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Introduction

Bone trauma requiring treatment with bone grafting is 
common and can range from reconstructive interventions 
after bone tumour recession, to spinal fusions and non-
union fractures, which occur at a rate of 5% of all frac-
tures. While autologous or allogeneic grafts are the current 
gold standard and some of the most common tissue trans-
plants, they are associated with a high rate of surgical revi-
sions: 17% for autologous grafting and above 30% for 
allografts.1 Autografts are associated with an increased 
probability of fracture at the graft donor site, alongside 
chronic pain or neurovascular injuries, while allografts 
lack the benefit of cellular activity. Tissue engineered bone 
grafts, as a personalised therapy, have the potential to miti-
gate some of these risks and augment bone grafting.

Cellularised engineered grafts have been shown in pre-
clinical trials to perform better than non-cellular con-
structs2–4 in bridging critically sized defects.5 Osteoblasts 
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are the cells that create mature bone tissue, via mineralisa-
tion of the pre-calcified matrix deposited by precursor 
cells. As the natural osteoblast precursors6,7 and with an 
established status in cell therapies, mesenchymal stem 
cells (MSCs) are the preferred cell source.8–10 MSCs are 
valued for their potential for self-renewal, multilineage 
differentiation11 and immunosuppressing activity in vivo,12 
which can facilitate allogeneic transplantation.13,14

In order to ensure the functionality of the graft, the cell 
number delivered needs to be sufficiently large to initiate 
healing.10,13 This often necessitates the in vitro expansion 
of a sample of a patient’s cells.15

Traditionally, cell cultures are expanded as monolayers 
in tissue culture T-flasks, and the standard techniques such 
as manual culture passaging may be damaging to the cells. 
Shear stresses are experienced during centrifugation, 
pipetting and tapping used to physically detach the adher-
ent cells from their culture substrate, while trypsinisation 
destroys essential extracellular matrix (ECM) ligands, and 
cell mass is lost during transfer.16

An alternative to monolayer cultures is the use of micro-
carriers as attachment vehicles for the cells, which can 
eliminate the need for cell culture passaging. Microcarriers 
have successfully been used to culture MSCs in dynamic 
bioreactor systems such as spinner flasks.17 Microcarriers 
are typically used to expand cells and they are subsequently 
removed from the final product. Microcarrier material 
properties such as stiffness and coating can help differentia-
tion into the desired lineage, and new developments such as 
temperature and electro- or magnetic responsive materials 
are making cell detachment easier.18

However, for bottom-up tissue engineering, it is neces-
sary to create microcarriers from an implantable material. 
An added benefit to using such microcarriers is provision of 
a three-dimensional (3D) growth environment which pre-
serves cell-to-cell signalling. This encourages the formation 
of cellular clusters, prevents de-differentiation and loss of 
cell functions.19 Resorbable microcarriers are especially 
suitable for bottom-up tissue engineering as they allow nat-
ural, homogeneous tissue development with the gradual 
replacement of the carrier material with ECM and do not 
require cell mass removal at the end of the expansion. The 
success of the strategy depends on the cellular affinity for 
attachment to the carriers, which is determined by their top-
ological properties and chemical composition.15

Phosphate-based glasses are suitable microcarrier 
materials as they are biocompatible, biodegradable and 
easy to manufacture. Their biocompatibility can be 
improved by impregnation with different oxides, for exam-
ple, cobalt oxide (CoO) has been shown to increase the 
density of the apatite layer formed after culturing in foetal 
bovine serum (FBS) and to improve mechanical strength.20 
Titanium dioxide (TiO2) upregulates genes responsible for 
bone formation and promotes bone tissue deposition after 
implantation in vivo.21

