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Abstract
Background  Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ataxia telangiec-
tasia mutated (ATM) gene. A-T patients manifest considerable variability in clinical and immunological features, suggesting 
the presence of genetic modifying factors. A striking heterogeneity has been observed in class switching recombination 
(CSR) in A-T patients which cannot be explained by the severity of ATM mutations.
Methods  To investigate the cause of variable CSR in A-T patients, we applied whole-exome sequencing (WES) in 20 A-T 
patients consisting of 10 cases with CSR defect (CSR-D) and 10 controls with normal CSR (CSR-N). Comparative analyses 
on modifier variants found in the exomes of these two groups of patients were performed.
Results  For the first time, we identified some variants in the exomes of the CSR-D group that were significantly associated 
with antigen processing and presentation pathway. Moreover, in this group of patients, the variants in four genes involved 
in DNA double-strand breaks (DSB) repair signaling, in particular, XRCC3 were observed, suggesting an association with 
CSR defect.
Conclusion  Additional impact of certain variants, along with ATM mutations, may explain the heterogeneity in CSR defect 
phenotype among A-T patients. It can be concluded that genetic modulators play an important role in the course of A-T 
disease and its clinical severity.

Keywords  Primary immunodeficiency · Inborn errors of immunity · Ataxia-telangiectasia (A-T) · ATM · Class switching 
recombination (CSR) · DNA repair · Modifier genes · Whole-exome sequencing

Introduction

Ataxia-telangiectasia (A-T), also known as Louis-Bar syn-
drome (OMIM #208,900), is an autosomal recessive disorder 
caused by mutations in the ataxia telangiectasia mutated 
(ATM) gene encoding a serine/threonine-protein kinase 

(ATM) [1, 2]. A-T patients exhibit a broad range of clini-
cal manifestations, including progressive cerebellar ataxia, 
oculocutaneous telangiectasia, variable immunodeficiency, 
radiosensitivity, and susceptibility to malignancies [3, 4]. 
Other phenotypes such as infections, pulmonary diseases, 
insulin-resistant diabetes, growth failure, gonadal atrophy, 
cutaneous abnormality, and metabolic and cardiovascular 
disease have also been reported in these patients [3, 5–9]. 
The ATM protein plays a major role in DNA double-strand 
breaks (DSB) repair, cell cycle regulation, and genomic sta-
bility [10, 11]. Furthermore, ATM plays important role in 
B and T cell development (particularly in antigen receptor 
rearrangement) and class switching recombination (CSR) in 
mature B cells [12, 13].

Overall, A-T patients manifest significantly variable clini-
cal and immunological features without genotype–pheno-
type correlation, involving modifying factors. Based on 
serum immunoglobulins (Ig) profile, patients with A-T could 
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be assigned to one of the following subgroups: normal Ig 
level, IgA deficiency, hypogammaglobulinemia, and hyper 
IgM (HIgM) phenotype known as Ig CSR defect (CSR-D) 
[14–17]. The most frequent immunodeficiencies in A-T indi-
viduals are related to IgG2 and IgA deficiencies [15, 18]. 
On the other hand, a minority of A-T patients present HIgM 
phenotype, who manifest low switched Igs (IgG, IgA, and 
IgE) with normal or increased IgM [19, 20]. In our previ-
ous study performed in 2017, we showed that about 20% of 
A-T patients show Ig CSR-D [21]. Generally, A-T patients 
with HIgM experience a more severe course of the disease 
leading to a lower quality of life and shorter survival [22].

Some previous studies have confirmed the role of ATM 
in the CSR mechanism [12, 13, 23]; however, the causative 
pathogenesis of CSR-D phenotype compared to patients with 
normal CSR (CSR-N) in A-T patients remains unclear. T 
cell abnormality and absence of germinal center activation 
due to cellular defect has been proposed, which was failed 
when compared between CSR-D and CSR-N A-T patients 
[24]. It has been hypothesized that the type or the location of 
ATM mutations may be the cause of CSR defect in some A-T 
patients, but the observation of different CSR phenotypes 
in patients with the same mutations falsified this anticipa-
tion [16]. On the other hand, other genetic factors could be 
involved in CSR-D in A-T patients. Nevertheless, no data is 
available to determine the molecular level on the modifica-
tion of ATM activity by other signaling proteins. Towards a 
better understanding of the phenomenon of CSR, we classi-
fied our A-T patients into two groups based on CSR status 
and compared the genotype of the two groups by whole-
exome sequencing (WES). In this study, for the first time, we 
investigated variations in genes other than ATM that might 
be attributed to CSR-D phenotype in A-T patients. The 
majority of the variants we found have known roles in the 
CSR mechanism, suggesting them as potential candidates 
for further investigation in the future.

