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Abstract

Nonalcoholic fatty liver disease (NAFLD) is a prevalent chron-
ic liver condition with limited treatment options. Inflamma-
tion caused by metabolic disturbances plays a significant 
role in NAFLD development. Stimulator of interferon gene 
(STING), a critical regulator of innate immunity, induces the 
production of interferons and other pro-inflammatory factors 
by recognizing cytoplasmic DNA to defend against pathogen 
infection. The STING-mediated signaling pathway appears to 
play a vital role in hepatic inflammation, metabolic disorders, 
and even carcinogenesis. Promisingly, pharmacological inter-
ventions targeting STING have shown improvements in the 
pathological state of NAFLD. Macrophages, dendritic cells, 
natural killer cells, and T cell pathways regulated by STING 
present potential novel druggable targets for NAFLD treat-
ment. Further research and development in this area may of-
fer new therapeutic options for managing NAFLD effectively.
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Introduction
Owing to the rising prevalence of obesity and type 2 diabe-
tes, nonalcoholic fatty liver disease (NAFLD) has become the 
most common chronic liver disease, with a global prevalence 
of around 25%.1 NAFLD encompasses a spectrum of con-
ditions, ranging from simple steatosis to nonalcoholic stea-
tohepatitis (NASH) and even leading to cirrhosis and hepa-
tocellular carcinoma (HCC). The pathogenesis of NAFLD is 
complex, but inflammation has a crucial role in disease pro-
gression.2 Multiple immune cells and inflammation-related 
signaling pathways have been implicated in the development 
of NAFLD.3 Among these pathways, the stimulator of inter-
feron gene (STING) signaling pathway, an essential regula-
tory protein in the innate immune system, is capable of sens-
ing double-stranded DNA released by hepatocyte injury or 
the enterohepatic circulation. This activation of STING leads 
to liver inflammation, metabolic disturbances, and even car-
cinogenesis in NAFLD. Moreover, studies have shown that 
interventions targeting STING can effectively alleviate the 
pathological state of NAFLD, offering promise for potential 
novel targeted therapies to improve the prognosis of patients 
with NAFLD.4,5

Innate immunity in NAFLD
The innate immune system has a crucial role in NAFLD patho-
genesis, with crosstalk between innate immune cells and 
liver cells contributing to the disease’s initiation and progres-
sion. Various genetic and environmental factors lead to ex-
cessive lipid accumulation in the liver, triggering pathological 
reactions like oxidative stress in mitochondria, endoplasmic 
reticulum (ER) stress and hepatocyte autophagy.6 Injured or 
apoptotic hepatocytes release damage-related molecules, 
such as nucleic acids or proteins, activating liver pattern rec-
ognition receptors and alerting the hepatic-innate immune 
microenvironment in NAFLD. This response involves resident 
Kupffer cell activation and recruitment of immune cells like 
neutrophils, monocytes, natural killer (NK) cells and NKT 
cells, releasing cytokines and chemokines that contribute to 
inflammation.7,8 Gut microbiota also plays a significant role 
in liver inflammation in NAFLD.9 The gut barrier is a physi-
cal barrier that directly prevents the translocation of luminal 
bacteria and bacterial-derived products or toxins. Because 
of changes of the intestinal flora in NAFLD, patients can de-
velop compromised intestinal barrier integrity. Consequently, 
intestinal endothelial permeability, intestinal endotoxins and 
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bacterial breakdown products known as pathogen-related 
molecular patterns, including nucleic acids, proteins, and 
flagellin, can cross the gut barrier and be transported through 
the portal vein to the liver. Then pattern recognition recep-
tors recognize pathogen-related molecular patterns and ac-
tivate innate immune cells, triggering intracellular signaling 
cascades and exacerbating inflammatory damage.10 Notably, 
DNA released by hepatocytes is considered a crucial factor in 
inducing sterile inflammation in NAFLD, while microbial DNA 
derived from the gut also contributes to liver inflammation 
in this condition.11,12 The newly discovered STING signaling 
pathway can identify almost all types of double-stranded DNA 
and is considered the main pathway for cytoplasmic DNA to 
induce the NAFLD inflammatory response.13,14