3D tissue-engineered constructs of sufficiently large 
volume to expand a clinically meaningful number of cells 
are susceptible to mass transfer limitations of nutrients 
and waste products in diffusion-dependent cultures.22–24 
Such constructs often have a proliferating periphery and 
a necrotic core due to gradients in oxygen levels from the 
construct boundaries inwards, resulting in oxygen depri-
vation in the construct centre.23 For this reason, bioreac-
tors that provide dynamic mixing of the culture medium 
via convection to augment diffusive transport are prefer-
able as cell expansion vehicles. They are designed to be 
automated to provide the required controlled environ-
ment, crucial for developing reproducible protocols.23,25 
Apart from improving oxygenation in the culture, biore-
actors provide flow-induced shear stress which stimu-
lates the naturally mechanosensitive differentiation of 
bone tissues25 and triggers deposition of mineralised 
ECM and the expression of bone-marker proteins.26,27 
Bioreactors, thus, recreate the in vivo environment more 
realistically than static cultures.25,28 While using bioreac-
tors has many inherent benefits, such as increased osteo-
genic differentiation, improved proliferation and higher 
seeding efficiency and homogeneity of cell spreading in 
the engineered constructs,29 bioreactor-grown bone grafts 
have not performed significantly better after implantation 
in vivo. Tailoring the bioreactor culture settings to max-
imise cell-yield and produce clinical sized tissues is 
challenging.

Modelling is a natural tool to apply in this setting, as it 
provides a framework to investigate the effect of the differ-
ent factors in the tissue culture. It can build on experimen-
tal data and simulate more setups, configurations and 
operating conditions. These simulations can predict the 
culture outcome under new circumstances and direct future 
experimentation, thus streamlining the discovery of 
favourable culture protocols and minimising the need for 
extensive time-consuming and costly experimentation. 
These capabilities of modelling offer the potential to opti-
mise the tissue engineering strategy.

In order to build highly informative models, parameter 
values must be found which ensure that simulations match 
the cell and material-specific behaviour investigated. 
Finding the coefficients describing cellular behaviour (for 
instance, rate of proliferation, uptake of nutrients, or secre-
tion of ECM) is a key step in the development of models 
which can be used to improve the culture conditions. While 
some hypotheses about tissue morphogenesis in vitro can 
be tested with non-parameterised models,30,31 parameterisa-
tion is essential to make the quantitative predictions 
required to fine tune bioreactor settings and design tissue 
engineering protocols for clinical applications. Performing 
a robust parameterisation requires a thorough knowledge of 
the experimental procedure and the raw data obtained. That 
is why comparisons to previously published data are often 
only qualitative.32
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Even when the parameterisation is performed in-house, 
it might be possible to find only a limited number of coef-
ficients.33 It is especially challenging to find the parame-
ters which describe the biological behaviour – for example, 
oxygen consumption rate and proliferation rate as done by 
Zhao et al.34 A good strategy to find these biological coef-
ficients is to perform a series of small-scale experiments, 
investigating the cellular response to the different condi-
tions of interest. Parameterised models are even more 
robust when validated against separate experiments, show-
casing the repeatability of the modelling approach.

Parameterised models are often data fitted to experi-
mental setups to show the simulations match the measure-
ments made,34–36 but the model is only rarely then used to 
gain insight into the effect of culture conditions.33,37–40 
Operating settings for future in vitro experiments have 
hardly been provided from models parameterised to cell 
growth data in particular.

This study aims to demonstrate how modelling can be an 
invaluable tool aiding experimentation in developing and 
improving culture protocols for bone tissue engineering. We 
outline the development of a parameterised mathematical 
model describing the growth behaviour of a microcarrier 
culture under static conditions. A non-phenomenological 
model of cell growth and metabolism is presented first. The 
cell growth parameters in the model are then parameterised 
to cell number data from small-scale experiments which 
investigate the cell growth potential of four phosphate glass 
biomaterials. In this study, the MG-63 osteosarcoma cell 
line is used to model osteoblastic cells in culture.