Materials and Methods

Patients

In this study, we recruited 20 unrelated A-T patients (11 
females and 9 males) from the Iranian Immunodeficiency 
Registry Center at Children’s Medical Center Hospital in 
Tehran, Iran [25]. Diagnosis of A-T patients was performed 
according to the European Society for Immunodeficiency 
(ESID) guideline [26], including ataxia and at least two 
of the following: oculocutaneous telangiectasia, elevated 
alpha-fetoprotein (AFP), lymphocyte A-T karyotype with 
translocation chromosome 7:14, and cerebellar hypoplasia 
on magnetic resonance imaging (MRI).

Classification of Patients Based on CSR

Based on serum Ig levels, A-T patients studied were clas-
sified into 2 groups: CSR-D and CSR-N. A-T patients who 
had a normal serum IgA, IgG, IgM, and IgE were classified 
as CSR-N. On the other hand, A-T patients with decreased 
IgG, IgA, and IgE levels (at least 2SD below normal for 
age), but normal to increased IgM and/or D (at least 2SD 
above normal for age) levels, were classified as CSR-D. 
A-T patients with other types of antibody deficiency (e.g., 
IgA/IgG subclass deficiencies) were not included since they 
present residual CSR function. The amplification of Sμ-Sα 
fragments from genomic DNA by nested PCR strategy and 
in vitro sCD40L + rIL-4-induced B-cell proliferation by cell 
culture was performed to evaluate the capabilities of CSR 
toward IgA and IgE production in all patients, respectively, 
as described in our previous study [22]. Of note, each A-T 
individual’s samples have run on a separated gel to take an 
overall quantitative measure (%); therefore, the exposure of 
gels was not the measured values and does not have any 
impact on this quantitative outcome; all gels were counted 
also in overexposure and triplicate experiments to avoid 
selection bias/sample bias and reported in as groups classi-
fied (CSR-D and CSR-N).

Whole‑Exome Sequencing and Bioinformatic 
Analysis

The patient’s peripheral blood was obtained, and DNA 
was extracted using the salting-out method, as previously 
described [27]. For all patients, WES was performed to 
detect single nucleotide variants, insertion/deletions, and 
copy number variations using a pipeline described previ-
ously [28, 29]. Candidate variants were evaluated by the 
Combined Annotation Dependent Depletion (CADD) algo-
rithm, and an individual gene cutoff given by using the 
Mutation Significance Cutoff (MSC) was considered for 
impact predictions [30]. The Gene Damage Index (GDI) 
server and the Human Gene Connectome (HGC) were used 
to making a combined effect prediction [30]. The patho-
genicity of all disease attributable gene variants was re-
evaluated using the updated guideline for interpretation of 
molecular sequencing by the American College of Medical 
Genetics and Genomics (ACMG) criteria [31, 32].

Case–Control Association Analysis

We used Genome-Wide Analysis Toolkit (GATK) Haplo-
typecaller for joint variant calling on all 20 samples. We 
then performed a case–control (CSR-D vs CSR-N) associa-
tion analysis on the variant allele frequencies (AFs) using 
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the SnpSift CaseControl tool taking into account four dif-
ferent genetic testing models including trend, allele count, 
dominant, and recessive models [33]. The statistical tests 
used were the Cochran-Armitage test for trends and Fish-
er’s exact test for the allele count, dominant, and reces-
sive models. Fisher’s exact test between case and control 
was also repeated at the gene level by aggregating allele 
counts across all variants annotated to the same gene in 
the genome. Cochran-Armitage and Fisher’s exact statisti-
cal tests were performed to identify statistically significant 
variants between two groups of A-T patients. A q-value 
(using Bonferroni correction) of less than 0.05 was consid-
ered statistically significant. Next, functional annotation and 
pathway enrichment analysis for significant genes/variants 
identified from all methods were performed by “EnrichR” 
(comprehensive gene set enrichment analysis extracting 
resources from Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG)) and “DAVID” (Database 
for Annotation, Visualization and Integrated Discovery 
extracting Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) data), which is a comprehensive gene set 
enrichment analysis database (20, 21).

Statistical Analysis

Statistical analysis was conducted by SPSS software package 
version 21.0 (SPSS Inc., Chicago, IL, USA). Median and 
interquartile range (IQR) were calculated and compared for 
demographic data and laboratory findings of A-T patients 
using the Mann–Whitney U test. To analyze the categorical 
variables from the frequency table, the chi-square test or 
Fisher’s exact test was performed.

Results

Clinical Characterization

Based on patients’ immunologic profiles, we considered 
20 unrelated A-T patients (10 A-T patients with normal 
CSR (CSR-N) and 10 A-T patients with CSR defect (CSR-
D)) with the median interquartile range (IQR) age of 5.0 
(4.2–7.7) years old at the time of diagnosis. All the patients 
suffered from ataxia and telangiectasia. Other presentations 
of our patients were recurrent infections (60%) predomi-
nated by respiratory infections (50%), followed by diarrhea 
(35%), dermatologic manifestations (30%), hepatospleno-
megaly (35%), and autoimmunity (15%). We found that the 
frequency of total infections and respiratory infections in 
A-T patients with CSR-D were significantly higher than in 
the CSR-N group (p = 0.020 and p = 0.025, respectively). 
Increased serum level of AFP was seen in all patients, but 
there was no significant difference between the serum AFP 

concentrations of the two subgroups. The main demo-
graphic, clinical, and laboratory characteristics of the 
patients are provided in Table 1. In addition, the distribu-
tion of immunoglobulins for each patient in both groups is 
shown in Figure S1.