STING signaling pathway
STING, also known as the 173 transmembrane proteins, is 
a critical component of the host’s innate immune defense 
and can contribute to chronic autoimmune, autoinflamma-
tory, and metabolic diseases.15 STING is primarily localized in 
ER and is expressed in various immune cells, including mac-
rophages, dendritic cells, NK cells, and T cells. In addition 
to immune cells, STING is also expressed in endothelial and 
epithelial cells. These cells are exposed to the external envi-
ronment and can be susceptible to infectious agents, making 
STING’s presence in these cells significant for detecting and 
responding to potential threats. Moreover, STING has been 
implicated in various chronic conditions, including autoim-
mune, autoinflammatory, and metabolic diseases, highlight-
ing its role in regulating inflammation and immune responses 
throughout the body.16,17

Canonical model of STING activation
STING can be activated by cyclic dinucleotides, such as cyclic 
dimeric guanosine monophosphate (c-di-GMP), cyclic dimeric 
adenosine monophosphate (c-di-AMP) and cyclic-GMP-AMP 
(cGAMP), secreted by intracellular bacteria, or by nonca-
nonical 2′3′-cGAMP generated by cGAMP synthase (cGAS).18 
Involving cGAS and cGAMP in STING-mediation is consid-
ered a canonical activation pathway. When abnormal double-
stranded DNA (such as pathogen DNA, host cell nucleus, or 
mitochondrial DNA) is phagocytosed by macrophages, cGAS, 
the cytoplasmic DNA sensor of pattern recognition receptors, 
catalyzes ATP and GTP to synthesize the endogenous sec-
ond messenger cGAMP, which then activates STING in ER.19 
STING then recruits and activates TANK binding kinase 1 
(TBK1), which phosphorylates STING and the transcription 
factor interferon regulatory factor 3 (IRF3) to induce inter-

feron-1 (IFN-1) and other cytokines to exert antiviral and 
antitumor effects.20 Furthermore, STING can activate the nu-
clear factor-kappa B (NF-κB) pathway through a redundant 
TBK1/inhibitor of NF-κB kinase epsilon (IKKε) mechanism to 
induce the expression of inflammatory cytokines, including 
tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-
6).21,22 STING and TBK1 activate the signal transducer and 
activator of transcription 6, which is consequently phospho-
rylated. Subsequently, phosphorylated signal transducer and 
activator of transcription 6 dimerizes and is delivered to the 
nucleus to induce the expression of chemokine ligand (CCL) 
2, CCL20, and CCL26, mediating inflammatory responses.23 
Moreover, the cGAS-STING signaling pathway can induce 
apoptosis, autophagy, and necrosis.24–27

Noncanonical model of STING activation
The STING signaling pathway can be activated independently 
by cGAS and cGAMP. Additionally, etoposide-induced DNA 
damage acts as a danger signal in the innate immune system, 
activating STING through the collaboration of DNA-mediat-
ed binding protein γ-interferon inducible protein 16 (IFI16), 
DNA damage response factors ataxia telangiectasia mutated 
(ATM), and poly (ADP-ribose) polymerase 1 (PARP-1). This 
leads to the assembly of an alternative STING signaling com-
plex involving p53 and tumor necrosis factor receptor-associ-
ated factor 6 (TRAF6). TRAF6 catalyzes the assembly of K63-
linked ubiquitin chains on STING, resulting in the activation of 
NF-κB, but not IRF3, leading to the expression of an alterna-
tive atypical STING-dependent gene program.28 Table 1 pro-
vides a comparison between the canonical and noncanonical 
signaling pathways of STING, illustrating the similarities and 
differences between these two pathways.

In summary, the STING signaling pathway plays a pivotal 
role in the immune system, contributing to antiviral and an-
titumor immune responses. It is also involved in various in-
flammatory diseases, including inflammatory bowel disease, 
NAFLD, unstable angina, and acute myocardial infarction.29

STING signaling pathway in NAFLD
Some studies indicate that the expression of STING increas-
es with the progression of steatosis to NASH inflammation 
and fibrosis, particularly in the hepatic portal vein of patients 
with fibrosis.4 In addition, we performed single-cell nuclear 
sequencing analysis on liver tissues from three healthy indi-
viduals and nine NASH patients using the Gene Expression 
Omnibus dataset GSE212837. The results indicate that the 
expression of STING in the immune cells and hepatic stel-
late cells (HSCs) of NASH patients is significantly higher than 

