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Abstract: Chlorophyll a (Chl-a) is an important indicator of algal biomass in aquatic ecosystems.
In this study, monthly monitoring data for Chl-a concentration were collected between 2005 and 2015
at four stations in Meiliang Bay, a eutrophic bay in Lake Taihu, China. The spatiotemporal distribution
of Chl-a in the bay was investigated, and a statistical model to relate the Chl-a concentration to key
driving variables was also developed. The monthly Chl-a concentration in Meiliang Bay changed
from 2.6 to 330.0 µg/L, and the monthly mean Chl-a concentration over 11 years was found to be
higher at sampling site 1, the northernmost site near Liangxihe River, than at the three other sampling
sites. The annual mean Chl-a concentration fluctuated greatly over time and exhibited an upward
trend at all sites except sampling site 3 in the middle of Meiliang Bay. The Chl-a concentration
was positively correlated with total phosphorus (TP; r = 0.57, p < 0.01), dissolved organic matter
(DOM; r = 0.73, p < 0.01), pH (r = 0.44, p < 0.01), and water temperature (WT; r = 0.37, p < 0.01), and
negatively correlated with nitrate (NO3

−-N; r = −0.28, p < 0.01), dissolved oxygen (DO; r = −0.12,
p < 0.01), and Secchi depth (ln(SD); r = −0.11, p < 0.05). A multiple linear regression model integrating
the interactive effects of TP, DOM, WT, and pH on Chl-a concentrations was established (R = 0.80,
F = 230.7, p < 0.01) and was found to adequately simulate the spatiotemporal dynamics of the Chl-a
concentrations in other regions of Lake Taihu. This model provides lake managers with an alternative
for the control of eutrophication and the suppression of aggregations of phytoplankton biomass at
the water surface.

Keywords: Chl-a concentrations; water quality; spatiotemporal distribution; simulation; Lake
Taihu; eutrophication

1. Introduction

Phytoplankton plays an important role in regulating the energy available to higher trophic level
consumers in aquatic ecosystems [1]. However, a rapid and substantial increase in phytoplankton
biomass, especially cyanobacteria, often results in nuisance algal blooms, which threaten water quality
and aquatic ecosystem health [2]. Chlorophyll a (Chl-a) is used as a proxy of phytoplankton biomass
and is an important indicator in assessing the trophic status of freshwater ecosystems [3]. It is also
widely used as a surrogate measure of the potential public health risk imposed by cyanobacterial
blooms [4]. Routine monitoring of Chl-a concentrations in aquatic ecosystems is an important part of
the environmental reporting requirements of many countries [5].
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In the past two decades, substantial research has focused on the dynamics of Chl-a concentrations
in aquatic ecosystems using in situ observations and remote sensing imagery [6,7]. These studies
have demonstrated remarkable heterogeneity in the spatial and temporal distribution of Chl-a among
various sampling sites and regions within a waterbody. Chl-a concentrations are dependent upon many
physical (e.g., water temperature, light level, and wind regime), chemical (nutrient concentrations),
and biological (algal growth rate and algal biomass) factors [8]. Currently, the overwhelming majority
of lakes in China suffer from eutrophication and algal blooms, for which Chl-a is commonly used as
a key indicator [9]. In shallow lakes with water depths <3 m, the variations in the spatiotemporal
distribution of Chl-a in hypertrophic lakes may be different from those in mesotrophic or oligotrophic
lakes [10]. These hypertrophic lakes tend to be dominated by surface blooms composed of buoyant
cyanobacteria that are subject to rapid redistribution by wind and water movement [11].

Modeling is a useful approach for resolving interacting environmental processes and supporting
management practices related to addressing lake eutrophication [12]. Several models have been
introduced to simulate Chl-a concentrations. For example, the Chl-a concentrations in the coastal
region of Hong Kong were fitted with a model using genetic programming [13] and an unsteady
three-dimensional eutrophication model [14]; moreover, artificial neural networks have been used to
simulate the Chl-a concentrations at a daily time scale in a lowland river in Germany [15]. The horizontal
distribution of phytoplankton biomass in Lake Taihu, China, has been forecast over a short period
using a two- and three-dimensional hydrodynamic-phytoplankton model [16,17]. The accuracy of
the simulations of Chl-a concentrations in freshwater lakes has been progressively improved with
increasingly sophisticated models [18]; however, it is still difficult for policy makers to use the models
due to the high skill levels required for many of the models.

