and comprehensively
catalogs several aspects of protein interaction and association (e.g.
affinity capture, two-hybrid and synthetic lethality). The SVM
shows more confirmed predictions than the Bayesian method
in most of these categories (Fig. S4, Supplementay Material).
Furthermore, when summing over all categories that are more likely
to capture physical interactions than associations (Supplementary
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A B

Fig. 4. Predicted interactions confirmed by BioGRID. We show the numbers
of confirmed SVM (black) and Bayesian (gray) predictions. (A) The SVM
predicted more interactions in all categories that tend to capture physical
interactions rather than associations. (B) The Bayesian method on the
other hand predicted more associations through stable protein complexes
as discovered by high-throughput affinity capture experiments.

Material), the SVM outperformed the Bayesian model (Fig. 4A).
The Bayesian method had many more predictions confirmed by
Affinity Capture-MS, a method that detects whether proteins belong
to the same protein complex where most data come from high-
throughput experiments (Fig. 4B). This might be explained by the
observation that proteins in stable protein complexes have highly
correlated microarray expression (Jansen et al., 2002). However, the
SVM fared equally well by small-scale Affinity Capture-Western
experiments (Fig. S4C, Supplementary Material) that also detect
protein complexes. Thus, the discrepancy could also be due to
the technical differences between high-throughput and small-scale
affinity capture experiments. Overall, the SVM has significantly
more predictions confirmed by BioGRID than expected by chance
(Fig. S4, Supplementary Material).

3.5 Prediction annotations suggested potential
interactions

In yet another validation, we carefully inspected the Gene Ontology
(GO) (Ashburner et al., 2000) annotations of the most confidently
predicted protein pairs. Interacting proteins often perform similar
biological roles (Jansen et al., 2003; Rhodes et al., 2005). Since our
methods did not use any information about protein function, similar
annotations between a predicted protein pair would indicate their
interaction as biologically plausible.

We quantified the similarity between GO annotations according to
a previous suggestion (Lord et al., 2003). We identified a minimum
GO score (5.6) above which two proteins are most likely to interact
(Table S2, Supplementary Material). The GO scores suggested
many of the top SVM predictions to be biologically plausible. For
example, 82 of the top 1000 predictions had GO scores >5.6, while
only 15.8 ± 4.5 high scoring pairs were expected among an equal
number of non-interacting proteins. The GO scores of our top 1000
predictions were also significantly higher than those of 1000 random
pairs (P � 0.05, Mann–Whitney test).

Predictions with high GO scores include: elo3_yeast (Sur4p,
YLR372W) and elo2_yeast (Fen1p, YCR034W) with a GO
score of 8.95. These two proteins are required in the formation
of long-chain fatty acids as identified through synthetic lethal
experiments (Oh et al., 1997). The two transmembrane proteins
catalyze specific products in the condensation of long-chain fatty
acids (Dickson et al., 2006). An interaction prediction would
suggest a tandem reaction process or a possible interaction within

lipid micro-domains or rafts, a type of unexpected prediction
that can minimize the experimental limitations of identifying
interactions among transmembrane proteins. A GO score of 6.5
is attributed to the predicted pair of pob3_yeast (YMLO6W)
and ctk3_yeast (YML11W), two proteins involved in chromatin
modulated transcription functions, suggesting a possible role in
regulation of FACT via the Ctk kinase complex (Singer and
Johnston, 2004; Wood et al., 2007). Two ER-Golgi retrograde
transport proteins copb2_yeast (Sec27p, YGL137W) and gcs1_yeast
(YDL226C) have a GO score of 7.1 and have been implicated
through E-MAP experiments (Schuldiner et al., 2005). As one of
the proteins of the COP1 coatomer involved in retrograde transport
of proteins from the Golgi to the ER, Sec27p is known to bind the di-
lysine motif critical to this function. The Gcs1p protein contains the
di-lysine motif and also acts as a mediator in the secretory pathway
thereby suggesting a plausible interaction between the two proteins.

In addition to GO annotations, we manually searched the literature
for some of the strong predictions and discovered several interesting
cases worthy of further investigation. For instance, we predicted
an interaction between the mRNA binding proteins mex67_yeast
(YPL169C) and pub1_yeast (YNL016W). The two proteins share a
common interaction partner, Npl3p (YDR432W) (Deka et al., 2008).
Npl3p interacts with Mex67p in vitro and is associated in vivo with
Mex67p-mRNA (Gilbert and Guthrie, 2004). The Pub1p and Npl3p
interaction was observed in a large-scale TAP-MS study of the yeast
proteome (Gavin et al., 2006). Pub1p resides in both the nucleus
and cytoplasm and is involved in the regulation of mRNA decay
and other post-transcriptional processes (Duttagupta et al., 2005).
Mex67p is involved in exporting RNA out of the cell through the
nuclear pore complex and has been partnered with various accessory
proteins within mRNPs (Stewart, 2007). Homology transfer (Mika
and Rost, 2006) did not reveal this pair; the prediction that Mex67p
and Pub1p interact is therefore novel and awaits experimental
verification.