Table 1.  Similarities and differences of the STING canonical and noncanonical signaling pathways

STING signaling pathway Canonical model activation Noncanonical model activation

Depend on STING; Both activate IRF3 and NF-κB

Activator type DNA transfection Etoposide-induced 
nuclear DNA damage

STING complex composition cGAS, cGAMP ATM, PARP-1, TRAF6, P53, IFI16

Transcription factor activation pattern Predominantly activate IRF3 
and moderately activate NF-κB

Predominantly activate NF-κB 
and moderately activate IRF3

Gene expression profile Higher levels of the chemokine 
CXCL10 mRNA and the IRF3-
responsive gene ISG56

Higher levels of IL-6 
and CCL20 mRNA

ATM, ataxia telangiectasia mutated; cGAMP, cyclic-guanosine monophosphate-adenosine monophosphate; cGAS, cGAMP synthase; CCL20, chemokine ligands 20; 
CXCL10, CXC-motif ligand 10; IFI16, γ-interferon inducible protein 16; IL-6, interleukin-6; IRF3, interferon regulatory factor 3; ISG56, IFN-stimulated gene 56; NF-κB, 
nuclear factor-kappa B; PARP-1, poly (ADP-ribose) polymerase 1; STING, stimulator of interferon gene; TRAF6, tumor necrosis factor receptor-associated factor 6.
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that of the healthy control group (Fig. 1). This suggests that 
increased STING expression acts as an indicator of NAFLD 
progression and the severity of liver disease. However, an-
other controversial study reported decreased expression of 
STING in the liver of NASH patients compared with those 
with steatosis alone. One possible explanation for this dis-
crepancy could be the absence of fibrosis in the cohort par-
ticipating in that specific study. Fibrosis is a critical charac-
teristic of advanced NAFLD, and its presence may influence 
STING expression differently compared to earlier stages of 
the disease.30 Studies have also found that the levels of cGAS 
and STING proteins increased in liver carcinoma patients 
with the increase in liver fibrosis, and were higher than in 
the surrounding cancer tissues.31 These contrasting findings 
highlight the complexity of the STING signaling pathway’s 
involvement in NAFLD and the need for further research to 
fully understand its role in different stages of the disease.

Role of STING in NAFL and NASH
The cGAS-STING pathway can activate liver macrophages to 
induce inflammation and lipid metabolic disorders, IR, and 
hepatocyte apoptosis. Accordingly, the cGAS-STING pathway 
likely plays a pivotal role in the progression of NAFLD and 
NASH (Fig. 2).

Inflammation
The cGAS-STING signaling pathway in the liver can be acti-
vated by various factors, including mitochondrial DNA (mtD-
NA), gut microbial DNA and iron deposition (Table 2). In NASH 
mice, the content of mtDNA in cytoplasmic mitochondria is 

significantly higher compared to normal mice, leading to the 
activation of the STING pathway in hepatic macrophages. 
This activation induces the expression of NF-κB and pro-in-
flammatory cytokines like TNF-α and IL-6, contributing to liver 
inflammation.32 The mechanism of accumulation of mtDNA in 
steatotic hepatocytes is likely to interfere with DNA replica-
tion by slowing down replication forks and activating the ATM 
and Rad3-related protein kinase (ATR)/cell cycle checkpoint 
kinase 1 (CHK1) pathway.33 Gut microbial DNA-containing 
extracellular vesicles can be removed by CRIg+ macrophages 
through complement component C3-mediated opsonization. 
However, obesity leads to decreased CRIg+ macrophages, 
and micro extracellular vesicles leakage diffuses into the 
liver, subsequently activating the cGAS-STING pathway and 
triggering liver inflammation.12 Elevated iron concentration 
in the livers of individuals with NAFLD can also activate the 
cGAS-STING pathway and cause liver inflammation.34 STING 
was unevenly distributed in the liver, mainly expressed in 
macrophages (CCR2+, S100A9+, Kupffer, and CD163+ cells). 
In contrast, hepatic sinusoidal endothelial cells (CD36+ cells, 
HSCs, and SMA+ cells), and other immune cells were poorly 
expressed.4,35 The findings indicate that STING is not ex-
pressed in human and mouse hepatic parenchymal cells.36,37 
Subsequent experiments found that transplantation of bone 
marrow cells from wild-type mice into STINGgt mice could 
exacerbate the severity of liver inflammation and steatosis in 
STINGgt mice, suggesting that macrophage-derived STING 
is a crucial factor in promoting NAFLD.38 Under activation of 
the STING pathway, macrophages can be differentiated into 
pro-inflammatory M1 macrophages, which can act on liver 
cells to induce inflammation and fat deposition by secret-