The relationships between Chl-a and nutrients have been identified using empirical models.
For example, the correlation between Chl-a and total phosphorus (TP) has been studied, and this
correlation has been used to calculate Chl-a concentrations [19]. Phosphorus is considered the primary
limiting nutrient in freshwater lakes [20]; however, phytoplankton growth is also controlled by several
other environmental factors, including light and water temperature (WT), as well as by other potentially
limiting nutrients (e.g., nitrogen [21]) and trace elements (e.g., molybdenum [22]). The limiting factors
usually change rapidly throughout the period of algal growth and differ among various regions of large
freshwater lakes [23], and these variations can jointly influence the simulation accuracy of statistical
models incorporating Chl-a and TP. Liu et al. [24] explored the effect of lake water chemistry on Chl-a
concentrations in Lake Qilu using a multivariate linear regression (MLR), and found that the statistical
model can rapidly and successfully simulate the variation in Chl-a concentrations. The MLR model
has been easily used in supporting management decisions about eutrophication of Lake Qilu. In this
study, the relationships between the Chl-a concentration and key environmental factors in Meiliang
Bay were analyzed by MLR for the period from 2005 to 2015. The objectives of this study were to (1)
illustrate the variation in the spatiotemporal distributions of Chl-a concentrations in Meiliang Bay,
and (2) develop an MLR model to relate the Chl-a concentrations to key environmental factors that
potentially regulate algal growth.

2. Materials and Methods

2.1. Study Area and Sampling Sites

Meiliang Bay, a northern bay of Lake Taihu in China, covering a surface area of 131 km2, has a
mean water depth of 2.0 m and a water volume of 2.6 × 108 m3. The Zhihu River and the Liangxi River
flow into the bay (Figure 1). The prevailing wind direction from March to August is southeast, which
promotes the aggregation of algal scums in the nearshore zone in northwestern Meiliang Bay. Four
sampling sites (S1 to S4) were established in Meiliang Bay. S1 was in the north of Meiliang Bay, S2 was
close to a major river water input, S3 was in the open water of the bay, and S4 was at the southern end
between the bay and the main basin of the lake (Figure 1). Six other sampling sites (S5 to S10) were



Int. J. Environ. Res. Public Health 2019, 16, 4553 3 of 16

also established in the main basin of Lake Taihu. S5 was located in the region where cyanobacterial
blooms frequently occur, S6 was in the area with frequent shipping traffic, S7 was in the zone with
proximity to inflows, S8 was in the central region, and S9 and S10 were in submerged macrophyte- and
aquaculture-dominated zones in Lake Taihu, respectively (Figure 1).
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Figure 1. Distribution of the sampling sites established for analyzing the spatial and temporal variations
in the Chlorophyll a (Chl-a) level, constructing a multiple regression model (S1 to S4) and validating
the multiple regression model (S5 to S10). Filled circles (�) are the observed sites for the analysis of
the spatial and temporal variations in Chl-a levels and construction of a multiple regression model,
and open circles (#) are the observed sites for the validation of the multiple regression model.

2.2. Water Sample Collection and Analysis

Water samples were collected monthly from January 2005 to December 2015 from four sites in
Meiliang Bay and six additional sites in Lake Taihu. Two liters of mixed water samples at 10, 30, and
50 cm below the water surface were collected and transported on ice to the laboratory for further
analysis. Three-hundred milliliters of water from each site was filtered through glass microfiber
filters (nominal pore diameter 1.2 µm, GF/C, Whatman, United Kingdom). The filtrate was used to
measure the concentrations of nitrate (NO3

−-N), ammonium (NH4
+-N), and dissolved organic matter

(DOM). The concentrations of NO3
−-N and NH4

+-N were measured by a San++ Continuous Flow
Analyzer (1100/1150 Sampler, Skalar, Netherlands). The raw water samples were used to determine
the concentrations of total nitrogen (TN) and TP. Unfiltered sample water from each sampling site was
digested using potassium persulfate before measuring the concentrations of TN and TP, and the filtrate
of raw water was used to measure DOM according to the method of Jin and Tu [25]. The extraction of
Chl-a from filters used for the detection of dissolved inorganic N was carried out with hot ethanol [26]
and calculated according to the absorbance of the filtrates of each sampling site read at 665 and 750 nm
using a spectrophotometer (UV-2101 PC, Shimadzu Co., Kyoto, Japan). WT, pH, and dissolved oxygen
(DO) were monitored in situ at all sampling sites using a water quality sonde (YSI-6600V2, Yellow
Spring Instruments, Cleveland, OH, USA) with calibrated sensors prior to use, and Secchi depth (SD)
was measured in situ with a Secchi disk at each sampling site. Each nutrient and Chl-a measurement
was made in triplicate.
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2.3. Multivariate Statistical Methods

