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ABSTRACT

EUS‑guided tissue acquisition carries certain risks from unnecessary needle puncture in the low‑likelihood lesions. Artificial 
intelligence (AI) system may enable us to resolve these limitations. We aimed to assess the performance of AI‑assisted diagnosis of 
pancreatic ductal adenocarcinoma (PDAC) by off‑line evaluating the EUS images from different modes. The databases PubMed, 
EMBASE, SCOPUS, ISI, IEEE, and Association for Computing Machinery were systematically searched for relevant studies. The 
pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating characteristic curve were estimated 
using R software. Of 369 publications, 8 studies with a total of 870 PDAC patients were included. The pooled sensitivity and 
specificity of AI‑assisted EUS were 0.91 (95% confidence interval [CI], 0.87–0.93) and 0.90 (95% CI, 0.79–0.96), respectively, 
with DOR of 81.6 (95% CI, 32.2–207.3), for diagnosis of PDAC. The area under the curve was 0.923. AI‑assisted B‑mode EUS 
had pooled sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.91, 0.90, 0.94, and 
0.84, respectively; while AI‑assisted contrast‑enhanced EUS and AI‑assisted EUS elastography had sensitivity, specificity, PPV, 
and NPV of 0.95, 0.95, 0.97, and 0.90; and 0.88, 0.83, 0.96 and 0.57, respectively. AI‑assisted EUS has a high accuracy rate and 
may potentially enhance the performance of EUS by aiding the endosonographers to distinguish PDAC from other solid lesions. 
Validation of these findings in other independent cohorts and improvement of AI function as a real‑time diagnosis to guide for 
tissue acquisition are warranted.
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INTRODUCTION

Pancreatic adenocarcinoma  (PDAC) is the seventh 
leading cause of  cancer‑related deaths worldwide, 
with an average 5‑year survival rate of  only 
5%–9%.[1,2] Despite advancements in the detection 
and treatment modalities, most patients are diagnosed 
at an unresectable stage at the time of  diagnosis. 
To date, a number of  diagnostic tools are available, 
including tri‑phasic pancreatic protocol computerized 
tomography, magnetic resonance imaging  (MRI), 
and EUS‑guided fine‑needle aspiration  (FNA) 
and/or biopsy  (FNB) for cytological and histological 
diagnosis. [3] Among these, EUS is only the test 
enabling tissue acquisition, hence its popularity and 
satisfactory diagnostic yield for PDAC. At present, 
the joint American Society for Gastrointestinal 
Endoscopy/American College of  Gastroenterology 
recommends the use of  EUS-FNA for the diagnosis 
of  pancreatic lesions, particularly for solid lesions.[4] 
EUS‑guided tissue sampling is very accurate with prior 
meta‑analyses reporting pooled sensitivities and 
specificities as high as 85%–89% and 96%–99%, 
respectively.[5‑8] However, EUS‑guided tissue sampling 
is an invasive procedure and does carry a small but 
real risk of  pancreatitis, infection, pancreatic duct 
leak, malignant seeding, hemorrhage, and even death. 
EUS is particularly useful for the detection of  small 
pancreatic lesions not identified on other modalities, 
particularly, tumor  <2  cm in size, with higher 
sensitivity.[9,10] Since EUS is an operator‑dependent 
procedure and the diagnostic yield may drop in the 
beginners or less‑experienced operators.[11,12] They 
may miss to detect a small lesion, some types of  
lesions, e.g .  diffusely infiltrating PDAC, and fail 
to make the correct diagnosis in the less typical 
PDAC EUS‑images.[13,14] Moreover, interobserver 
variability creates subjective operator dependency in 
the diagnostic yield of  EUS.[10]

Artificial intelligence  (AI) has increasingly been 
applied to various areas of  medicine, including 
gastroenterology.[15] The use of  AI or computer‑aided 
diagnosis system may therefore enable us to resolve 
aforementioned limitations. The role of  AI in assisting 
EUS for PDAC diagnosis has gained a lot of  attention 
recently. However, most studies had a limited number 
of  sample size. We therefore proposed to perform a 
systematic review and meta‑analysis to have a more 
precise estimate of  the performance of  AI‑assisted EUS 
for PDAC diagnosis.

In this study, we focused on a specific area of  AI called 
machine learning  (ML). To train ML systems, pairs of  
input and answer are fed into the ML systems, then 
the systems learn underlying relationship between set 
of  inputs and answers by themselves.[16] The trained 
ML system can then be used to predict answers from 
unseen inputs. Our main objective is to evaluate the 
effectiveness of  AI for the diagnosis of  PDAC in 
offline EUS images. We focused on the performance 
of  the ML in the characterization of  pancreatic lesions, 
i.e. malignant versus benign pancreatic diseases.

MATERIALS AND METHODS

The study was conducted in accordance with the 
Preferred Reporting Items for Systematic Review and 
Meta‑Analysis  (PRISMA) guidelines.[17] The protocol was 
registered with PROSPERO  (CRD42021232014).