To further ensure the accuracy of patient classifica-
tion, cell culture and nested PCR were used to confirm the 
capabilities of CSR toward IgE and IgA in all A-T patients, 
respectively, as described in our previous study [22]. As 
expected, IgE production (Figure  S2) was perturbed in 
patients with CSR-D, but not in the CSR-N group. Moreo-
ver, pooled data of the CSR-D group prove that IgA memory 
B-cells or plasmablasts decreased in these patients and indi-
cate another line of evidence toward the possibility of CSR 
defects compared to other AT patients with IgA memory 
B-cells or plasmablasts which the machinery of CSR and 
DNA repair must function correctly to produce these B cell 
subsets (Figure S3).

Genetic Characterization

Pathogenic mutations in the ATM gene were detected in all 
20 patients using WES (null or deleterious mutations in 90% 
of CSR-D and 80% of CSR-N). So, CSR-N patients did not 
have significantly higher missense/hypomorphic mutations 
compared to the CSR-D group. We detected a homozygous 
mutation in the ATM gene for 16 out of 20 patients (80%), 
while a compound heterozygous mutation was found in four 
patients (20%, 2 CSR-D and 2 CSR-N patients), as described 
in Table S1.

We next performed a detailed analysis of additional vari-
ants found in other genes except for ATM. For identifying 
possible mutations associated with the CSR defect, we com-
pared variant distributions among the two groups of CSR-D 
and CSR-N patients using SnpSift [33]. We obtained 1645 
variants (1074 unique genes) that were statistically signifi-
cantly different between the two groups CSR-D and CSR-N 
(q-values < 0.05). To understand the potential functional 
consequences of the 1645 variants, enrichment analysis was 
performed (Fig. 1).

All subgroups of the three gene ontology (GO) categories 
(biological process, cellular component, and molecular func-
tion) were assessed for enrichment. The GO cellular com-
ponent enrichment revealed an association with the plasma 
membrane (q = 0.00014) (Table S2). Pathway enrichment 
for the KEGG annotated pathways showed a significant 
representation of genes in the autoimmune thyroid dis-
ease pathway (q = 0.0052), allograft rejection (q = 0.0204), 
graft-versus-host disease (GVHD) (q = 0.0253), phago-
some (q = 0.0356), and antigen processing and presenting 
(q = 0.044) pathways (Table S3). Assessment of PANTHER 
protein classes revealed that our gene list is positively corre-
lated with immunoglobulin production (q = 0.0272). Finally, 
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among Jensen disease annotations, our gene list was signifi-
cantly associated with various cancers, including carcinoma, 
kidney, liver, melanoma, breast, and endometrial malignan-
cies (Fig. 2 and Table S4).

Next, we investigated the potential pathogenic conse-
quence of the variants found associated with CSR defect 
status in A-T patients. Among the 1645 variants, those 

with a minor allele frequency (MAF) > 0.05 in the Asian 
population from gnomAD (https://​www.​gnomad.​broad​insti​
tute.​org), Greater Middle East Variome Project (http://​igm.​
ucsd.​edu/​gme/), and Iranome dataset (http://​www.​irano​me.​
ir) which is the most comprehensive catalog of genomic 
variations in the Iranian population to date and also those 
that were not considered as damaging based on Sorting 

Table 1   Demographic, clinical, and laboratory features between A-T patients with CSR-N and A-T patients with CSR-D

Ig immunoglobulin, IQR interquartile range, AFP alpha fetoprotein
Normal ranges for AFP: < 20 ng/ml
Normal ranges for IgG: 500–1300 (mg/dl)
Normal ranges for IgG1: 280–1120 (mg/dl)
Normal ranges for IgG2: 30–630 (mg/dl)
Normal ranges for IgG3: 40–250(mg/dl)
Normal ranges for IgG4: 11–620 (mg/dl)
Normal ranges for IgA: < 1 m: 7–94; 1 to 12 m: 10–131; 1 to 3 years: 19–220; 4 to 5 years: 48–345; 6 to 7 years: 41–297; 8 to 10 years: 51–297; 
11 to 13 years: 44–395; adults: 70–400 (mg/dl)
Normal ranges for IgM: 1 to 3 m: 12–87; 4 to 6 m: 25–120; 7 to 12 m: 36–104; 1 to 11 years: 55–210; adults: 40–230 (mg/dl)
Normal ranges for IgE: < 144 (IU/ml)
* P-value < 0.05 is statistically significant

Parameter Total patients (n = 20) Patients with CSR-N (n = 10) Patients with CSR-D (n = 10) P-value