The data-fitted growth parameters for each microcarrier 
biomaterial are used to simulate the cell yield (fold increase 
from the starting cell number) at different initial (seeding) 
cell densities and culture duration. The objective is to use 
the parameterised mathematical model to investigate how 
to reduce the culture duration and minimise the seeding 
cell number (with view of reducing the invasiveness of the 
clinical procurement of stem cells for engineered bone 
grafts) while still achieving the required cell yield to pro-
mote healing. In this way, the performance of the different 
biomaterials is compared, the material with the greatest 
potential is identified and more efficient combinations of 
biomaterial, cell seeding number and culture duration are 
proposed for future in vitro experiments.

Materials and methods

Experimental work

Experimental protocols are described in detail in Peticone 
et al.41 and De Silva Thompson et al.,42 and briefly over-
viewed here.

Glass preparation and microcarrier fabrication.  Phosphate 
glasses with different concentrations of CoO and TiO2 were 
prepared as described in Abou Neel et al.21,43 The chemical 
composition of the glasses is shown in Table 1. A previous 
study by Guedes et al.16 found that 5 and 7 mol% TiO2 con-
ferred a stable degradation rate of the phosphate carriers, 
which motivated the use of these particular concentrations. 
Two non-cytotoxic CoO concentrations were also exam-
ined: 2 and 5 mol%,41 as CoO has been found to encourage 
in vitro angiogenesis. Spherical phosphate glass microcarri-
ers were manufactured following the procedure set out in 
Guedes et al.16 and sieved down to spheres with diameters 
between 63 and 106 μm.

MG63 osteoblast culture: cell growth and metabolism 
assays.  Cell culture experiments were conducted with the 
human osteosarcoma cell line MG-63. A monolayer of 
microcarriers (5 mg/well) was seeded in ultra-low attach-
ment 96-well plates (Corning Costar®) with 1.5 × 104 
MG-63 cells per well (seeding cell density of 4.66 × 104 
cells/cm2). The cells were cultured in 150 μL of Dulbec-
co’s Modified Eagle Medium (DMEM), low glucose 
(1 g/L), supplemented with GlutaMAX, 10% FBS and 1% 
antibiotic/antimyocitic (ThermoFisher Scientific). They 
were incubated in static conditions at 37°C and 5% CO2 
for up to 14 days, replacing the medium every 2 days.

Cell proliferation was measured with the Cell Counting 
Kit-8 (CCK-8, Sigma) on the basis of absorbance at 450 nm 
detected in a Safire2 plate reader (Tecan). Metabolite con-
centrations (dextrose and lactate) are measured in an YSI 
2300 STAT Plus enzyme-reaction analyser (YSI). MG-63 
cells seeded as a two-dimensional (2D) monolayer on 
96-well tissue-grade culture plastic plates (ThermoScientific) 
(sample sets seeded with 0.5 or 1.5 × 104 cells/well) and 
cultured under the same conditions were used as positive 
control. Readings were taken at the end of the first day in 
culture (day 1), and subsequently every 2 days until day 13.

Statistical methods.  Samples were analysed in triplicates and 
data are presented as mean ± standard deviation (SD). One-
way analysis of variance (ANOVA) tests using the software 
Minitab were performed to establish statistical significant 
difference between the different biomaterial data sets.

Mathematical model

A mathematical model tailored to the experimental setup 
was created to simulate the behaviour of the cell cultures, 

Table 1.  Composition of the four different bioactive phosphate 
glass materials.41,42

Glass type Compound concentration (mol%)

P2O5 CaO Na2O TiO2 CoO

5% TiO2 50 30 15 5 0
7% TiO2 50 30 13 7 0
2% CoO 45 28 20 5 2
5% CoO 45 25 20 5 5
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with the goal of identifying coefficients which describe 
cell growth for each biomaterial used in the experiments. 
The domain of the model was the media inside a single 
micro-well from the 96-well plates where the cells were 
cultured (Figure 1). Since quantitative data were collected 
for cell number, glucose and lactic acid concentrations, the 
model was built on a system of differential equations 
which examined the behaviour of these variables, plus 
oxygen concentration, in the well. Initial and boundary 
conditions were selected to describe the experimental 
setup, and dimensions for the geometry of the truncated 
conical well were informed by the manufacturers’ specifi-
cations (Table 2).