2.3.1. Principal Component and Factor Analyses

The applicability of the principal component analysis (PCA) method to the analysis of water
quality parameters at sampling sites S1 to S4 was first verified by Bartlett’s sphere test (χ2). The resulting
χ2 value was 2813.3 (df = 36, p < 0.001), which indicated that the PCA was applicable to the analysis of
the water quality dataset [27]. Principal components (PCs) with eigenvalues >1 were extracted and
subjected to varimax rotation to generate varifactors (VFs). VFs reduce the contributions of variables
of minor significance and provide information on the most meaningful parameters, and they can
thus describe the whole dataset while allowing for data reduction with a minimal loss of original
information [27].

2.3.2. MLR Analysis

The distributions of ten environmental variables measured at S1 to S4 from January 2005 to
December 2015 were examined for normality with a one-sample Kolmogorov–Smirnov (one-sample
K–S) test. All of the p-values (two-tailed) were >0.05, indicating that the water quality variables had
normal distributions. Prior to performing a multiple regression analysis, the collinearity among the
independent variables should be diagnosed according to the eigenvalues, condition index (CI), variance
proportion, tolerance, and variance inflation factor (VIF) [24]. Chl-a was used as the dependent variable
in an MLR where partial regression coefficients for the independent variables were selected using a
t-test at a significance level of 0.05 using SPSS 19.0 software (SPSS Inc., Chicago, IL, USA).

2.3.3. MLR Model Performance Evaluation

The MLR model was validated using an independent data set from sampling sites S5 to S10
(Figure 1) from 2005 to 2015, with the coefficient of determination (R2), efficiency coefficient (E),
and root-mean-squared error (RMSE) to observation standard deviation (STDEV) ratio (RSR).

R2 was calculated as follows:

R2 =


∑n

i=1(oi − o)
(

fi − f
)

√∑n
i=1(oi − o)2 ∑n

i=1

(
fi − f

)2


2

. (1)

RMSE was calculated as:

RMSE =

√∑n
i (oi − fi)

2

n
. (2)

STDEV was calculated as:

STDEV =

√∑n
i (oi − o)2

n
. (3)

E was calculated as:

E = 1−

∑n
i=1(oi − fi)

2∑n
i=1(oi − o)2 . (4)

RSR was calculated as:

RSR =
RMSE
STDEV

=

√∑n
i=1(oi − fi)

2/n√∑n
i=1(oi − o)2/n

=

√∑n
i=1(oi − fi)

2√∑n
i=1(oi − o)2

. (5)

where oi and fi are the ith observed and simulated Chl-a concentrations, respectively; o and f denote
the mean observed and simulated Chl-a concentrations, respectively; and n is the number of data points
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for each sampling site (S5 to S10, n = 132) from 2005 to 2015, as well as for six sampling sites overall (n
= 72) in 2005, 2010, and 2015. R2, which ranges from zero to one, represents the percentage of variation
explained, whereas R2 >0.5 is considered acceptable [4]. E = 1 is indicative of a perfect match of the
fitted values to the observed values, E = 0 denotes that the simulated values are similar to the observed
values, and E < 0 indicates an unacceptable model simulation performance [28]. The RSR ranges from
zero, indicating perfect model simulation performance, to any positive value, with satisfactory model
performance at RSR <0.70 [29].

The significance of the differences in the average seasonal and annual Chl-a concentrations among
stations (S1 to S4) was tested by one-way analysis of variance (ANOVA) in conjunction with Tukey’s test
for multiple comparisons, and correlations with the different water quality variables were determined
by a Pearson correlation coefficient analysis.