Fig. 1.  Expression of STING in liver cells. CTRL, control group; HSC, hepatic stellate cell; NASH, nonalcoholic steatohepatitis; STING, stimulator of interferon gene.
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ing the inflammatory factors TNF-α, IL-1β and IL-6, conse-
quently promoting NAFLD.39 However, a few studies suggest 
that STING exists in mouse hepatic parenchymal cells and 
activation of the STING/IRF3 pathway induces pro-apoptot-
ic effects in hepatocytes independent of inflammation.40–42 
Hepatic sinusoidal endothelial cells are the most abundant 
nonparenchymal cells in the liver. When the STING-IRF3 
signaling pathway expressed in endothelial cells is activated, 
the activated IRF3 directly binds to the intercellular adhesion 
molecule-1 promoter, inducing intercellular adhesion mol-
ecule-1 expression in mouse vascular endothelial cells and 
monocyte-endothelial cell adhesion, promoting the genera-

tion of endothelial inflammation.17 Moreover, liver sinusoidal 
endothelial cell injury may act as a doorkeeper, implying the 
progression from NAFLD to the early stage of NASH.43 The 
cGAS-STING signaling pathway can also induce TBK1-medi-
ated phosphorylation of p62/sequestosome1 and the forma-
tion of hepatic protein inclusions, which are vital indicators 
for differentiating NAFLD from NASH.44

Disordered lipid metabolism
The STING signaling pathway has intricate connections with 
lipid metabolism, and these interactions play a crucial role 

Fig. 2.  Activation of the STING signaling pathway in hepatic macrophages. AKT, protein kinase B; BAX, B-cell lymphoma-2-related protein X; cGAMP, cyclic-
guanosine monophosphate-adenosine monophosphate; cGAS, cGAMP synthase; dsDNA, double-strand DNA; ER, endoplasmic reticulum; GLUT2, glucose transporter 
2; IFNs, interferons; IκBα, inhibitor nuclear factor kappa B alpha; IL-6, interleukin-6; IKK, IκB-kinase; IRF3, interferon regulatory factor 3; IRS-1, insulin receptor 
substrate 1; JNK, c-jun N-terminal kinase; LDs, lipid droplets; MTORC1, rapamycin target protein complex 1; NF-κB, nuclear factor-kappa B; PI3K, phosphoinositide 
3 kinase; RRAGA, ras-related GTP binding A; RRAGC, ras-related GTP binding C; SQSTM1, sequestosome1; STING, stimulator of interferon gene; TBK1, TANK binding 
kinase 1; TNF-α, tumor necrosis factor-alpha.

Table 2.  Pathological stimuli in NAFLD that activate the STING pathway

Pathological stimuli Production of pathological stimuli Mechanisms of promote NAFLD

Mitochondrial DNA Lipid overload induces nucleotide pool imbalance 
highlighted by a disruption of replication forks 
speed and activation of ATR/CHK1 pathway

Induce STING-NF-κB pathway activation 
and TNF-α and IL-6 expression under lipid 
overload in the Kupffer cells of liver

Microbial DNA Deficiency of CRIg+ macrophages and leakage 
of intestinal EVs containing microbial DNA

Elevate the levels of cGAS expression 
and STING phosphorylation in 
hepatocytes and insulin target cells

Iron deposition High lipid induction enhances the iron 
accumulation by the upregulation of TFR1 
and the down-regulation of FTH1

Upgrade IFN-β and IL-6 expression via 
the cGAS-STING pathway and induce 
M1 polarization of macrophage