The cells were seeded on the microcarriers, which were 
assumed to cover the entire bottom surface of the well 
(Figure 1). Because the carriers were denser than water, 
they were not buoyant and rested on the bottom of the 
well. Therefore, the cells were not modelled explicitly but 
as an infinitely thin layer on the bottom of the well. Cell 
growth was described by an ordinary differential equation, 

whereby change in cell count was caused by cell prolifera-
tion and death as governed by the logistic growth law44,45
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where N is the cell density (cell/m2), β is the coefficient 
of proliferation (m3/(mol s)) and d0 is a cell death con-
stant (cell/(m2 s)). The coefficients β and d0 were found 
for each biomaterial by fitting to the experimental data. 
The death rate is treated as constant based on experimen-
tal observations (data not shown), and in order to adopt a 
simplest-first modelling approach (although we note that 
this could be readily adapted to incorporate further com-
plexity in the future). If the cell density reaches zero, the 
death rate d0 is set to zero. The proliferation term in equa-
tion (1) captures oxygen and cell-density-dependent 
growth. Osteoblast behaviour (proliferation and osteo-
genesis) has been shown to be sensitive to oxygen con-
centration, with normoxia (21% oxygen partial pressure 
(PO2)) enhancing alkaline phosphatase activity and col-
lagen synthesis, while severe hypoxia (less than 1% PO2) 
suppresses proliferation.46 Here, it was assumed the cell 
density N is linearly dependent on the local oxygen con-
centration, Co (mol/m3), as oxygen concentration in the 
media did not fall under 10% PO2. The saturation or max-
imum cell density parameter, Nmax (cell/m2), is a cell 
type–specific constant and is defined by the maximum 
physical space the cells can occupy. It was empirically 
evident in the experiments as the density at which conflu-
ency was reached and cell growth slowed down, and we 
found this density for individual materials by parameter-
ising the model against the experimental data on cell 
number. The initial cell density, N(0) = N0 = 4.66 × 108 
cells/m2, corresponded to seeding 15,000 cells on the 
well base. Table 2 lists all other experimentally fixed 
parameters.

Distribution of nutrients (oxygen and glucose) and 
waste products (lactic acid) were modelled by means of a 
system of diffusion equations

		

∂
∂

= ∇
C

t
D Ci

i i
2 ,

			   (2)

where Ci refers to the chemical concentration, and i is an 
index standing for oxygen (o), glucose (g) or lactic acid (l). 
The medium was assumed to have the same physical prop-
erties as water (density, viscosity), and diffusion coefficients 
in water for each solute were found in the literature and 
listed in Table 3. Due to the longer time scales of matrix 
secretion in comparison with cell proliferation (days vs 
hours), effects of matrix deposition on the diffusion coeffi-
cients were neglected in the initial analysis, which only con-
sidered the first week of culture.

Figure 1.  A graph illustrating the model setup and equations. 
Cells were seeded on microcarriers which sit on the bottom 
of a well in a 96-well plate. Enough carriers were used to cover 
the surface of the bottom of the well, which was assumed as the 
seeding area.

Table 2.  List of fixed model parameters, based on the 
experimental setup and geometry.