3. Results

3.1. Spatiotemporal Variation in Chl-a Concentration in Meiliang Bay

From January 2005 to December 2015, the monthly Chl-a levels varied between 2.6 and 330.0 µg/L
at S1, 2.8 and 221.0 µg/L at S2, 4.1 and 235.0 µg/L at S3, and 7.0 and 161.0 µg/L at S4. The monthly Chl-a
levels peaked in May 2007 at S1, in November 2007 at S2, in November 2009 at S3, and in October
2013 at S4 (Figure 2). The 11 year monthly average Chl-a at S1 (45.2 ± 49.1 µg/L) was significantly
higher than that at S2 (35.6 ± 36.4 µg/L, p < 0.01), S3 (38.2 ± 40.3 µg/L, p < 0.01), and S4 (35.6 ±
32.7 µg/L, p < 0.01). Variations in the mean Chl-a levels for spring (March to May), autumn (September
to November), and winter (December to February) were low among the four sampling sites but the
summer (June to August) values at S1 were significantly higher than those at S3 and S4 (Figure 3).
Chl-a was not significantly different between spring and winter, except at S1, although the values in
these months were significantly lower than those in summer and autumn (Figure 3). The annual mean
Chl-a concentrations varied from 24.7 to 105.9 µg/L at S1, 19.3 to 55.7 µg/L at S2, 20.9 to 52.0 µg/L at
S3, and 21.7 to 45.4 µg/L at S4, with moderately high coefficients of variation of 49.3%, 36.7%, 26.3%,
and 22.3% at S1, S2, S3, and S4, respectively. The annual mean Chl-a levels increased from 2005 to 2007,
decreased from 2007 to 2012, and increased from 2012 to 2015 at S1 and S2 (Figure 4). At S3 and S4,
the annual mean Chl-a declined from 2005 to 2007, increased from 2007 to 2009, decreased from 2009 to
2012, and increased from 2012 to 2015 (Figure 4).Int. J. Environ. Res. Public Health 2019, 16, x 6 of 17 
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3.2. MLR Model of Chl-a Concentrations and Key Environmental Factors

Significant positive linear correlations (p < 0.01) occurred between the Chl-a concentration and TP,
DOM, WT, and pH for the four Meiliang Bay sampling sites collectively (n = 528), and the Pearson
correlation coefficients were 0.57 for TP, 0.73 for DOM, 0.37 for WT, and 0.44 for pH. Significantly
negative correlations (p < 0.01) were also observed for Secchi depth (ln(SD)) (r = −0.11), DO (r = −0.12),
and NO3

−-N (r = −0.28); however, the correlations were not significant for TN and NH4
+-N (Figure 5).

Three PCs with eigenvalues exceeding 1.0 were extracted from the nine water quality variables
using the PCA method with varimax rotation (Table 1). PC1, accounting for 25.9% of the total
variance, showed positive correlations with DOM and TP. PC2, explaining 25.3% of the total variance,
was positively correlated with NH4

+-N and TN and negatively correlated with pH. PC3, accounting
for 21.3% of the total variance, was positively correlated with WT and negatively correlated with DO.

On the basis of the significant correlations between the water quality variables and Chl-a
concentrations, as well as the major contributions of the water quality variables to three PCs, five
water quality variables (TP, DOM, WT, pH, and DO) were screened to develop an MLR model over all
four stations in Meilang Bay. The eigenvalues, CI, variance proportion, tolerance, and VIF, which are
characteristic parameters of the collinearity diagnostics, are listed in the Supplementary Information
Table S1 and Table 2, indicating that there was collinearity between the constant and DO contents and,
thus, DO was excluded from the five water quality variables for the development of the MLR model.
The non-standardized partial regression coefficients of the four independent variables are provided in
Table 2. The MLR model was as follows:

Chl-a = −129.84 + 1.80WT + 12.15DOM + 122.34TP + 6.14pH. (6)
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Figure 5. Correlations between Chl-a concentration and the nine water quality variables at the
four sampling sites in Meiliang Bay. TP: total phosphorus; DOM: dissolved organic matter; WT:
water temperature; DO: dissolved oxygen; NO3

−-N: nitrate; TN: total nitrogen; NH4
+-N: ammonia;

SD: transparency.

Table 1. Results of the principal components with varimax rotation based on the water quality dataset
from 2005 to 2015 in Meiliang Bay. Bold values denote strong loadings. PC: principal component.