ATR, ataxia telangiectasia mutated and Rad3-related protein kinase; cGAS, cyclic-guanosine monophosphate-adenosine monophosphate synthase; CHK1, cell cycle 
checkpoint kinase 1; EV, extracellular vesicle; FTH1, ferritin heavy chain 1; IFN, interferon; IL-6, interleukin-6; NF-κB, nuclear factor-kappa B; STING, stimulator of 
interferon gene; TFR1, transferrin receptor 1; TNF-α, tumor necrosis factor-alpha.
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in the pathogenesis of metabolic disorders like NAFLD. Ster-
ol regulatory element binding protein cleavage-activated 
protein (SCAP) serves as a cholesterol sensor. A high-fat 
and high-cholesterol diet can lead to an abnormal increase 
in macrophage SCAP levels. This, in turn, recruits STING 
and TBK1 to the Golgi apparatus, activating NF-κB in mac-
rophages. The activation of NF-κB promotes the release of 
inflammatory factors, enhancing lipid uptake and synthesis 
in the liver. This highlights the vital role of SCAP as a bridge 
molecule connecting lipid metabolism and inflammation, 
contributing to the development of NAFLD.45 Moreover, the 
release of mitochondrial DNA in hepatocytes can activate 
the STING-TBK1 pathway. TBK1-induced sequestosome1 
phosphorylation, through STING activation, promotes ac-
tivation of the rapamycin target protein complex 1 and 
inhibits lysosomal degradation of lipid droplets. This pro-
cess leads to excessive lipid deposition in the liver, further 
exacerbating NAFLD.46 Furthermore, high-fat diet-induced 
activation of the STING-IRF3 pathway increases levels of 
lipid synthase sterol regulatory element binding protein-1c 
and lowers levels of the lipolytic enzyme peroxisome prolif-
erator-activated receptor alpha.41 This imbalance promotes 
lipid synthesis and reduces lipid breakdown, contributing to 
lipid accumulation in the liver.47

Insulin resistance
Chronic low-grade inflammation of metabolic tissues is a cen-
tral factor in developing IR. The STING signaling pathway 
may contribute to liver IR through multiple mechanisms, 
such as blocking insulin signaling pathways and promoting 
islet β cell senescence and apoptosis. Activating the STING-
IRF3 pathway can induce hepatocyte inflammation and pro-
mote liver IR and gluconeogenesis by decreasing the expres-
sion of insulin signaling (phospho-protein kinase B (AKT)/
total-AKT), phosphorylated glycogen synthase kinase 3β, 
and glycolytic enzymes (glucokinase, phosphofructokinase, 
and pyruvate kinase), and increasing the expression of gly-
cogen synthase kinase 3β and hepatic gluconeogenic en-
zymes (glucose-6-phosphatase, phosphoenolpyruvate car-
boxykinase, and pyruvate carboxylase).41 Pro-inflammatory 
factors, including TNF-α and IL-6, can also suppress insulin-
induced phosphorylation of AKT on Ser473, inducing IR.48 
Furthermore, the STING pathway affects islet beta cells. 
Palmitic acid or hydrogen peroxide can activate the cGAS-
STING-TBK1 pathway and upregulate pancreatic beta cell 
senescence indicators, including P21, P16ink4a, P53, and p53-
binding protein 1. Intervention with the STING inhibitor C176 
alleviates pancreatic beta cell senescence, glucose intoler-
ance, and IR.49 Treating pancreatic beta cells with palmitic 
acid can activate the STING-IRF3 pathway, which promotes 
inflammation in pancreatic beta cells and induces apoptosis 
of pancreatic beta cells by upregulating the expression of 
apoptosis proteins: B-cell lymphoma-2 (Bcl2)-related protein 
X (BAX), caspase-3 (Casp-3), and PARP-1.50

Hepatocyte apoptosis
The STING-IRF3 signaling pathway in hepatocytes plays a 
crucial role in inducing apoptosis, and its activation can be 
triggered by various factors, including ER stress and free 
fatty acid (FFA) accumulation. In response to ER stress in-
duced by CCl4 or FFA, the STING-IRF3 signaling pathway can 
lead to the upregulation of pro-apoptotic molecules, such as 
BAX, as well as apoptotic promoters like Casp-8 and Casp-
3. This can subsequently result in hepatocyte apoptosis that 
contributes to liver injury and disease progression.40 Stud-

ies have shown that inhibiting STING and IRF3 using cor-
responding siRNAs significantly reduced the FFA-induced in-
flammatory cytokines and apoptotic signals, including BAX/
Bcl2, clv-Casp-3/Casp-3 and clv-PARP/PARP. This suggests 
that inhibiting STING and blocking the interaction between 
phospho-IRF3 and BAX and Casp-3 can ameliorate hepato-
cyte apoptosis and may offer potential therapeutic strategies 
to mitigate liver injury and hepatocyte death.41