Age at the study time, years (IQR) 9.0 (7.25–10.7) 8.5 (6.25–11.7) 9.0 (7.25–11.0) 0.241
Age at diagnosis, years (IQR) 5.0 (4.25–7.7) 5.5 (4.0–7.2) 4.8 (4.0–7.0) 0.432
Age at onset of ataxia, years (IQR) 1.2 (0.75–2.0) 1.0 (0.8–2.3) 1.0 (0.8–2.3) 0.324
Age at onset of Infection, years (IQR) 1.8 (1.0–2.8) 2.0 (1.0–2.25) 1.5 (1.25–1.6) 0.371
Age at onset of telangiectasia, years (IQR) 4.0 (2.0–6.0) 4.0 (2.0–6.8) 3.8 (1.75–6.0) 0.223
Delay diagnosis, years (IQR) 3.5 (1.0–5.2) 3.7 (1.25–5.5) 3.0 (1.0–5.0) 0.724
Sex, N (%)
   Male 9 (45.0) 7 (70.0) 2 (20.0) 0.035*
   Female 11 (55.0) 3 (30.0) 8 (80.0)

Consanguinity, N (%) 16 (80.0) 8 (80.0) 8 (80.0) 0.752
Mortality, N (%)
   Alive 17 (85.0) 9 (90.0) 8 (80.0) 0.221
   Dead 3 (15.0) 1 (10.0) 2 (20.0)

Infections (%) 12 (60) 3 (30) 9 (90) 0.020*
Respiratory infection (%) 10 (50) 2 (20) 8 (80) 0.025*
Diarrhea (%) 7 (35) 1 (10) 6 (60) 0.057
Skin manifestation (%) 6 (30) 2 (20) 4 (40) 0.628
Hepatosplenomegaly (%) 7 (35) 1 (10) 6 (60) 0.057
Autoimmunity (%) 3 (15) 1 (10) 2 (20) 0.531
Malignancy (%) 1 (5) 0 (0) 1 (10) 0.305
AFP, ng/ml (IQR) 125.0 (95.0–300.0) 121.0 (91.0–301.2) 126.0 (95.0–303.0) 0.142
IgG, mg/dl (IQR) 740 (460.0–1180.0) 840.0 (522.2–990.7) 90.5 (21.0–215.7)  < 0.001*
IgG1 (mg/dl) 652.0 (98.0–773.0) 767.0 (737.2–1019.5) 98.0 (65.0–347.0)  < 0.001*
IgG2 (mg/dl) 36.0 (28.0–97.0) 65.5 (29.75–153.25) 32.0 (20.0–82.0) 0.189
IgG3 (mg/dl) 33.0 (7.0–74.0) 68.5 (31.0–83.5) 7 .0 (4.0–33.0) 0.009*
IgG4 (mg/dl) 4.0 (1.0–19.0) 15.0 (4.5–28.5) 1.0 (1.0–4.0) 0.004*
IgA, mg/dl (IQR) 25.0 (0–95.5) 58.5 (31.0–100.7) 4.5 (2.25–7.0) 0.001*
IgM, mg/dl (IQR) 175.0 (118.0–420.0) 97.0 (61.0–168.7) 428.0 (135.2–630.2) 0.002*
IgE, IU/ml (IQR) 3.0 (1.0–8.0) 3.0 (1.75–9.0) 2.8 (1.0–7.75) 0.153
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Intolerant From Tolerant (SIFT) and Combined Annota-
tion Dependent Depletion (CADD) criteria were excluded 
to narrow down the list, as variants with a higher chance 
of being damaging and potentially related to the phenotype 
of interest were found. Finally, there were seven variants 
whose specifications are provided in Table 2. Among these 
seven genes, major histocompatibility complex II (MHC II), 
namely human leukocyte antigen (HLA) DR-Beta-5 (HLA-
DRB5( is considered as important protective factors in anti-
gen processing and presentation pathway, suggesting that 
the underlying cause of CSR-D is related to the dysfunction 
in processes related to antigen processing and presentation. 
The other 6 genes have no known functional connection to 
the CSR process (Table 2). Our results suggest a potential 
undiscovered association between these genes and the path-
ways involved with the CSR mechanism that should be fur-
ther investigated in the future.

As a control, we next looked for overlapping variants in 
both CSR-N and CSR-D groups compared to the reference 
genome, i.e., variants specifically found in A-T. After filter-
ing and extraction of common variants among the individu-
als in each of the two groups, we obtained 2153 variants that 
were overlapping between common variants of CSR-N and 
CSR-D groups. We performed enrichment analysis to assess 
the potential functional consequences of these variants. The 