Variable PC1 PC2 PC3 Communality

WT 0.028 −0.332 0.810 0.768
SD −0.487 −0.110 0.136 0.268
DO −0.139 −0.333 −0.894 0.930
pH 0.137 −0.862 0.036 0.763

NO3
−-N −0.065 0.477 −0.463 0.445

NH4
+-N 0.545 0.703 0.098 0.801

TN 0.609 0.720 −0.083 0.896
DOM 0.863 −0.221 0.235 0.849

TP 0.799 0.088 0.398 0.805
Eigenvalue 3.048 2.341 1.137

% Total variance 25.904 25.257 21.336

The R, F, and p values were 0.799, 230.7, and <0.001, respectively, which indicate that the MLR
model successfully described the relationships between Chl-a concentration and the four independent
water quality variables (WT, DOM, TP, and pH) from Meiliang Bay from 2005 to 2015. Subsequently,
the MLR was used to simulate the dynamics of the Chl-a concentration at each sampling site (from S5 to
S10) during 2005 and 2015, as well as at six sampling sites overall in 2005, 2010, and 2015. The simulated
Chl-a concentrations were significantly correlated with the observed values (Figure 6), as indicated
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by the R2, E, and RSR values that ranged from 0.52 to 0.89, 0.08 to 0.76, and 0.44 to 0.69 (Table 3),
respectively. These results indicate that the Chl-a concentrations simulated by the MLR model are
reliable at the six other sites in Lake Taihu. Additionally, the percentage of the standardized residuals
between the simulated and observed Chl-a concentrations ranging from −2.0 to 2.0 was 94.7% for S5,
94.0% for S6 and S7, 96.2% for S8, 95.4% for S9 and S10, 93.1% for 2005, 94.4% for 2010, and 97.2% for
2015 (Figure 7), suggesting that the MLR model simulation performance was acceptable and that the
model could successfully simulate the variation in the Chl-a concentration in different areas of very
eutrophic lakes.

Table 2. Multiple regression results for the water quality parameters and the results of collinearity tests.
VIF: variance inflation factor.

Variable
Unstandardized Coefficients

t-test p Collinearity Statistics

B Standard Error Tolerance VIF

Constant −129.84 8.19 −15.86 0.00
WT (◦C) 1.80 0.15 11.64 0.00 0.60 1.68

TP (mg/L) 122.34 24.90 4.91 0.00 0.35 2.88
DOM (mg/L) 12.15 0.89 13.69 0.00 0.41 2.45

pH 6.14 0.63 9.82 0.00 0.49 2.04
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Figure 6. Correlations between the simulated and observed Chl-a concentrations at each sampling
site (from S5 to S10) during 2005 and 2015 and at six sampling sites overall in 2005, 2010, and 2015,
respectively, in Lake Taihu.
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Table 3. The coefficients of the linear equations coupled with the simulated concentrations (Cs) and the
observed Chl-a concentrations (Co) at each sampling site (from S5 to S10) and the six sampling sites
overall in 2005, 2010, and 2015 and the corresponding parameters used to assess the goodness of fit to
Chl-a. ** Significant value at the 0.01 level.

Cs = aCo + b n Parameters Assessing Goodness of Fit p
a b R2 E RSR

S5 0.4244 30.094 132 0.7326 0.6026 0.5333 <0.001 **

S6 0.8965 1.2164 132 0.7405 0.7048 0.4774 <0.001 **

S7 0.5209 13.488 132 0.7865 0.6931 0.4846 <0.001 **

S8 0.6445 12.029 132 0.6792 0.6349 0.5172 <0.001 **

S9 1.1267 −0.3766 132 0.5655 0.0787 0.6925 <0.001 **

S10 0.6227 6.7797 132 0.5179 0.4040 0.6111 <0.001 **

2005 0.4729 14.712 72 0.8894 0.6911 0.4858 <0.001 **

2010 0.7279 6.1363 72 0.7622 0.7599 0.4400 <0.001 **

2015 0.6646 8.3166 72 0.7236 0.7199 0.4678 <0.001 **
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sampling site (from S5 to S10) during 2005 and 2015 and at six sampling sites overall in 2005, 2010, and
2015 in Lake Taihu.
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4. Discussion