Data sources and searches
Literature search was conducted in Ovid MEDLINE, 
EMBASE, SCOPUS, International Scientific Indexing 
databases. The Computer Sciences and Engineering 
databases including Institute of  Electrical and 
Electronics Engineers and Association for Computing 
Machinery were also used for the search. The search 
was conducted from the inception of  databases through 
April 05, 2020. We searched for studies on AI in PDAC 
and EUS. The search was limited to human studies and 
studies published in the English language. The following 
keywords were used for the search: (artificial intelligence 
OR machine learning OR neural network OR deep 
learning OR support vector machine OR SVM OR 
digital image processing OR digital image analysis OR 
parameter analysis) AND (pancreas OR pancreatic) 
AND (malignancy OR malignant OR tumor OR 
mass OR neoplasm OR cancer OR adenocarcinoma) 
AND  (endoscopic ultrasound OR endoscopic 
ultrasonography OR EUS). We also used PubMed 
Automatic Term Mapping, which automatically 
mapped the search keywords to MeSH terms. The full 
search strategies for each database are described in 
Supplemental Table  1.

A Population, Intervention, Comparison, Outcome 
framework was used to formulate a review question 
and identify relevant studies  [Table  1]. We included 
studies focusing on the utilization of  AI in any aspects 
of  diagnostic yield and lesion classification. The 
studies that did not reported our desired outcomes, 
i.e.  sensitivity and specificity, were not included. Review 
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articles, editorial review and commentaries, letters to 
the Editors, and abstracts published in conference 
proceedings and scientific meetings were not included. 
Full papers published in the conference books were 
included if  the met the selection criteria.

Study selection and data extraction
Two authors  (TT and TP) independently screened titles 
and abstracts of  all studies identified by the search 
and reached for the full text of  potential relevant 
studies. Disagreements were identified and discussed 
with the third author  (RC). From full‑text review, the 
following criteria were used to select the studies:  (i) 
cohort or case–control study;  (ii) PDAC diagnosed 
by histopathology;  (iii) ML model;  (iv) diagnostic 
performance as outcome of  interest; and  (v) study 
that provided adequate information to calculate true 
positive  (TP), false positive  (FP), true negative  (TN), 
and false negative  (FN). Reviewers were not blinded to 
authors’ names and affiliations. Regarding publications 
of  overlapping cohort from the same investigator group 
with similar research outcome and ML model, only the 
publication with a larger cohort were included.[18,19]

Data were independently extracted from the full‑text 
articles by two authors  (TT and TP). Disagreements 
were discussed with the third author  (RC). The 
following information were extracted:  (1) first author’s 
name;  (2) year of  publication;  (3) country where a study 
was conducted;  (4) EUS mode;  (5) diagnoses of  cases 
and controls;  (6) number of  patients and ultrasound 
images and  (6) type of  AI model;  (7) number of  
patients in training and test cohort;  (8) validation 
method  (e.g .  k‑fold cross validation, independent 
test set, and external clinical validation cohort);  (9) 
sensitivity and specificity; and  (10) crude number of  TP, 
FP, TN, and FN.

Quality assessment
Quality assessment of  diagnostic accuracy 
studies  (QUADAS‑2) was used to evaluate 
methodological quality, risk of  bias, and applicability 

concerns of  the studies.[20] Four domains, including 
patient selection, index test, reference standard, and 
flow and timing, with 12 questions were used to 
assess quality of  the included studies. In the index 
test domain, we modified the questions to reasonably 
assess AI systems  [Supplemental Methods]. Since all 
included studies are in a pre‑clinical phase, i.e.  the 
results of  the AI systems’ predictions were not used 
to make decisions in a real clinical setting, we did not 
consider whether the index tests or reference standards 
were conducted with knowledge of  the results of  each 
other. Furthermore, a question regarding pre‑specified 
threshold was not directly considered because these 
thresholds are often used with tests of  which outputs 
are numerical scales  (e.g.  laboratory values). The purpose 
of  pre‑specification of  thresholds is to ensure that 
the threshold has been set before initiation of  the 
study and is not post hoc adjusted by researchers to 
get optimum results. In the context of  AI systems, 
this idea is similar to asking whether the performance 
of  the developed AI systems is validated in another 
independent cohort. We therefore answer this question 
by instead assessing whether there is any validation 
cohort, e.g.  external clinical validation cohorts, internal 
independent cohort  –  “test set,” cross validation.

Data analysis
All statistical analyses were performed using R statistical 
software, version  3.6.3, Vienna, Austria.[21] Pooled 
sensitivity, specificity, positive predictive value  (PPV), 
negative predictive value  (NPV), and diagnostic odds 
ratio  (DOR) along with 95% confidence interval  (95% 
CI) of  AI‑assisted EUS for PDAC diagnosis were 
estimated from the crude number of  TP, FP, TN, 
and FN of  each study using a random‑effects model. 
The summary receiver operator characteristic  (SROC) 
curve was generated; the area under the curve  (AUC) 
was calculated to determine the diagnostic accuracy of  
the AI models. The AUC values of  0.5–0.7, 0.7–0.9, 
and 0.9–1 indicate low, moderate, and high accuracy, 
respectively.[22] Heterogeneity among studies was assessed 
using I2 and Cochran’s Q and P  value. An I2 value 
of  >50% suggests substantial heterogeneity. Publication 
bias was assessed using the Deeks’ plot and P  value.