Parameter Value Units Description

Rb 0.0032 m Radius of the bottom of the 
well

Rtm 0.0033 m Radius of the top of the 
media

Hm 0.0045 m Height of the media
N0 4.66 × 108 cells/m2 Initial cell density (15,000 

cells)
Co(0) 0.218 mol/m3 Initial oxygen concentration
Cg(0) 5.55 mol/m3 Initial glucose concentration
Cl(0) 0 mol/m3 Initial lactic acid 

concentration
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Initial and boundary conditions.  Since the cell layer was 
assumed to be infinitely thin and was not modelled explic-
itly as a separate domain, the terms for the consumption or 
production of the metabolites (Mi) (equations (4) and (5)) 
were inputted in the model as flux (J (mol/m2 s)) boundary 
conditions on the bottom of the well

			   Mi = − ⋅n J , 		  (3)

where n is the unit normal vector pointing outward of the 
specified surface. Consumption of oxygen or glucose was 
set as an outward flux, while lactic acid production was 
represented by an inward flux.

Metabolic consumption of oxygen and glucose was 
modelled using Michaelis–Menten kinetics (MMK)

		
M N

V C

C Ki
i i

i i

=
+

,
			  (4)

where Vi (mol/(cell s)) is the maximum rate of the reaction 
for the given chemical denoted by subscript i (oxygen or 
glucose), while Ki (mol/m3) is the Michaelis–Menten con-
stant which is equal to the concentration at which the reac-
tion rate is half the maximum, Vi. They are both empirical 
cell type–specific parameters, values for which were found 
in literature (Table 3). MMK is commonly the equation of 
choice for modelling consumption of these nutrients.32,34,58 
Buerk and Saidel59 found that in comparison with zero and 
first-order kinetics, it is the one that most closely repre-
sents theoretically the consumption of oxygen in brain and 
liver tissues.

Production of lactic acid was coupled to the consump-
tion of oxygen and glucose, using the relationship between 
glycolysis and aerobic respiration53

		
R R

R
l g

o= − +2
3

,
			  (5)

A constant oxygen concentration (0.218 mol/m3) bound-
ary condition was imposed on the top of the domain to 
account for oxygen diffusing from the air into the media. 
Oxygen, glucose and lactic acid were not subjected to any 
other boundary conditions apart from the flux at the bottom 
(equation 3) and the ‘no flux’ condition applied on all other 
boundaries

		  0 = − ⋅n J , 			   (6)

Representative of the culture media used in the experi-
ments, oxygen concentration was initially set at 
Co(0) = 0.218 mol/m3 throughout the domain (in equilib-
rium with 21% PO2 in air). The initial glucose concentra-
tion was Cg(0) = 5.55 mol/m3 as indicated by the media 
(DMEM ThermoFisher Scientific) product specifications. 
Initial concentration of lactic acid in the media was set to 
nil (Cl(0) = 0 mol/m3). These initial conditions as well as 
experimentally imposed geometry parameters are listed in 
Table 2.

Model nondimensionalisation.  A dimensionless version of 
the cell density equation was obtained in order to simplify 
the process of data fitting by identifying the dominant 
physical balances in the system and reducing the number 
of free parameters.

The rescaling procedure was done by introducing the 
following new rescaled variables: n , t , x , ci  (where i is 
an index standing for oxygen (o), glucose (g) or lactic acid 
(l)), which are related to the original variables via the fol-
lowing rescalings
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where L = 1 m is the characteristic length, Cla = 1 mol/m3 is 
the characteristic lactic acid concentration and T is a 
parameter representing the proliferation time scale

Table 3.  List of non-fixed model parameters found in the literature.

Parameter Estimated value Units Description Reference

Nmax 3.5 × 1014 cells/m2 Max cell density Unpublished work by R.J. Shipley
β 1.60 × 10−4 m3/(mol s) Cell proliferation coeff. Unpublished work by R.J. Shipley
d0 1.40 × 104 cells/(m2 s) Cell death coeff. Unpublished work by R.J. Shipley
Vo 2.55 × 10−17 mol/(cell s) Max consumption rate for oxygen 47, 48
Vg 3.08 × 10−15 mol/(cell s) Max consumption rate for glucose 49–52
Ko 3.33 × 10−3 mol/m3 MMK constant for oxygen 47, 48
Kg 4.63 mol/m3 MMK constant for glucose 49–52
Do 1.91 × 10−9 m2/s Oxygen diffusion coeff. in water 53–56
Dg 6.14 × 10−10 m2/s Glucose diffusion coeff. in water 53, 56, 57
Dl 7.95 × 10−10 m2/s Lactic acid diffusion coeff. in water 53, 56