4.1. Factors Influencing the Distribution of Chl-a Concentration in Meiliang Bay

Nitrogen and phosphorus play an important role in the spatiotemporal distributions of the Chl-a
concentrations in aquatic environments [30]. Furthermore, the TN to TP ratio (NPR) is commonly
regarded as an indicator of the likelihood that either phosphorus, nitrogen, or either nutrient could limit
phytoplankton growth [31]. The NPRs in Meiliang Bay ranged from 4.7 to 190.0, with a mean of 36.2.
The percentage of the NPR exceeding 16, which is the mass ratio required to meet the physiological
demands of phytoplankton for nitrogen and phosphorus concentrations [32], was significantly higher
in Meiliang Bay in summer and autumn compared with spring and winter (Figure 8), which indicates
that phytoplankton growth in summer and autumn is potentially predominantly limited by the
phosphorus supply [33]. Because optimal NPRs vary among phytoplankton species, it is difficult
for NPRs to identify a limiting nutrient for a multi-species community [34]. However, Microcystis
aeruginosa is a dominant species in Meiliang Bay [35]. Moreover, a significant correlation between
the Chl-a and TP in Meiliang Bay suggests that phytoplankton biomass increases with increasing
phosphorus concentration and that phosphorus may be a key factor limiting phytoplankton growth,
as demonstrated by Xu et al. [36]. The absence or weakness of relationships between Chl-a and the
TN, NO3

−-N, and NH4
+-N concentrations in Meiliang Bay indicate that nitrogen likely has a lesser

influence on phytoplankton growth and it might generally be at sufficient levels to meet nutritional
demands, which is consistent with the results of previous studies [37,38].
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the different seasons (Tukey test, p ≤ 0.05).

DOM primarily constitutes humic substances, polysaccharides, and proteins [39], whose
breakdown serves as a potential source of nutrient supply for phytoplankton growth [40]. DOM can
be released from the pore water of subsurface sediments into overlying water due to hydrodynamic
disturbance [41], and derives from phytoplankton, including the exudation of live phytoplankton
and degradation of dead phytoplankton [42], as well as allochthonous inputs from catchments [43].
The significant relationship between DOM and Chl-a in Meiliang Bay implies that DOM might play
an important role in providing nutrition for phytoplankton growth, although the contribution of
different DOM sources to algal growth was not identified. This finding is consistent with Ye et
al. [44], who demonstrated that allochthonous sources have a greater influence on the origin of DOM
concentrations in Lake Taihu than autochthonous sources using an isotope tracing technique.

Spatiotemporal variations in Chl-a concentration are also impacted by meteorological factors [45].
The warming of surface water accelerates the growth rates of bloom-forming cyanobacteria in particular,
causing them to more rapidly reach their maximal growth rates and increasing the frequency, intensity,



Int. J. Environ. Res. Public Health 2019, 16, 4553 11 of 16

and duration of cyanobacterial blooms in eutrophic freshwater lakes [8,46]. In Meiliang Bay, WT was
significantly positively correlated with Chl-a concentration (Figure 5), which was most likely because
WT accelerated cyanobacteria growth in particular. The Chl-a concentrations at S1 in summer and
autumn were much higher than those at the three other sampling sites. In summer and autumn,
the prevailing wind is from the east–southeast, which promotes the accumulation of cyanobacteria in
the north of Meilang Bay where S1 was located, as evidenced by the rapid increases in Chl-a in the
north of Meilang Bay [47].

S2 was situated in a predominantly downwind zone of Meiliang Bay; however, the large inflow
from Zhihu River is near S2. The mean inflow ranged from 2.1 to 360 m3/s in summer (June to August)
during 2005 and 2015, and this condition might effectively suppress the accumulation of buoyant
cyanobacteria in the upper water layer. Li et al. [48] carried out field enclosure experiments on the
effect of flow velocities (from 0.03 to 0.3 m/s) on phytoplankton biomass and found that the Chl-a
concentrations in the upper water layer were significantly negatively related to flow rates. Therefore,
we speculated that the lake currents caused by the large inflow from the Zhihu River might contribute to
the vertical mixing and/or flushing of cyanobacteria within the water column and subsequently reduce
the Chl-a concentrations in the upper water layer. Furthermore, incoming and outgoing fishing vessels
and cargo ships near S2 result in water disturbances that likely also prevent the high aggregation of
phytoplankton biomass in the upper water layer. The predominant wind-driven currents at S3 and S4,
which were located in the open water of Meiliang Bay, would likely be higher and less favorable for the
massive accumulations of cyanobacteria, which were reflected by the decreased Chl-a concentrations,
as noted in other studies [47].