RESULTS

Literature search
Figure  1 summarizes the search results and process of  
article selection. There were 369 potentially relevant 
articles identified from the 6 databases. Subsequently, 

Table 1. Population, intervention, comparison, 
outcomes framework for study selection
PICO Description of detail
Population Pancreatic ductal adenocarcinoma, patients, 

males and females, datasets, worldwide
Intervention Use of computer‑assisted diagnosis, 

AI, machine learning
Comparison Benign pancreatic diseases
Outcome Lesion classification
AI: Artificial intelligence
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141 duplicates were removed, and 183 articles were 
excluded as they were clearly irrelevant articles  (n = 63); 
not studies on EUS  (n  =  56); reviews, comment, 
editorial, abstract, or meta‑analysis  (n = 45); not studies 
on PDAC  (n  =  10); and not studies on AI  (n  =  9). 
A  total of  45 articles remained for reading abstract and 
the entire text. Of  these, 37 were excluded due to not 
met the inclusion criteria  (n  =  34), duplicate patient 
cohort  (n  =  2), and non‑English language  (n  =  1). 
Finally, the remaining 8 articles met the selection criteria 
and were included for analysis.[19,23‑29]

Study characteristics
Eight studies were included in our meta‑analysis, 
with a total of  870 PDAC patients  [Table  2].[19,23‑29] 
Three studies were conducted in the US, whereas 
two studies were from Europe, two were from Asia, 
and the other one was from Turkey. Six studies 
were conducted in a single center while two were 
multicenter studies. Six publications determined 
the performance of  AI model on B‑mode EUS 
images; one publication applied an AI model on 
contrast‑enhanced EUS images, and the last one used 
an AI model on EUS elastography. In terms of  AI 
classifier, neural network  (NN) was used as an AI 
model in 4 studies and non‑NN was used in the 

other 4 studies, i.e.  support vector machine  (SVM) 
in 2 studies and linear discriminant analysis  (LDA) 
in 2 studies. Regarding validation methods, 3 used 
cross‑validation method, 3 used training and testing 
set, and the remaining 1 used leave‑one‑out method. 
One study did not have a validation method.

Qualities of  the eligible studies were assessed using 
the QUADAS‑2 criteria. The percentage of  low risk 
of  bias in the sections of  patient selection, index 
test, reference standard, and flow and timing varied 
from 62.5%–100%, 75%–100%, 100%, and 100%, 
respectively  [Table  3].

Meta‑analysis
AI‑assisted EUS for the diagnosis of  PDAC had 
a pooled sensitivity and specificity of  0.91  (95% 
CI, 0.87–0.93) and 0.90  (95% CI, 0.79–0.96), 
respectively  [Figures  2a and b]. PPV and 
NPV were 0.95  (95% CI, 0.90–0.98) and 0.82 
(95% CI, 0.72–0.89), respectively, with DOR of  81.6 
(95% CI, 32.2–207.3)  [Figure  2c‑e]. The pooled PLR 
and NLR were 6.635  (95% CI, 3.453–12.751) and 
0.122  (0.085–0.175), respectively. Figure  3 shows the 
SROC curves of  AI‑assisted EUS, with AUC of  0.923, 
indicating the high accuracy of  AI‑assisted EUS.

8 eligible articles
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369 citations identified by searching
database

141 excluded duplicate
articles

228 citations after duplicates removed

45 unique articles retrieved for full-
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183 excluded 
- 63 studies not relevant 
- 56 studies without EUS
- 45 review, comment,
editorial, abstract, meta-
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- 10 studies not included PDAC
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37 excluded
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- 2 studies duplicate data in
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Figure 1. Flow chart
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A subgroup analysis of  the 6 studies on the B‑mode 
EUS alone, without image‑enhanced technique, 
the AI system had a pooled sensitivity, specificity, 
PPV, and NPV of  0.91  (95% CI, 0.88–0.94), 0.90 
(95% CI, 0.73–0.97), 0.94  (95% CI, 0.84–0.98), and 
0.84 (95% CI, 0.79–0.88), respectively, for differentiating 
between PDAC and other non‑cancerous lesions 

[Supplemental Figure  1a‑e]. The I2 was 0% for the 
pooled sensitivity and NPV but 79% and 78% 
for the pooled specificity and PPV, respectively, 
suggestive of  substantial heterogeneity of  the 
pooled specificity and PPV. When subgrouped 
by type of  AI classifiers, the studies using LDA, 
SVM, and artificial NN  (ANN) achieved pooled 