GO biological process enrichment revealed an association 
with the external encapsulating (q = 0.0011) and extracel-
lular structure organization (q = 0.0034) (Table S5). The 
GO biological process enrichment showed association 
with the glycerophospholipid flippase activity (q = 0.0106), 
alpha-1,4-glucosidase activity (q = 0.0420), phosphatidyl-
choline flippase activity (q = 0.0420), phosphatidylinosi-
tol trisphosphate phosphatase activity (q = 0.0420), and 
transmembrane receptor protein tyrosine kinase activity 
(q = 0.0420) (Table S6). The GO cellular component enrich-
ment revealed an association with the collagen-containing 
extracellular matrix (q = 0.0014), an integral component 
of the plasma membrane (q = 0.0290), cytoplasmic vesicle 
membrane (q = 0.0290), and endoplasmic reticulum lumen 
(q = 0.0399) (Table S7). Pathway enrichment for the KEGG 
annotated pathways showed a significant representation of 
genes in the ECM-receptor interaction (q = 0.0004) and 
protein digestion and absorption (q = 0.0295) (Table S8). 
Comparison of these results with the pathway enrichment 
results performed on the non-overlapping variants between 
CSR-N and CSR-D patients (Fig. 2) showed little similarity 
between the enriched pathways. This confirms the specificity 
of our approach in extracting potential candidates that might 
explain the phenotypic differences between the CSR-N and 
CSR-D subtypes.

Fig. 1   Flow chart of data analysis and filtering steps for identification of genetic variants in the 20 A-T patients by WES analysis
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Variants Involved in DSB Repair Pathway

DSB repair pathway is an integral part of the CSR mecha-
nism [34], and A-T patients are known to have defects 
in this pathway. A supervised analysis also was con-
ducted on all variants of DSB repair pathway-related 
genes with significantly different frequencies between 
the two patient groups. Four genes related to this path-
way including MutL Homolog 1 (MLH1), X-Ray Repair 
Cross Complementing 3 (XRCC3), RAD23 Homolog B 

(RAD23B), and FA Complementation Group M (FANCM) 
were identified (Fisher’s exact q < 0.05). Three variants in 
FANCM were identified as protective alterations against 
CSR defect, while all variants of RAD23B, XRCC3 and 
MLH1 increased the risk. The list of the variants of these 
four genes, along with their characteristics, is provided in 
Table 3. All these variants were exonic and missense and 
had a MAF above 1% in our dataset. Also, according to 
SIFT and MutationTaster predicted annotations, these var-
iants are tolerated and polymorphism, respectively. Among 

Fig. 2   The results of GO, 
KEGG, and Jensen enrichment 
analysis on 1074 candidate 
genes. A The top 10 enriched 
GO cellular components for 
candidate genes. B The top 10 
enriched KEGG pathways for 
candidate genes. C The top 10 
enriched Jensen diseases for 
candidate genes
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these variants, the XRCC3 variant is the only variant found 
in all CSR-D patients as heterozygous or homozygous, 
while it was not observed in any of the CSR-N patients 
(Fig. 3). Howbeit, we did not observe differences in the 
severity of clinical and immunological profiles between 
homozygous and heterozygous variants of XRCC3 in the 
CSR-D group. XRCC3 is involved in the homologous 
recombination repair (HR) pathway of DSB DNA repair 
[35], suggesting a strong candidate for explaining variation 
in CSR mechanism among A-T patients.

Next, to assess the specificity of our results in the can-
didate pathway approach, we looked for DSB pathway-
related variants among overlapping common variants 
between CSR-N and CSR-D patient groups. We observed 
that all of the identified variants shared in both the CSR-N 
and CSR-D groups were indeed common polymorphisms 
in the Iranian population (MAF ~ 1), and no variants were 
found that could be significant in terms of frequency and 
function (all were synonymous). Indeed, this finding fur-
ther confirms the relevance of the non-overlapping vari-
ants we found in the DSB repair pathway as described in 
Table 3.

Mutation Accumulation Analysis

Variant-level association analysis is limited to specific vari-
ants recurrently appearing in more than one A-T patient. To 
further extend the association analysis to non-recurring vari-
ants, we repeated the association analysis at the gene level. 
In this regard, we aggregated all variants found in each gene, 
calculated the total variant allele count per gene in each indi-
vidual, and performed a Fisher’s exact test between the two 
groups of cases and controls. The results of the gene-level 
variant association showed significant differences (Benja-
mini Hochberg q-value < 0.05) between CSR-D and CSR-N 
in 110 genes (listed in Table S9). Among these genes, Fan-
coni anemia Complementation Group M (FANCM) and 
Mediator of DNA damage checkpoint protein 1 (MDC1) 
may be related to CSR due to their known roles facilitating 
a DNA damage response leading to DNA repair [35]. Our 
results suggest that mutations in FANCM and/or MDC1 may 
explain the appearance of CSR defects in A-T patients. In 
addition, HLA-DRB5, human leukocyte antigen B (HLA-B), 
HECT Domain E3 Ubiquitin Protein Ligase 1 (HECTD1), 
Moloney Leukemia Virus 10 (MOV10), Kinesin Light 

Table 2   Identification of significant variants based on MAF and SIFT/CADD criteria between A-T patients with CSR-N and A-T patients with 
CSR-D. Hom homozygous, Het heterozygous