4.2. Performance of the MLR Model for Chl-a Concentrations in Lake Taihu

The relationships between Chl-a concentrations and physicochemical factors in aquatic ecosystems
have been studied using multivariate statistical techniques [49]; however, regression models derived
from the literature that relate Chl-a concentrations to water quality parameters differ due to variations in
the trophic status, WT, water color, and mixing regime [50]. In our study, the MLR model demonstrated
that it was reliable and acceptable for simulating the Chl-a concentrations derived from stations S5
to S10 in Lake Taihu from January 2005 to December 2015 (Figure 6). Some discrepancies between
the model performance with the training data set (S1–S4) and the validation data set (S5–S10) may
be attributable to differences in the trophic status of different zones in Lake Taihu. The trophic
statuses at S5 to S8 belong to eutrophic levels, similar to those of S1 to S4. S9 and S10 have a much
lower trophic status. S9 was located in a submerged macrophyte-dominated region comprising
mostly Potamogeton maackianus A. Bennett, where the mean Chl-a concentrations were low (mean
= 10.5 µg/L). Aquatic plants, especially submerged macrophytes, compete with phytoplankton for
nutrients [51] and can excrete allelopathic substances that inhibit algal growth [52]. S10 was located in
an aquaculture-dominated enclosed zone where the dominant submerged macrophyte is Potamogeton
malaianus Miq., with areal cover >90% [53]. This area is heavily artificially manipulated to provide
shelter for crabs. Because of a large-scale enclosure net at this site, wind speeds are decreased by
75% relative to the values over open water [54]. The resulting reduction in wind disturbance of the
sediments reduces the release of phosphorus and nitrogen from the sediment into the overlying water
in this enclosure-dominated region [55]. These observations indicate that aquatic vegetation and
enclosure aquaculture cause different trophic statuses and likely result in reduced goodness of fit of
the model for these validation sites (S9 and S10) compared with the other validation sites (S5 to S8) in
Lake Taihu (Table 3).

A 38-parameter three-dimensional ecological model that integrated the hydrodynamic, chemical,
and biological processes of nutrients was developed to simulate and predict the spatiotemporal
variations in algal blooms in Lake Taihu [16]. Although the acceptable average annual relative
deviation between the simulated and observed Chl-a concentrations from different sampling sites
in Meiliang Bay was less than 40%, high monthly relative deviations that varied from 0.0% to 90.8%



Int. J. Environ. Res. Public Health 2019, 16, 4553 12 of 16

were observed. Huang et al. [56] developed a hydrodynamic phytoplankton model to simulate the
spatiotemporal distribution of phytoplankton biomass in Lake Taihu. An accuracy of 78.7% between
the simulated and observed Chl-a concentrations was achieved. However, the mean percent error
(13.4%) and mean absolute percent error (58.2%) indicated that further improvements, for example,
by reducing the uncertainty of the model inputs and/or by improving the parameter calibration, should
be made. Jiang et al. [57] simulated the Chl-a concentrations in different subareas of Lake Taihu
using a 40-parameter environmental fluid dynamics code (EFDC) model and found that the fitted
Chl-a concentrations were basically consistent with field observations. The analyses of the sensitivity
and uncertainty of the simulations imply that the observed Chl-a concentrations, water temperature,
light, and simulation time are primary factors influencing the EFDC simulation accuracy. These
complicated models can demonstrate the mechanism of the rapid changes in both the spatial and
temporal heterogeneity of phytoplankton biomass; however, compared with the MLR model in our
study, they usually require more data for input and calibration, which are rarely available at adequate
temporal and spatial resolution. This lack of field data is a major challenge for the full validation of
the models.