Table 3. Quality assessment of included studies using quality assessment of diagnostic accuracy 
studies
Reference/year Risk of bias Applicability concerns

Patient 
selection[1]

Index 
test[2]

Reference 
standard[3]

Flow and 
timing[4]

Patient 
selection[5]

Index 
test[6]

Reference 
standard[7]

Norton et al., 2001[23] HR HR LR LR LR LR LR
Zhang et al., 2010[24] LR LR LR LR LR LR LR
Kumon et al., 2010[25] LR LR LR LR LR LR LR
Kumon et al., 2012[26] UR LR LR LR LR LR LR
Saftoiu et al., 2012[27] LR LR LR LR LR LR LR
Zhu et al., 2013[28] LR LR LR LR LR LR LR
Saftoiu et al., 2015[19] LR UR LR LR LR LR LR
Ozkan et al., 2016[29] UR LR UR UR LR LR LR
Low risk, Unclear risk, High risk
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Study
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Figure 2. Sensitivity  (a), specificity  (b), positive predictive value  (c), negative predictive value  (d), and diagnostic odds ratio  (e) of artificial 
intelligence‑assisted EUS for diagnosis of pancreatic cancer

dc

ba

e



Prasoppokakorn, et al.: AI for diagnosis of pancreatic adenocarcinoma

23ENDOSCOPIC ULTRASOUND / VOLUME 11 |  ISSUE 1 / JANUARY-FEBRUARY 2022

sensitivities of  0.82 (95% CI, 0.64–0.92), 0.92  (95% 
CI, 0.89–0.95), and 0.94 (95% CI, 0.49–1.00); 
pooled specificities of  0.82 (95% CI, 0.60–0.93), 
0.96 (95% CI, 0.92–0.98), and 0.79 (95% CI, 0.36–
0.96); PPVs of  0.85 (95% CI, 0.67–0.94), 0.98  (95% 
CI, 0.96–0.99), and 0.87 (95% CI, 0.66–0.96); 
and NPVs of  0.78 (95% CI, 0.57–0.91), 0.85 
(95% CI, 0.79–0.90), and 0.83 (95% CI, 0.69–0.92), 
respectively [Supplemental Figure  2a‑e]. The 
within‑subgroup heterogeneity of  the latter analysis 
was markedly decreased, i.e.  all I2 values were 0 for 
the LDA and SVM subgroups and 0%–79% for the 
ANN subgroup, emphasizing that the performance 
of  AI systems was in part determined by the types 
of  AI classifiers. The remaining high heterogeneity in 
the ANN subgroup was likely driven by the study of  
which the AI performance was estimated from the 
development cohort but not from the validation/test 
cohort.[23]

For implementing the AI‑assisted EUS into practice, 
it is uttermost importance to validate the performance 
of  the developed AI system on an independent 
dataset. Among studies with validation set, the 
pooled sensitivity and specificity were 0.90  (95% CI, 
0.87–0.93) and 0.92  (95% CI, 0.86–0.96, respectively 
[Supplemental Figure  3a and b]. In addition, when 
categorized by risk of  bias, the group of  studies with 
low risk of  bias had a pooled sensitivity and specificity 
of  0.90 (95% CI, 0.86-0.93) and 0.92 (95% CI, 0.78-
0.97), respectively, while studies with high risk of  bias 
had a pooled sensitivity and specificity of  0.91 (95%CI, 
0.82-0.96) and 0.87 (95%CI, 0.66-0.96), respectively 
[Supplemental Figure  4a and b].

Publication bias
The slope coefficient of  the Deeks’ funnel 
plot was relatively symmetry  (P  =  0.9426) 
[Supplemental Figure  5], suggesting that the publication 
bias was not present.

DISCUSSION

Conventional brightness mode  (B‑mode) of  EUS 
utilizes a spectrum of  sound wave transmissibility 
of  pancreatic tissue in depicting real‑time gray‑scale 
endosonographic images to differentiate tumor from 
normal pancreatic parenchyma. However, certain 
pancreatic pathology such as chronic pancreatitis 
and focal autoimmune pancreatitis may have similar 
echogenicity as pancreatic tumor, thus mimicking 
PDAC. Elastography and contrast‑enhanced EUS are 
advanced imaging modalities that enable real‑time 
evaluation of  tumor hemodynamics and its elasticity 
to improve diagnostic yield of  EUS. Despite such 
advanced techniques, EUS is operator‑dependent and 
requires subjective interpretation of  endosonographic 
images for diagnosis and tissue acquisition.