Role of STING in NAFLD-liver fibrosis
Liver fibrosis, a consequence of inflammation or death of 
hepatocytes, is a significant pathological process in various 
liver diseases. The crosstalk between different cellular path-
ways, including the STING pathway, contributes to the de-
velopment of liver fibrosis. TAR DNA-binding protein 43 and 
X-box binding protein 1 have been identified as factors that 
promote macrophage self-mitochondrial DNA cytosolic leak-
age. This leads to macrophage STING activation, triggering 
intrahepatic inflammation and liver fibrosis.51,52 Additionally, 
ER stress-induced liver cell death has been linked to liver 
fibrosis through the STING-IRF3 pathway. This suggests that 
liver cell death independently contributes to the development 
of chemically induced liver fibrosis.40 HSCs are the primary 
cell type responsible for liver fibrosis. Studies have shown 
that treatment of HSCs with macrophages activated through 
the STING pathway results in increased activation of HSCs, 
leading to liver fibrosis. This suggests that STING activation 
in macrophages can promote liver fibrosis through a parac-
rine mechanism that affects HSCs and other cells involved in 
fibrosis.38

Role of STING in NAFLD-HCC
Indeed, NAFLD-HCC is a serious and feared liver-related 
complication, imposing a significant health burden. The 
cGAS-STING signaling pathway has been found to be in-
volved in the occurrence and development of HCC. In HCC 
cells, sustained high levels of DNA damage can activate the 
cGAS-STING pathway, leading to the release of IFN-I. The 
presence of IFN-I can stimulate dendritic cells to migrate to 
tumor-draining lymph nodes and subsequently cross-acti-
vate tumor-specific CD8+ T cells. This process helps control 
both local and distant tumor growth by enhancing the body’s 
immune response against cancerous cells. Furthermore, the 
cGAS-STING pathway also has a role in recruiting NK cells 
and cytotoxic T lymphocytes, increasing the sensitivity of the 
immune system to attack cancer cells. This process contrib-
utes to enhancing the immune-mediated response against 
HCC cells, potentially providing novel avenues for therapeu-
tic intervention.53 One limitation is that the upregulation of 
programmed cell death ligand-1 (PDL-1) and PDL-2 induced 
by IFNβ and IFN-γ, produced as a result of the cGAS-STING 
pathway activation, leads to cancer cell immune escape.54,55 
Additionally, the activation of the STING pathway can induce 
indoleamine 2,3 dioxygenase activation, which promotes tu-
mor immune escape and can suppress T cell activity. This 
further limits the immune system’s ability to target and 
eliminate cancer cells effectively.56,57 Moreover, STING acti-
vation leads to T lymphocyte apoptosis, allowing cancer cells 
to escape immune surveillance and evade detection by the 
immune system.58 These factors may contribute to the in-
complete resolution of tumors after treatment with STING 
agonists. While the cGAS-STING pathway can trigger short-
term inflammation to repress active oncogenes and support 
an antitumor immune response, prolonged or sustained in-
flammation leads to tissue destruction and contributes to 
cancer development or progression.59 Understanding the 
delicate balance between the beneficial and potentially det-
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rimental effects of the cGAS-STING pathway is essential for 
developing targeted therapies that maximize its antitumor 
potential while minimizing unwanted side effects.