4.3. Implications for Lake Management

Although some measures have been taken to prevent exogenous nutrients from entering
water bodies and reduce internal nitrogen and phosphorus release from sediments, the control
of eutrophication and nuisance cyanobacterial blooms in aquatic ecosystems, particularly in shallow
lakes, remains a global challenge. Because of an incomplete understanding of the mechanisms of
cyanobacterial bloom formation and the nutrient levels and water temperatures necessary for the onset
of algal blooms, strategies for mitigating harmful cyanobacterial blooms in shallow eutrophic water
bodies, for example, in Lake Taihu, China, and Lake Okeechobee, USA [58], are not always effective [59].
To optimize the measures for controlling eutrophication and algal blooms and decrease operational
expenditures, the quantitative links between key driving factors and the phytoplankton biomass (Chl-a
concentration) response should be identified. Although discrepancies were observed between the
measured Chl-a concentrations and the simulated values due to different ecological zones with various
trophic states, submerged vegetation cover, and anthropogenic activities, the MLR model developed in
the present study successfully simulated the dynamics of Chl-a concentrations in multiple ecological
zones in Lake Taihu (Figure 6). Therefore, when the MLR model is applied to other eutrophic lakes
similar to Lake Taihu, other factors, such as aquatic vegetation and aquaculture, should be considered
to further improve the simulation accuracy.

Policy makers and managers emphasize operationally feasible management strategies to limit rapid
increases in phytoplankton biomass, especially bloom-forming cyanobacteria, which requires screening
the regulated key driving factors that influence the spatiotemporal distribution of phytoplankton
biomass (Chl-a concentration). Compared with complicated two- and three-dimensional mechanisms
and process models that frequently require extensive data for model calibration and validation and a
high level of user skill, statistical regression models can provide an alternative to eutrophication control
and harmful cyanobacterial bloom suppression because of reduced data and user skill requirements.
Several in situ observatory platforms in Lake Taihu have been constructed to monitor the dynamics of
water quality in real-time, and many routine parameters, such as TP, WT, DOM, and pH, are easily
obtained via these platforms, although it is not as easy to regulate these parameters with artificial
methods (e.g., the restoration of submerged macrophytes). The MLR model that integrated the Chl-a
concentration with nutrient and meteorological factors of interest can effectively assist government
officials in making decisions associated with the control of phytoplankton biomass in eutrophic
lakes [24]. Nutrient loadings (TP and/or DOM concentrations) can be artificially regulated relatively
easily by reducing exogenous inputs from the catchment and inhibiting endogenous releases from
sediments into overlying water.
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As discussed above, the wind regime, submerged macrophytes, and human activities, such
as enclosure aquaculture, are additional factors likely affecting the spatiotemporal distribution of
Chl-a concentrations [60]. Due to a shortage of long-term monitoring data, the interactive effects
of these factors on changes in Chl-a concentrations in phytoplankton-dominated and submerged-
macrophyte-dominated zones in Lake Taihu were not incorporated into the MLR model. It is difficult
to simultaneously monitor water quality, ecological indicators, and hydrometeorological factors in
situ; however, we appeal to lake managers and local authorities for more capital inputs related to
observatory platform construction in large eutrophic lakes to assist with the validation of models.
In combination with information on the dynamics of hydrometeorological factors (wind-driven lake
current and wave height) and anthropogenic activity (aquatic vegetation cover), the MLR model can
play an increasing role in making decisions associated with eutrophication and phytoplankton biomass
control in freshwater ecosystems.

5. Conclusions

In this study, the spatiotemporal dynamics of Chl-a concentrations were investigated, and a
multiple linear regression model was developed using 11 year water quality data from Meiliang Bay
in Lake Taihu. Our study demonstrated the heterogeneity of Chl-a, with the northern near-shore
zone presenting significantly higher concentrations than the other zones of Meiliang Bay. The Chl-a
concentrations in Meiliang Bay fluctuate extensively on an annual time scale and are higher in summer
and autumn than in spring and winter, and these fluctuations are primarily driven by fluctuating
nutrients (e.g., TP) and meteorological factors (e.g., WT). The interactive effects of the key environmental
factors on the spatiotemporal dynamics of Chl-a concentrations in Meiliang Bay can be characterized
by a MLR model that incorporates TP, DOM, pH, and WT. The MLR model successfully simulates
the variations in Chl-a concentrations in other regions of Lake Taihu, which gives local authorities
an alternative to make decisions related to taking physical, chemical, and biological measures (e.g.,
increasing submerged macrophyte coverage, vertical mixing, and horizontal flushing of water bodies)
to decrease nutrient loadings and/or suppress aggregations of phytoplankton biomass, particularly
near drinking water resources.
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