B‑mode EUS had a high sensitivity of  95%, however, 
the specificity was only 53% for distinguishing malignant 
from benign pancreatic lesions.[30] We found that the 
specificity of  B‑mode EUS increased to 90%, while the 
sensitivity remained high at 91%, when the AI‑assisted 
image analysis system is integrated. For contrast‑enhanced 
EUS, pooled sensitivity and specificity were 91%–93% 
and 84%–86%, respectively, for diagnosis of  malignant 
versus benign pancreatic lesions.[31,32] In line with the 
B‑mode EUS images, with the AI system, the specificity 
improved to 94%, with a comparable sensitivity of  
95%. EUS elastography had a pooled sensitivity and 
specificity of  95%–98% and 63%–76% for the diagnosis 
of  malignant pancreatic lesions.[33‑39] Unlike the other 2 
modes, the specificity of  AI‑assisted system increased to 
83% but the sensitivity slightly decreased to 88%. It is 
important to note that the studies on AI‑assisted EUS 
with image‑enhanced technique remain sparse. There was 
only 1 study investigating diagnostic yield of  ML system 
on contrast‑enhanced EUS images and 2 studies assessed 
the accuracy of  ML in EUS elastography images.[18,19,27] 
All the 3 studies were from the same investigator 
group. However, given the diagnostic performance 
of  the subgroup of  conventional B‑mode, EUS was 
not different from that of  the main analysis that 
included studies on conventional B‑mode and studies on 
image‑enhanced techniques. This might therefore imply 
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Figure  3. Summary receiver operator characteristics curves 
demonstrating performance of artificial intelligence‑assisted EUS
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that AI system can potentially be applied to EUS images 
without image‑enhanced technology or with certain 
image‑enhanced technique such as contrast‑enhanced 
technique.

To determine the optimal AI model for EUS, we 
classified the studies based on the AI techniques used in 
each study. The AI technique can be broadly categorized 
into 2 groups, i.e.  has and non‑NN. Although there 
is no proven superiority between the two techniques, 
NN have advantages in their ability to approximate any 
non-linear relationship between inputs and outputs, while 
non-NN techniques rely on prior assumptions regarding 
data distribution. NN has some advantages because they 
can approximate “any” non‑linear relationship between 
inputs and outputs, while non‑NN techniques depend 
on some assumptions about data distribution. In this 
meta‑analysis, non‑NN had a similar pooled sensitivity to 
NN, i.e.  92% versus 91%, respectively, but had a higher 
specificity, i.e.  94% versus 86%, respectively. This can 
be due to the techniques of  non‑NN applied in these 
studies. Different non‑NN techniques are suitable for 
modeling different data characteristics. Moreover, all the 
included studies used features extracted from images 
as inputs for the AI systems, instead of  using the 
whole images as inputs, performance of  the AI systems 
therefore also depends on choices of  these features as 
well as how well they were extracted.

Because FNA carries some risks of  complications,[40] it 
should be performed only by experienced endoscopists. 
However, FNA may not be technically feasible in 
a few circumstances such as in masses with large 
intertwining vessels; masses in pancreatic tail where 
transgastric needle approach would significantly increase 
the risk of  malignant seeding; lesions further away from 
intestinal wall; or patients with large‑volume ascites, 
severe thrombocytopenia, or coagulopathy.[41] Therefore, 
improvement in diagnostic yield of  EUS images will 
not only increase the efficacy of  the procedure but 
also reduce the complications that may develop from 
unnecessary puncture on the low‑likelihood lesion. 
Moreover, the knowledge, experience, and skills of  
individual endoscopist may affect the results obtained 
from EUS. Therefore, using a computer‑aided 
supporting system that can provide a real‑time objective 
interpretation of  EUS images will significantly contribute 
to more accurate, safer, and easier diagnosis. Even under 
the experienced endosonographers hands, AI could 
potentially facilitate the more precise puncture site and 
perhaps this might reduce the number of  punctures.

This is one of  the very first meta‑analyses of  the 
AI‑assisted system in the EUS studies. Although 
publication bias was not detected, our findings 
should be interpreted with cautions due to limitation 
of  included studied. First, although the included 
studies were conducted in various countries, the 
number of  studies was quite small  (n  =  8), given 
that AI has just been increasingly involved in EUS 
field in recent years. In addition, because PDAC is a 
relatively uncommon cancer, the number of  patients 
in most studies was therefore limited, particularly, the 
number of  controls was very small in 2 studies.[23,25] 
The small number of  controls in these 2 studies 
can potentially introduce sampling error, leading to 
a substantial heterogeneity of  the pooled specificity, 
although no significant heterogeneity of  the pooled 
sensitivity. For implementation of  the AI system 
into practice, it is crucial to develop AI systems 
that can be generalized well to real clinical settings. 
One way to evaluate generalizability is to validate 
the AI systems using independent datasets that the 
systems have never seen before. In this meta‑analyses, 
only 3 studies had an independent dataset used 
as a validation cohort, however, the validation 
cohort had similar characteristics to the development 
cohort. [19,24,29] To ensure the general izabil i ty in 
different clinical settings, the AI systems should be 
evaluated on “external” clinical validation cohorts. 
For the most sophisticated level, AI systems should 
be evaluated whether they can improve clinical 
performance, i.e.  conducting a randomized controlled 
trial comparing diagnostic performance between 
physicians alone and physicians with assistance from 
AI systems. Finally, all included studies developed AI 
systems for classifying the type of  pancreatic lesions 
in the offline mode. None had a system for real‑time 
detection and characterization of  pancreatic lesion. 
Real‑time operations of  the system would increase 
the chance of  clinical use as they will  provide 
physicians guidance, especially for tissue acquisition 
of  the high‑yield lesion during procedures.