Other interesting predictions include the interaction between
ypt1_yeast (YFL038C) and vac8_yeast (YEL013W). Vac8p,
a vacuole membrane protein involved in nucleus–vacuole junction
formation (Kvam and Goldfarb, 2006), may also be involved with
the Golgi-targeting GTPase Ypt1p in Golgi-vesicle targeting (Matern
et al., 2000). We also predict the ER to Golgi transport p24
membrane protein (erv25_yeast, YML012W) (Belden and Barlowe,
2001) having a possible interaction with ypt1_yeast, implicating the
Erv25p cytoplasmic tail.

We further explored interaction predictions in the yeast cell-cycle
pathway. We compared our predictions to known interactions from
BioGRID for all known yeast cell-cycle proteins (Wrzeszczynski
and Rost, 2004) and also separately to those found in the current
KEGG database release 45.0 (Kanehisa et al., 2008). In our top 1000
predictions, we found 213 new interactions for 15 KEGG cell-cycle
proteins and 176 new interactions for 20 proteins from our cell-cycle
dataset. The predicted interactions as well as their GO annotations
and scores are available online at http://rostlab.org/svmppi.

4 DISCUSSION AND CONCLUSIONS

4.1 Better inference of physical interactions
We demonstrated that proper preprocessing and machine learning
improve the inference of direct physical protein–protein interactions
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from microarrays. Our method began by removing systematic
noise using PCA, thereby implicitly reconstructing the underlying
biological processes (expression modes) that reflect protein activity
more distinctly than the original expression data. The SVM
employed the expression modes and outperformed the conventional
Bayesian correlation method in predicting interactions; this was true
both for our original 10-fold cross-validation experiment and all
subsequent independent datasets (Figures 1, 3 and 4A, Table 1).
Our method found several interesting predictions of biological
significance.

4.2 SVM provides new measure for protein function
annotation

Besides being more accurate in predicting interactions, the SVM
model also provided a good measure of microarray coexpression
and reflected the relative distance between proteins in the interaction
network (Fig. 2). The SVM’s ability to implicitly capture network
distances may constitute an important improvement over the
Bayesian model: in reconstructing the network of all interactions,
the cost of mistaking distantly associated proteins for interacting
ones is much higher than mistaking closely associated proteins
for interacting ones. In a system of communicating entities,
information degrades when transmitted from the source to the
receiver through intermediates (Shannon, 1948). In the interaction
network, the mutual information between directly interacting
proteins is therefore higher than between proteins that communicate
through intermediates. Although the SVM is not explicitly taught to
learn network distances, the information embedded in the network
effectively allows such a relationship to be learned.

New methods for functional annotation increasingly use global
information from the interaction network. These methods annotate
a protein based on the functions of its immediate interaction partners
or corresponding modules (Bader and Hogue, 2003; Letovsky and
Kasif, 2003; Rost et al., 2003; Schwikowski et al., 2000; Segal
et al., 2003b; Sharan et al., 2007). Since the SVM model can
easily avoid falsely connecting functionally dissimilar proteins, the
resultant interactions are expected to be more functionally coherent
and can further improve protein annotation.

4.3 Limitations and extensions
One limitation of our approach is in data quality. Interactions used
for training and microarrays used for input need to be clean. Current
high-throughput technologies remain error prone and may be far
from complete. Improvements in experimental data will improve
our approach.

Microarrays measure mRNA levels rather than protein abundance
in the cell. Microarray expression is correlated with protein
abundance (Ghaemmaghami et al., 2003), but not enough to predict
protein abundance from mRNA levels. Since the expression of
interacting proteins has been shown to co-evolve in multiple
organisms (Bhardwaj and Lu, 2005; Fraser et al., 2004), an approach
based on co-evolution might augment our predictions.

A formidable challenge to our method as well as to any interaction
prediction method is the ocean of false positives: of all the ∼18
million possible protein pairs in yeast a tiny fraction interact in vivo.
Even tiny false positive rates yield huge numbers of false positives
when trying to predict the entire interactome. Although we have
demonstrated an improvement over the conventional correlation

method and shown many biologically plausible predictions, the
large number of non-interacting pairs still prevents us from making
predictions without giving false positives.

4.4 Future work
As demonstrated by the examples that we looked at carefully,
predictions with similar annotations of function are likely to be true
interactions. Besides microarrays, there are many other data sources
that provide information about protein interactions (Liu and Rost,
2004; Lu et al., 2002; Pavlidis et al., 2002; Pazos and Valencia, 2001;
Pellegrini et al., 1999; Rzhetsky et al., 2004; Sprinzak and Margalit,
2001). Here, we have achieved the goal of improving the prediction
of physical interactions based only on microarray data, now it is time
to benefit from this improvement by integrating other sources. With
such an integrated system, protein interactions could be combined
with other levels of cellular networks (e.g. transcriptional regulatory
and signaling networks) along with temporal and spatial data to
shed light on the phenotypes and dynamic behavior of cells (de
Lichtenberg et al., 2005; Han et al., 2004; Qi and Ge, 2006) and
help understand disease pathways. A particular advantage of our new
module is that it captures interactions between types of proteins that
may not be contained in other experimental data.
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