STING agonists and inhibitors for treating NAFLD
The STING signaling pathway has emerged as a significant 
target for the treatment of inflammatory and autoimmune 
diseases, and the development of STING agonists and inhibi-
tors has become an active area of research. STING inhibi-
tors can be categorized into two main types: covalent and 
noncovalent inhibitors. Covalent inhibitors work by forming a 
permanent bond with the target protein, while noncovalent 
inhibitors do not form such a bond and can be reversible in 
their action. Palmitoylation of the STING protein is neces-
sary for its activation, and C176, C178, H151, and NO2-cLA 
covalently bind to STING to inhibit palmitoylation thereby 
leading to pathway inactivation.60,61 Noncovalent inhibitors 
control the activation of STING by competitively reducing the 
binding of 2′,3′-cGAMP to STING, mainly including astin C, 
SN-011, compound 18, gelsevirine, and palbociclib.62–66 Al-
though many STING inhibitors have been discovered, none 
have been used for the treatment of NAFLD. However, stud-
ies have found that some drugs are effective for alleviat-
ing the pathological state of NAFLD by inhibiting the STING 
pathway (Table 3).66–71 Remdesivir was shown to significant-
ly reduce liver inflammation and lipid metabolism disorders 
in NAFLD mice by inhibiting the STING-IRF3 signaling path-
way.67 Lingguizhugan decoction and its critical components 
cinnamaldehyde, atractylenolide II and glycyrrhizinate can 
significantly reduce liver inflammation levels by inhibiting 
the STING-TBK1-NF-κB signaling pathway in hepatic Kupffer 
cells, subsequently decreasing lipid deposition in hepatocytes 
and effectively relieving NAFLD progression.68 Naringenin 
was shown to reduce liver inflammation and HSC activation 
by inhibiting the cGAS-STING signaling pathway, improving 
liver fibrosis.31 Sorafenib may attenuate the signal transduc-
tion of the STING pathway by inhibiting the dimerization of 
STING and the recruitment of TBK1 and IRF3, thereby al-
leviating liver inflammation and fat accumulation induced by 
palmitic acid.69,70 Bifidobacterium triple live bacteria powder 
relieves HFD-induced NAFLD by inhibiting the expression of 
STING, thereby inhibiting the release of TNF-α, IL-1β, IL-6, 
IFN-β and p-NF-κB p65 induced by macrophages.71

STING agonists are currently under active development. 
Cyclic dinucleotides directly stimulate STING, including c-

di-GMP, c-di-AMP, 3′,3′-cGAMP and 2′,3′-cGAMP.72 However, 
because of the instability, negative charge, and hydrophilicity 
of cyclic dinucleotides that limit their use, nonnucleotide ago-
nists have been developed, such as 5,6-dimethylxanthone-
4-acetic acid (DMXAA), flavone acetic acid (FAA), 10-carboxy-
methyl-9-acridone (CMA), di-amidobenzimidazole (di-ABZI), 
etc.73–75 STING agonists were found to improve the efficacy 
of NAFLD-HCC treatment (Table 4).5,76-80 The STING agonist 
3′3′-cyclic adenine monophosphate-inosine monophosphate 
(cAIMP) was shown to reduce tumor burden by increasing tu-
mor cell apoptosis early in HCC.5 STING agonist 2′,3′-cGAMP 
downregulated macrophage inhibitory receptor signal-regu-
latory protein alpha and inhibited the CD47/signal-regulatory 
protein alpha signaling axis, which mediates phagocytosis 
and escape of liver tumor cells, and enhances the phago-
cytosis of liver tumor cells by macrophages.76 To ensure the 
safety and efficacy of treatment, some studies have com-
bined STING agonists with traditional antitumor therapies 
such as surgery and immunotherapy to have better thera-
peutic effectiveness, which has become a research hotspot. 
Irreversible electroporation, an ablation therapy, leads to 
tumor cell death through apoptosis. Compared with irrevers-
ible electroporation alone, STING agonist c-di-GMP combined 
with irreversible electroporation increased tumor-infiltrating 
IFN-γ/TNF-α production by CD4 and CD8 cells. The number 
of T cells induced a stronger antitumor immune response.77 
As the first STING-based cancer vaccine in immunotherapy, 
STINGVAX can enhance T lymphocyte infiltration into cancer 
tissues by upregulating PDL-1.78 Combining DMXAA, cispla-
tin, tumor-specific peptides, neoantigens and an immune 
checkpoint inhibitor can induce the priming of tumor-specific 
CD8+ T cells to enhance the immune response, resulting in 
an anticancer immune synergistic effect.79 Synergistic im-
munotherapy with silk hydrogel containing interferon genes 
agonist, Hepa1-6 liver cancer-specific neoantigen and toll-
like receptor 9 agonist, and mucin domain 3 antibody sig-
nificantly reduced regulatory T cells and increased IFN-γ 
and IL-12p70 levels in tumor tissue, promoted IFN-γ+CD8+ 
T cell and 41BB+CD8+ T cell infiltration, and significantly 
inhibited HCC progression.80 Moreover, chemotherapy and 
radiotherapy combined with the STING pathway can inhibit 
tumor progression. Using paclitaxel, a commonly used chem-
otherapeutic drug in HCC, stabilizes microtubules. It inter-
feres with mitosis, cGAS-dependent IRF3 phosphorylation 
accumulates, and the transcriptional mechanism promotes 
apoptosis. Combining cGAS-STING pathway activation and 