CONCLUSIONS

AI‑assisted EUS image analysis is an effective 
tool to diagnose PDAC and distinguishing it from 
other pancreatic condition, with high accuracy. 
The improvement in AI technology that enables a 
real‑time evaluation can play an important role in 
tissue‑acquisition guidance and avoid unnecessary 
puncture on the low‑likelihood lesion.
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Supplemental Table 1. Full search strategies for each database
Database Search fields Search query Search 

hits
PubMed PubMed automatic term mapping* 

searched by MeSH terms and all fields
((artificial intelligence) OR (machine learning) OR (neural 
network) OR (deep learning) OR (support vector 
machine) OR (“SVM”) OR (digital image processing) 
OR (digital image analysis) OR (parameter analysis)) 
AND ((pancreas) OR (pancreatic)) AND ((malignancy) 
OR (malignant) OR (tumor) OR (mass) OR (neoplasm) 
OR (cancer) OR (adenocarcinoma)) AND ((EUS) 
OR (endoscopic ultrasonography) OR (“EUS”))

42

SCOPUS Title, abstract, and keyword fields TITLE‑ABS‑KEY (((artificial intelligence) OR (machine 
learning) OR (neural network) OR (deep learning) 
OR (support vector machine) OR (“SVM”) OR (digital 
image processing) OR (digital image analysis) 
OR (parameter analysis)) AND ((pancreas) OR (pancreatic)) 
AND ((malignancy) OR (malignant) OR (tumor) OR (mass) 
OR (neoplasm) OR (cancer) OR (adenocarcinoma)) 
AND ((EUS) OR (endoscopic ultrasonography) OR (“EUS”)))

138

ISI Topic and title fields TS = ((artificial intelligence) OR (machine learning) 
OR (neural network) OR (deep learning) OR (support 
vector machine) OR (“SVM”) OR (digital image processing) 
OR (digital image analysis) OR (parameter analysis)) 
AND ((pancreas) OR (pancreatic)) AND ((malignancy) 
OR (malignant) OR (tumor) OR (mass) OR (neoplasm) 
OR (cancer) OR (adenocarcinoma)) AND ((EUS) 
OR (endoscopic ultrasonography) OR (“EUS”)) OR 
TI = ((artificial intelligence) OR (machine learning) 
OR (neural network) OR (deep learning) OR (support 
vector machine) OR (“SVM”) OR (digital image processing) 
OR (digital image analysis) OR (parameter analysis)) 
AND ((pancreas) OR (pancreatic)) AND ((malignancy) 
OR (malignant) OR (tumor) OR (mass) OR (neoplasm) 
OR (cancer) OR (adenocarcinoma)) AND ((EUS) 
OR (endoscopic ultrasonography) OR (“EUS”))

103

EMBASE “Multi‑purpose” (mp) field, which 
encompasses abstract, candidate term 
word, device manufacturer, device trade 
name, drug manufacturer, drug trade 
name, floating subheading word, heading 
word, keyword, original title and title

#1 artificial intelligence.mp. or exp artificial intelligence/
#2 machine learning.mp. or exp machine learning/
#3 exp artificial neural network/
#4 deep learning.mp.
#5 support vector machine.mp. or 
exp support vector machine/
#6 digital image processing.mp.
#7 digital image analysis.mp.
#8 parameter analysis.mp.
#9 pancreas.mp. or exp pancreas/
#10 pancreatic.mp.
#11 malignancy.mp.
#12 exp solid malignant neoplasm/or exp 
malignant neoplasm/or malignant.mp.
#13 tumor.mp. or exp neoplasm/
#14 mass.mp. or exp mass/
#15 neoplasm.mp.
#16 cancer.mp.
#17 exp pancreas adenocarcinoma/or 
adenocarcinoma.mp. or exp adenocarcinoma/
#18 exp pancreas tumor/or pancreatic mass.
mp. or pancreatic adenocarcinoma.mp. or 
exp pancreas adenocarcinoma/or pancreatic 
cancer.mp. or exp pancreas cancer/
#19 EUS.mp. or exp endoscopic ultrasonography/
#20 EUS.mp.
Then, the following Boolean operators were 
used to pool the search results:
(#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8) AND
((#9 OR #10) AND (#11 OR #12 OR #13 OR #14 
OR #15 OR #16 OR #17)) OR 18) AND
(#19 OR #20)