Gene Chr Pos dbSNP ID Ref Alt Exonic func Nuc/AA change MAF Cases (CSR-D) Controls (CSR-N)

Protective
   HLA-DRB5 6 32,522,172 rs1136744 G A Missense c.C103T/ p.R35C 0.0436 - 3 Hom
   KIR3DL1 19 54,819,832 rs139070113 G T Missense c.G475T/ p.G159W 0 - 2 Hom, 2 Het

54,818,479 rs62124092 A G Missense c.A235G/ p.S79G 0 - 2 Hom, 3 Het
   GOLGA8J 15 30,093,429 rs201797381 A C Missense c.A1829C/ p.H610P 0.018 - 2 Hom, 1 Het
   MUC6 11 1,016,779 G A Missense c.C6022T/ p.H2008Y 0 1 Het 4 Het

Risk
   GXYLT1 12 42,087,868 rs200973030 C T Missense c.G1148A/ p.C383Y 0.0003 7 Het 1 Het

42,087,869 rs202200134 A G Missense c.T1147C/ p.C383R 0.0003 7 Het 1 Het
   MUC4 3 195,779,671 rs200412534 G T Missense c.C11909A/ p.P3970H 0.0013 5 Het 2 Het
   VWA3B 2 98,311,966 rs17428626 C G Missense c.C2640G/ p.D880E 0.0258 1 Hom, 2 Het 1 Het

Table 3   Identification of significant variants in DSB response pathway between A-T patients with CSR-N and A-T patients with CSR-D. Hom 
homozygous, Het heterozygous

Gene Chr Pos dbSNP ID Ref Alt Exonic func Nuc/AA change MAF Cases (CSR-D) Controls (CSR-N)

Protective
   FANCM 14 45,175,386 rs1367580 G T Missense c.G2554T/ p.V852L 0.1835 2 Het 1 Hom, 5 Het

45,181,697 rs78211950 A G Missense c.A4300G/ p.I1434V 0.1849 2 Het 1 Hom, 3 Het
45,196,265 rs3736772 C G Missense c.C5356G/ p.P1786A 0.2009 2 Het 1 Hom, 3 Het

Risk
   RAD23B 9 107,322,047 rs1805329 C T Missense c.C683T/ p.A228V 0.1858 1 Hom, 3 Het -
   MLH1 3 37,012,077 rs1799977 A G Missense c.A655G/ p.I219V 0.1355 6 Het -
   XRCC3 14 103,699,416 rs861539 G A Missense c.C722T/ p.T241M 0.2435 3 Hom, 7 Het -
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Chain 4 (KLC4), PH Domain and Leucine-Rich Repeat 
Protein Phosphatase 1 (PHLPP1), and Triggering Receptor 
Expressed on Myeloid Cells Like 4 (TREML4) genes with 
known roles in different stages of the antigen processing and 
presenting pathway also appear in the list of 110 genes with 
significant accumulation of variants (Table S9).

Discussion

In the present study, we identified variants at loci involved 
in antigen processing and presentation pathways and DSB 
repair pathway using a case–control comparative approach 
between groups of A-T patients differing in class switching 
recombination. The presence of these variants along with 
ATM mutations may suggest mechanisms involved in the 
CSR defect phenotype observed in a subset of A-T patients.

The clinical features of A-T are complex and multi-sys-
temic, including neurological abnormalities, oculocutaneous 
telangiectasia, recurrent infections, immunodeficiencies, and 
susceptibility to cancers [3]. In this study, all A-T patients 
exhibited ataxia and telangiectasia as the main clinical fea-
tures, but there was no significant difference between the 
onsets of these manifestations in the two groups. Moreo-
ver, we did not observe a significant difference between the 
onsets of other clinical manifestations in the two groups. 
Recurrent infections are the most common manifestation 
associated with immunodeficiency in A-T patients and a 
major factor for early age morbidity and mortality [5, 15, 

36]. We found significantly increased episodes of infections 
(especially respiratory tract infections) in the CSR-D group 
compared to the CSR-N group. Since environmental factors 
should be considered the main modifying factor, the female 
frequency was higher in previously reported cases with 
CSR-D compared to CSR-N [21, 22, 37], as was observed 
in the current assay as well.

A-T patients show variable cellular and humoral immune 
abnormalities [38]. During the last decade, several A-T 
cases have been reported in whom Ig CSR defect has been 
implicated [16, 19, 39, 40]. Some previous studies reported 
that about 10% of the A-T patients present with the HIgM/
CSR-D phenotype [19, 41]. In contrast, our previous study 
showed that the frequency of CSR defect in Iranian A-T 
patients was higher than in other populations (21.2%) [21]. 
Previous studies have shown that the CSR junctions in cells 
of A-T patients are aberrant, indicating a role for ATM in the 
final steps of CSR, including DNA end modification, repair, 
and joining [42, 43], which may suggest ATM as a player 
in the CSR process. However, the majority of A-T patients 
with ATM mutations do not demonstrate CSR defects. Thus, 
the cause of this Ig profile in A-T is not entirely understood. 
The current study supports the notion that A-T patients with 
hyper IgM level, normal T cell subsets, low ability to IgE 
switching with stimulation of CD40L and IL-4, and hav-
ing abrogated IgA memory B-cells or plasmablasts in their 
periphery can be classified as CSR defects; however, other 
hypothetical mechanisms including selective apoptosis 
of IgA, IgG and IgE but not IgM would be an alternative 