MMK: Michaelis–Menten kinetics.
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Under this rescaling, the cell density equation (1) 
becomes
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where P is defined by
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combining both original growth parameters, β  and d0 .
Rescaling the diffusion equation with the new variables 

led to the following nondimensional equation for oxygen, 
glucose and lactic acid
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After the rescaling, the boundary conditions imposed 
on the bottom of the well for the metabolic reactions of 
oxygen, glucose and lactic acid (equations (4) and (5)) 
become respectively
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where the dimensionless coefficients are known (functions 
of fixed and literature-found parameters listed in Tables 2 
and 3) and are defined as follows
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The dimensionless initial conditions are as follows

    c c c no g l   ( ) ( ) ( ), , ( ) ,0 1 0 1 0 0 0 1= = = =and 	 (14)

Adding a normal distribution function for the initial cell den-
sity.  Cell number experimental data exhibited relative 
SDs in the order of 20% (see Figure 4 and section ‘Exper-
imental data’). In order to introduce such level of varia-
bility in the model, we had to consider the reasons behind 
this.

One possible explanation is that this was caused by a 
variation in the seeding cell number, because it is hard to 

precisely count and control the number of cells seeded in 
each experimental trial.

Sensitivity of final cell densities to changes in N0 is sub-
stantial in the model. A 10% increase in initial cell density 
results in 64% increase in cell yield, while a 10% reduction 
in seeding density results in a 87% drop in cell yield. This 
shows that the model is very sensitive to the exact seeding 
density in the experiments, which is unknown.

To capture the inherent experimental variability in the 
seeding number, we introduced a normal distribution func-
tion to define N0. The mean of the distribution was set to 
the intended seeding density (4.66 × 108 cells/m2), while 
the SD was informed by the experimental data on day 1 
(Figure 2). Fifty simulations were performed, each simula-
tion run sampling from this normal distribution. Compiling 
the results from the 50 simulations, an approximately nor-
mal distribution of final cell densities was produced which 
was comparable with the experimentally reported cell data 
at the corresponding time point. The cell growth simula-
tions also mimicked the experimental replacement of cul-
ture media by resetting metabolite concentrations to initial 
conditions at the appropriate time.

Another explanation for the large deviations in the 
experimental data is that the cells can experience a range 
of growth behaviours in response to the culture conditions. 
In the context of the mathematical model, this can be rep-
resented by using probability density functions to describe 
the growth parameters. Analysis assessing which of the 
two proposed hypothesis is dominant revealed that the 
model was more sensitive to deviations in the starting cell 
density rather than in the growth parameters for values of 
β below 70 cm3/(mol s). Three out of four of the material-
specific proliferation parameters found in the course of the 
model parameterisation fall below this value (Table 4). 
Supported by inaccuracies in cell counting methods of up 
to 30% and by reported static seeding efficiency of 60%,30 
it was decided to describe the starting cell density by a 
probability density function.

Parameter values.  A large number of the model parameters 
were initially found in literature and were used in the 
model with varying level of confidence in their accuracy. 
They are listed in Table 3 in the order of increasing confi-
dence in the reported value.

For instance, we regard the coefficients of diffusion for 
oxygen, glucose and lactic acid found in literature as 
highly reliable. Both theoretical and experimentally meas-
ured values for the diffusion coefficients of each chemical 
species have been reported. These reported values are con-
sistently in the same order of magnitude and an averaged 
value is used in our simulations.