64
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Database Search fields Search query Search 

hits
IEEE All metadata ((artificial intelligence) OR (machine learning) OR (neural 

network) OR (deep learning) OR (support vector 
machine) OR (“SVM”) OR (digital image processing) 
OR (digital image analysis) OR (parameter analysis)) 
AND ((pancreas) OR (pancreatic)) AND ((malignancy) 
OR (malignant) OR (tumor) OR (mass) OR (neoplasm) 
OR (cancer) OR (adenocarcinoma)) AND ((EUS) 
OR (endoscopic ultrasonography) OR (“EUS”))

2

ACM All fields (limit search to the ACM full‑text 
collection)

[[All: artificial intelligence] OR [All: machine learning] 
OR [All: neural network] OR [All: deep learning] OR [All: 
support vector machine] OR [All: “svm”] OR [All: digital 
image processing] OR [All: digital image analysis] OR [All: 
parameter analysis]] AND [[All: pancreas] OR [All: 
pancreatic]] AND [[All: malignancy] OR [All: malignant] 
OR [All: tumor] OR [All: mass] OR [All: neoplasm] OR [All: 
cancer] OR [All: adenocarcinoma]] AND [[All: EUS] OR [All: 
endoscopic ultrasonography] OR [All: “eus”]]

20

*PubMed automatic term mapping yielded the following search queries

Artificial intelligence: “Artificial intelligence” [MeSH Terms] OR (“artificial” [All Fields] AND “intelligence”[All Fields]) OR “artificial intelligence”[All Fields]

Machine learning: “Machine learning” [MeSH Terms] OR (“machine” [All Fields] AND “learning” [All Fields]) OR “machine learning” [All Fields]

Neural network: “Neural networks, computer” [MeSH Terms] OR (“neural” [All Fields] AND “networks” [All Fields] AND “computer” [All Fields]) OR “computer 
neural networks” [All Fields] OR (“neural” [All Fields] AND “network” [All Fields]) OR “neural network” [All Fields]

Deep learning: “Deep learning” [MeSH Terms] OR (“deep” [All Fields] AND “learning” [All Fields]) OR “deep learning”[All Fields]

Support vector machine: “Support vector machine” [MeSH Terms] OR (“support” [All Fields] AND “vector” [All Fields] AND “machine” [All Fields]) OR “support 
vector machine” [All Fields]

Digital image processing: “Image processing, computer‑assisted” [MeSH Terms] OR (“image” [All Fields] AND “processing” [All Fields] AND 
“computer‑assisted” [All Fields]) OR “computer‑assisted image processing” [All Fields] OR (“digital” [All Fields] AND “image” [All Fields] AND 
“processing” [All Fields]) OR “digital image processing” [All Fields]

Digital: “Digital” [All Fields] OR “digitalization” [All Fields] OR “digitalized” [All Fields] OR “digitalization” [All Fields] OR “digitalize” [All Fields] OR 
“digitalized” [All Fields] OR “digitalizer” [All Fields] OR “digitalizing”[All Fields] OR “digitally” [All Fields] OR “digitals” [All Fields] OR “digitization” [All 
Fields] OR “digitizations” [All Fields] OR “digitize” [All Fields] OR “digitized” [All Fields] OR “digitizer” [All Fields] OR “digitizers” [All Fields] OR 
“digitizes” [All Fields] OR “digitizing” [All Fields]

Image: “Image” [All Fields] OR “image’s” [All Fields] OR “imaged” [All Fields] OR “imager” [All Fields] OR “imager’s: [All Fields] OR “imagers” [All Fields] OR 
“images” [All Fields] OR “imaging” [All Fields] OR “imaging’s” [All Fields] OR “imagings” [All Fields]

Analysis: “Analysis” [Subheading] OR “analysis” [All Fields]

Parameter: “Parameter” [All Fields] OR “parameter’s” [All Fields] OR “parameters” [All Fields]

Analysis: “analysis” [Subheading] OR “analysis” [All Fields]

Pancreas: “Pancrea” [All Fields] OR “pancreas” [MeSH Terms] OR “pancreas” [All Fields]

Pancreatic: “Pancreas” [MeSH Terms] OR “pancreas” [All Fields] OR “pancreatic” [All Fields] OR “pancreatitides” [All Fields] OR “pancreatitis”[MeSH Terms] 
OR “pancreatitis” [All Fields]

Malignancy: “Malign” [All Fields] OR “malignance” [All Fields] OR “malignances” [All Fields] OR “malignant” [All Fields] OR “malignants” [All Fields] 
OR “malignities” [All Fields] OR “malignity” [All Fields] OR “malignization” [All Fields] OR “malignized” [All Fields] OR “maligns” [All Fields] OR 
“neoplasms” [MeSH Terms] OR “neoplasms” [All Fields] OR “malignancies” [All Fields] OR “malignancy” [All Fields]

Malignant: “Malign” [All Fields] OR “malignance” [All Fields] OR “malignances” [All Fields] OR “malignant” [All Fields] OR “malignants” [All Fields] 
OR “malignities” [All Fields] OR “malignity” [All Fields] OR “malignization” [All Fields] OR “malignized” [All Fields] OR “maligns” [All Fields] OR 
“neoplasms” [MeSH Terms] OR “neoplasms” [All Fields] OR “malignancies” [All Fields] OR “malignancy” [All Fields]