Fig. 3   The position (A) and frequency in A-T patients (B) and fre-
quency in the normal population (C) of XRCC3 rs861539 poly-
morphism across A-T patients with CSR-N and CSR-D phenotypes. 
CADD: Combined Annotation Dependent Depletion a tool for scor-

ing the deleteriousness of single nucleotide variants. MSC: mutation 
significance cutoff the lowest expected monogenic disorder based on 
CADD cutoff value for the specific gene
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mechanism for this phenomenon (A-T patients with Ig 
deficiency).

Comparing the genotype of CSR-D and CSR-N patients, 
in the current study, we proposed a new understanding of the 
abovementioned immunological defect. First, we rejected the 
hypothesis that the type, zygosity, or the location (affected 
domain) of ATM mutations may be the cause of CSR-D in 
A-T patients [16], as we observed similar mutation distribu-
tions in the two groups (Table S1 and Figure S4). Moreover, 
evaluation of the exomes of the two groups in an unsuper-
vised manner revealed 1645 variants with significant allelic 
differences between the CSR-D and CSR-N groups. These 
variants represented enrichment terms such as antigen pro-
cessing and presentation pathway, plasma membrane, auto-
immunity, allograft rejection, graft-versus-host disease, and 
malignancy.

We found several variants in the antigen processing path-
way to be associated with the CSR phenotype under study. 
Antigen processing and presentation is a complex process in 
which many molecules and proteins are involved [44]. Once 
a B-cell receptor (BCR) recognizes a particular antigen, pro-
teasomes degrade the antigen, and subsequently, peptide 
fragments were presented at the cell surface through MHC 
class II molecules [45]. MHC class II molecules are highly 
polymorphic and normally expressed only on professional 
antigen-presenting cells such as B cells, dendritic cells, and 
mononuclear phagocytes. CD4+ T cells specific for this anti-
gen initiate a cascade allowing the cognate B cell activa-
tion. In particular, one of the most important interactions 
for humoral immune responses is the engagement of CD40 
molecule on B cells to the CD40 ligand on follicular helper 
T cells [45, 46]. At this point, the activated B cells can either 
differentiate into plasmablasts or get recruited into a spe-
cialized region, called germinal centers (GCs) [47]. In the 
GC, B cells are targeted by clonal expansion, somatic hyper-
mutation, affinity maturation, and CSR, eventually forming 
antibody-secreting plasma cells [48, 49]. It has been pre-
viously suggested that antigen processing and presentation 
are indirectly related to the quantity and quality of Ig class 
switching. For instance, patients with CD40/L deficiencies, 
known as HIgM syndrome, display an impaired production 
of IgG, IgA, IgE, and normal or elevated levels of IgM [50]. 
It would therefore not be surprising to find other genes in 
this pathway particularly HLA-DRB5 to play a role in the 
CSR mechanism.

Several studies have reported that A-T patients with 
CSR-D present with a more severe course of the disease 
leading to a lower quality of life at earlier ages and shorter 
survival than other A-T patients [21, 40, 51]. Moreover, A-T 
is a genomic instability syndrome leading to an extremely 
high incidence of malignancies (10–25%) [52–54]. Leu-
kemia and lymphoma account for 85% of all malignan-
cies in A-T patients in childhood [55]. However, adults are 

susceptible to both lymphoid tumors and various types of 
solid tumors including breast, liver, gastric, and esophageal 
carcinomas [56]. Based on our results, it seems that A-T 
patients with CSR-D harbor additional genomic variants 
mainly associated with various solid tumors such as kidney, 
liver, melanoma, breast, and endometrial cancers.