The metabolism parameters have no (in the case of glu-
cose and lactic acid) or a relatively low level of impact on 
the outcome of interest in our model: the cell growth in the 
culture. Therefore, we used an averaged value for the 
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glucose and oxygen metabolism parameters from the 
reported values. The reported values for oxygen were all 
consistent in the order of magnitude and the values were 
quoted for chondrocytes and fibroblasts, which are rela-
tively close to osteoblasts. As we do not have any experi-
mental data on oxygen concentration in the culture under 
investigation, these values are satisfactory. It is possible to 
parameterise the glucose metabolism parameters to the 
experimental metabolite data, but this is not prioritised as 
this element is not modelled to impact cell growth.

In contrast, the cell growth parameters are scarcely 
reported in the literature, and no values for either were 
found for the same cell type or even species. These val-
ues are also inherently dependent on the experimental 
setup in addition to the cell type. As the most dominant 
determinants of culture growth, it was prioritised to 
determine the proliferation and death parameters through 
data fitting to the experimental results summarised in 
section ‘Experimental data’. The procedure for this is 
overviewed next.

Parameterisation.  Parameterisation of the model was 
performed by varying the relevant growth parameters (β 
and P), examining their effect on the final cell number 
and comparing this to the cell numbers measured exper-
imentally (Figure 4). The goal was to maximise the sta-
tistical R2 value defined by
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where SSerr is the sum of squared residuals, SStot is the total 
sum of squares, yi is an experimental data point, yi

  is the 
equivalent simulation point and yi

  is the average of all exper-
imental data points. The growth parameters which produced 
the highest R2 value looking at data from days 1 to 5 were 
chosen as the data fits and used in the following simulations 
predicting cell growth under different culture conditions.

Model implementation and solution.  The model equations 
were implemented and solved in COMSOL Multiphysics, 
Version 5.4 base system, where the ‘Transport of Chemical 
Species’ physics package was used for the diffusion of the 
metabolites – oxygen, glucose and lactic acid. The stand-
ard transport model (diffusion-only) was solved in 24 s, 
where the normal in-built mesh setting corresponding to 
8505 mesh elements was used. Analysis of sensitivity to 
the mesh size found that for O2 concentration at a single 
point, the error between results obtained with the normal 
mesh size and those obtained with the extremely fine mesh 
size (1,135,776 mesh elements) is less than 0.5%. The gain 
in accuracy of the results did not justify the increase in 
computational time to 40 min.

Results and discussion

Experimental data

Here, we provide a brief summary of the experimental data 
used to parameterise the model, which is presented in detail in 
Peticone et al.41 (for CoO-doped bioactive glasses) and in De 
Silva Thompson et al.42 (for TiO2-doped bioactive glasses).

Figure 3, a phase contrast microscopic image, demon-
strates the proliferation and self-assembly into clusters of 
the MG-63 cells seeded on glass microcarriers over 14 days. 
We present the cell growth data only for the first three time 
points, as they are used to parameterise the model (Figure 
4). Upon initial inspection, the materials with 2% CoO and 
7% TiO2 stimulate the highest cell growth. The measured 
relative SD in the data ranges from 15% to 30%, averaging 
at 20%, which indicates a substantial level of variability in 
the culture outcome. Further investigation of the statistical 
significance of the effect of the material factor at each sepa-
rate time point with a one-way ANOVA test reveals that the 
material composition has a significant impact on cell yield 
during the most intense cell growth phase (from days 3 to 7 
(not shown)). At the final two experimental time points (not 
shown), a slowdown in cell growth across all materials is 
observed, rendering the effect of different material compo-
sitions less pronounced.