Tumor: “Cysts” [MeSH Terms] OR “cysts” [All Fields] OR “cyst” [All Fields] OR “neurofibroma” [MeSH Terms] OR “neurofibroma” [All Fields] OR 
“neurofibromas” [All Fields] OR “tumor’s”[All Fields] OR “tumoral” [All Fields] OR “tumorous” [All Fields] OR “tumour” [All Fields] OR “neoplasms” [MeSH 
Terms] OR “neoplasms” [All Fields] OR “tumor” [All Fields] OR “tumour’s”[All Fields] OR “tumoural” [All Fields] OR “tumourous” [All Fields] OR 
“tumours” [All Fields] OR “tumors” [All Fields]

Mass: “Molecular weight” [MeSH Terms] OR (“molecular” [All Fields] AND “weight” [All Fields]) OR “molecular weight” [All Fields] OR “mass” [All Fields]

Neoplasm: “Neoplasm’s” [All Fields] OR “neoplasms” [MeSH Terms] OR “neoplasms” [All Fields] OR “neoplasm” [All Fields]

Cancer: “Cancer’s”[All Fields] OR “cancerated” [All Fields] OR “canceration” [All Fields] OR “cancerization” [All Fields] OR “cancerized” [All Fields] OR 
“cancerous” [All Fields] OR “neoplasms” [MeSH Terms] OR “neoplasms” [All Fields] OR “cancer” [All Fields] OR “cancers” [All Fields]

Adenocarcinoma: “Adenocarcinoma” [MeSH Terms] OR “adenocarcinoma” [All Fields] OR “adenocarcinomas” [All Fields] OR “adenocarcinoma’s” [All Fields]

EUS: “Endosonography” [MeSH Terms] OR “endosonography” [All Fields] OR (“endoscopic” [All Fields] AND “ultrasound” [All Fields]) OR “EUS” [All Fields]

Endoscopic ultrasonography: “Endosonography” [MeSH Terms] OR “endosonography” [All Fields] OR (“endoscopic” [All Fields] AND “ultrasonography” [All 
Fields]) OR “endoscopic ultrasonography” [All Fields].

IEEE: Institute of electrical and electronics engineers, ACM: Association for computing machinery, SVM: Support vector machine
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Supplemental Figure 1. Sensitivity (a), specificity (b), positive predictive value (c), negative predictive value (d), and diagnostic odds ratio 
(e) of a subgroup analysis of the 6 studies on the B-mode EUS alone, without image-enhanced technique

dc

ba

e



Supplemental Figure 2. Sensitivity (a), specificity (b), positive predictive value (c), negative predictive value (d), and diagnostic odds ratio 
(e) of subgroup analysis by type of artificial intelligence classifiers
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Supplemental Figure 5. Deeks funnel plot
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Supplemental Figure 3. Pooled sensitivity (a) and specificity (b) of artificial intelligence models with validation set
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Supplemental Figure 4. Pooled sensitivity (a) and specificity (b) of artificial intelligence models classified by risk of bias
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SUPPLEMENTAL METHOD

Twelve questions of QUADAS‑2 criteria
(1)	Could the selection of  patients have introduced bias?
	 a.	 Was a consecutive or random sample of  patients enrolled?
	 b.	 Was a case–control design avoided?
	 c.	 Did the study avoid inappropriate exclusions?
(2)	Could the conduct or interpretation of  the index test have introduced bias?
	 a.	 Is the AI system validated by any means?  (e.g.  independent test set, k‑fold cross validation, external clinical 

validation set)*
(3)	Could the reference standard, its conduct, or its interpretation have introduced bias?
	 a.	 Is the reference standard likely to correctly classify the target condition?
(4)	Could the patient flow have introduced bias?
	 a.	 Is there an appropriate interval between index test and reference standard?
	 b.	 Did all patients receive a reference standard?
	 c.	 Did patients receive the same reference standard?
	 d.	 Were all patients included in the analysis?
(5)	Is there concern that the included patients do not match the review question?
(6)	Is there concern that the index test, its conduct, or interpretation differ from the review question?
(7)	Is there concern that the target condition as defined by the reference standard does not match the review question?
	 *This item was modified from the original QUADAS‑2 criteria.
	  **Two items were excluded from the criteria:
	 •	 Were the index test results interpreted without knowledge of  the results of  the reference standard?
	 •	 Were the reference standard results interpreted without the knowledge of  the results of  the index test?
	  ***Risk of  bias in each main question is assessed as “low,” “high,” or “unclear.” If  all the subquestions are 

answered “yes,” the main question will be assessed as low risk of  bias. If  at least one subquestion is answered 
“no,” the main question will be assessed as high risk of  bias. If  there is insufficient information to assess the 
risk, it will be marked as “unclear”[1]
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