We also identified several variants in the selected DSBs 
repair pathway with association with the CSR phenotype in 
our study. DSBs are potentially lethal lesions occurring as a 
result of exposure to exogenous agents such as radiation and 
certain chemicals [10]. DSBs also occur as intermediates in 
various biological events, such as V(D)J recombination and 
efficient CSR [57, 58]. The most common pathways used 
to repair DSBs are non-homologous end joining (NHEJ) 
and homologous recombination (HR) [59]. Generally, an 
early event during the DSB response is the activation of 
ATM protein, leading to rapid phosphorylation of several 
proteins involved in DNA repair, cell cycle checkpoint, and 
transcription regulation. Based on the importance of the 
DSB repair pathway in CSR and the defect of this pathway 
in A-T patients, we evaluated genes that are involved in DSB 
repair pathways, and we observed multiple variants signifi-
cantly different between the two A-T groups. Remarkably, 
among these variants, p.T241M variant of the XRCC3 gene, 
the coding protein involved in homology-directed repair, 
considered to be a risk factor observed exclusively in the 
CSR-D group, and in every single case in this group. Indeed, 
NHEJ and alternative end-joining (A-EJ, using homology-
directed repair) are the main pathways involved in the repair 
of CSR breaks. However, some findings demonstrate that 
although AID-induced breaks are repaired primarily in the 
G1 checkpoint by the NHEJ pathway, Igh DSBs that escape 
repair or have defects in NHEJ can persist into the S phase, 
where they are considerably resected and become substrates 
for homology-directed repair using microhomology in the S 
regions (A-EJ) [60–62]. It seems that A-EJ-mediated repair 
of IGH breaks that failed NHEJ-mediated CSR attempts 
would restore an intact IGH allele for the next round of AID 
targeting and CSR. In fact, these findings suggest that A-EJ 
contributes to the repair of CSR-related DSBs [60–63]. 
The main component involved in A-EJ is usually XRCC1 
to recruit LIG3; however, recent studies observed XRCC1 
independent microhomology-mediated A-EJ with a tight 
connection of PARP1 and XRCC3 [64, 65]. On the other 
hand, a few studies reported a role for HR in proliferation 
and genome stability in early B cell development [66, 67]. 
Caddle et al. [66] have demonstrated that HR, with a major 
role of XRCC3, is essential for the promotion of lympho-
cyte differentiation or maturation. The study showed that 
the functions of XRCC2, a homolog member of the RECA/
RAD51-related protein family that participates in HR, in 
early B cell development seem to differ from its roles in 
mature and activated B cells. Indeed, defective HR leads to 
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the accumulation of AID-induced DSBs at both IGH and 
non-IGH loci suggesting that high fidelity repair of AID-
inflicted breaks is required for the B cell genome integ-
rity [60, 68]. These were the first results to implicate HR 
as an important pathway with a defined role in the adap-
tive immune system. In fact, XRCC2 was transcriptionally 
upregulated after B cell activation [67]. Therefore, it seems 
that there is an interrelationship among B cell activation, 
immunoglobulin class switching, and HR which is more 
essential in the context of NHEJ monogenic defects. In our 
study, we found a relationship between XRCC3, as another 
member of the RECA/RAD51-related protein family, and 
class switching recombination. Previous studies in cutaneous 
malignant melanoma and head and neck cancer have also 
reported this variant as a potential risk factor in DSB repair 
[69, 70]. Thus, it is postulated that, along with ATM muta-
tions, this variant of the XRCC3 gene plays an important role 
in CSR defect in A-T patients, which needs to be proved by 
functional studies in the future. In general, possible roles for 
homologous recombination, in either normal B cells devel-
opment or immunodeficiency, remain controversial.

In case–control genetic studies, aggregation analysis is 
often used as a suitable method to identify genes associ-
ated with diseases of interest, even if variants found within 
them are heterogeneous in nature and position. We found 
that some variants of two genes were involved in DSB 
repair, and seven genes related to antigen presentation were 
significantly different between our two study groups. This 
highlights the importance of these two mechanisms in CSR. 
Overall, it seems that the variants of FANCM and MDC1 
genes are highly important due to their effect on normal 
CSR mechanisms. Furthermore, our findings confirm the 
importance of variants of seven genes involved in antigen 
processing and presentation, especially HLA-DRB5, in nor-
mal CSR. However, it is not clear which genetic variant has 
larger effects on the CSR mechanism, and further studies are 
required to elucidate this question with a higher sample size. 
Apparently, important causal variants in the CSR mecha-
nism cannot be identified until functional validation assays 
are performed. Our study calls for further investigations of 
the effect of the identified variants involved in DSB response 
and antigen processing and presentation pathways at func-
tional levels in A-T patients. Moreover, evaluation of other 
CSR defect diseases in the same pathway including MRE11 
and NBN deficiencies and their severity may empower this 
observation in future studies.

To date, no evidence is available at the molecular level 
on potential modification of ATM activity by other sign-
aling proteins, and interaction partners of the ATM pro-
tein are not completely recognized [71]. A comprehensive 
understanding of this field is required for characterizing 
the pathogenesis of A-T and other ATM-related diseases 
such as cancer. Research in this area offers a new horizon 

to increase our knowledge regarding ATM signaling and 
phenotypic diversity of patients, and perhaps these find-
ings would be helpful in the management and prognostic 
estimation of the disease.

Conclusion

Given that similar mutations in the ATM gene result in 
different clinical phenotypes, including different immu-
nological profiles in A-T patients, additional genetic 
alternations are thought to play important roles in A-T 
disease outcomes. In the present study, the relationship 
between the genotype of A-T patients and the CSR defect 
phenotype was investigated for the first time. Our findings 
showed that in addition to the ATM gene variants, variants 
in genes related to this process could help explain CSR 
defects in A-T patients. Further research at the functional 
level is required to complete and confirm the findings 
conclusively.
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