Table 3.  STING inhibitors for treating NASH/NAFLD liver fibrosis

Drug Dosage and method 
of administration Mechanism Reference

Remdesivir 20 mg/kg/d (i.g.) Reduce liver inflammation and lipid 
metabolism disorders by inhibiting the 
STING-IRF3 signaling pathway

66

Lingguizhugan 
decoction

22 g/kg/d (i.g.) Inhibit the STING-TBK1-NF-κB signaling 
pathway to reduce liver inflammation

67

Naringenin 100 mg/kg/3 times/week (i.g.) Inhibit the cGAS-STING pathway thereby reducing 
the secretion of inflammatory factors by HSCs

68

Sorafenib 10 µmol/L (THP-1 cell culture) Inhibit the dimerization of STING and 
the recruitment of TBK1 and IRF3

69,70

Bifidobacterium 
triple live 
bacteria powder

0.4 g/mouse/d (i.g.) Inhibit the STING-NF-κB pathway, thereby inhibiting 
the release of TNF-α, IL-1β, IL-6 and IFN-β

71

cGAS, cyclic-guanosine monophosphate-adenosine monophosphate synthase; HSC, hepatic stellate cell; IFN, interferon; i.g., intragastric; IL, interleukin; IRF3, in-
terferon regulatory factor 3; NF-κB, nuclear factor-kappa B; STING, stimulator of interferon gene; TBK1, TANK binding kinase 1; TNF-α, tumor necrosis factor-alpha.
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paclitaxel significantly inhibited tumor growth.81 Radiother-
apy-induced DNA damage leakage into the cytosol can trig-
ger the host antitumor immune response, using alginate as 
a carrier to deliver Mn2+ into radiotherapy-treated tumors. 
Synergistically accumulated cytosolic DNA can synergistically 
amplify the activation of the cGAS-STING pathway, thereby 
enhancing radiotherapy-induced antitumor immunity.82

Conclusion and future perspectives
Abundant evidence has established a close connection be-
tween innate immune activation and NAFLD.83 STING, being 
a crucial component of the innate immune system, is highly 
enriched in liver macrophages. Studies have explored how 
the STING signaling pathway mediates macrophage-medi-
ated hepatic immune responses and metabolic regulation in 
NAFLD. While STING activation enhances immune surveil-
lance in the liver during pathogen infection and tumors, its 
continuous activation can lead to a micro-inflammatory state 
in the liver. This, in turn, induces abnormalities in lipid me-
tabolism, IR, and hepatocyte apoptosis, ultimately accelerat-
ing liver fibrosis and HCC development. Inhibiting STING has 
shown promise in treating inflammatory diseases, offering 
potential new avenues for NAFLD treatment. However, it is 
essential to consider potential side effects when activating 
the pathway, as STING’s effects can be double-edged—either 
suppressing cancer through early inflammation or promoting 
cancer through persistent chronic inflammation. Therefore, 
in addition to using STING agonists as monotherapy for tu-
mors, combining STING agonists with traditional antitumor 
therapies such as surgery, chemotherapy, radiation therapy, 
and immunotherapy may minimize the negative effects. 
Although STING agonists or inhibitors have demonstrated 
encouraging results in treating NAFLD, there are still some 
deficiencies to be further studied. Firstly, there are current-
ly no clinically relevant diagnostic indicators developed for 
the STING signaling pathway, and it is worth exploring the 
biochemical markers of STING in mouse models or in vitro 
samples. Secondly, research on the pathological mechanisms 
of the STING signaling pathway in NAFLD is still not compre-

hensive and needs further improvement. Furthermore, cur-
rent research mainly focuses on basic experimental studies 
and lacks the application of clinical trials. Further scientific 
and standardized clinical research is needed to verify their 
effectiveness and safety, which will assist in the development 
of clinical treatment guidelines. Such research efforts will be 
critical in developing effective therapies for NAFLD and re-
lated conditions.
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