These data provide means of calibrating the model to in 
vitro experiments to obtain specificity with regard to the 
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Figure 2.  A graph demonstrating how the model mimics 
experimental variability as explained in section ‘Adding a 
normal distribution function for the initial cell density’. (a) 
An example normal distribution of initial cell density, used in 
the simulations for material 2% CoO, is plotted and (b) the 
resulting distribution of final cell densities is shown. All values 
are normalised to N0 = 4.66 × 108 cells/m2 corresponding to 
seeding with 15,000 cells. The final cell density shown here 
is taken after 1 day of simulated culture. A Shapiro–Wilk test 
(p > 0.1) was performed to confirm a normal distribution in the 
final cell number distribution (n = 100).
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culture setup and cell-type. They also motivate the choice 
to distinguish between the growth parameters of each bio-
material and to build a robust quantitative framework capa-
ble of predicting what cellular response they would elicit.

Modelling results

Determining the maximum cell density parameter.  The maxi-
mum cell density parameter is found first. It is assumed 
that the same parameter value should apply to the tissue 

culture control samples as well as the microcarriers sam-
ples, as this parameter is cell-type specific and determined 
in part by the available space.

There is evidence of cell growth saturation at high cell 
densities in the control samples. This is an indicator that 
the maximum cell density, Nmax, of this specific anchorage-
dependent cell line (MG-63 carcinoma osteoblasts) can be 
determined using the model.

Experimental data show that the cell number at the final 
two time points exceeds the range which could be meas-
ured by the machine, so we focus on data up to day 7 only. 
This does not hinder the investigation into the slowdown 
in proliferation, as that still occurs even at this shorter time 
period.

Two control data sets are used in the parameterisation 
procedure: one set seeded with 15,000 cells initially and 
one with 5,000 cells. The average relative SD measured 
in vitro for each control group, 12% for the 15,000 cells 
set and 30% for the 5,000 cells set, is used in the simula-
tions in line with the methodology set out in section 
‘Adding a normal distribution function for the initial cell 
density’.

The model assumes that the growth parameters are the 
same regardless of the cell number at the time for both data 
sets, while the effect of the population size is applied 
through the maximum cell density parameter. Accordingly, 
Nmax is the value at which the same values for β and d0 
could make the model match simultaneously the two con-
trol data sets to satisfaction (R2 above 0.85). Values for the 
proliferation coefficient, β = 8 × 10−5 m3/(mol s), and the 
death constant, d0 = 1.7 × 103 cells/(m2 s), produced good 
fits for both sample sets at maximum cell density 
Nmax = 2.4 × 109 cells/m2 (Figure 5).

This value for Nmax agrees well with a theoretically 
derived value of 1.4 × 109 cells/m2, which estimates the 

Figure 3.  A phase contrast microscopic image of osteoblast microcarrier (material 5% TiO2) culture in 96-microwell plates. 
Seeding number is 15,000 cells. (a–d) are taken at 2× magnification, with a scale bar of 2000 µm and (e–h) at 20× magnification 
(scale bar of 200 µm). (a, e) represent the culture at day 1, (b, f) at day 2, (c, g) at day 9 and (d, h) at day 13.
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Figure 4.  A graph of experimental cell yield (cell number 
normalised to seeding number) obtained with each of the 
four bioactive glass materials in static culture. Seeding number 
is 15,000 cells. The presented data are the average of three 
biological repeats each. The error bars are the standard 
deviations of each sample. One-way ANOVA test for statistical 
significance between material performance at each time point 
is performed. A 95% confidence interval is indicated by a *, 
while a 99% is denoted by **. Only the time points used for 
parameterisation are presented for clarity. The material factor 
has a significant effect on cell yield in the crucial period of 
highest proliferation (days 3, 5).
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number of cells that can fit in a unit area, given the average 
osteoblast diameter is 20–30 μm and the cells cover the 
entire bottom surface of the well.

Determining the material-specific growth parameters.  Param-
eterisation is done for paired values of β (proliferation 
parameter) and P (combined growth parameter) since the 
timescale of the reduced model is dependent on the value 
of β and each timescale is associated with a different opti-
mal P value. The strategy used to fit the model parameters 
to the experimental cell growth results for the microcarrier 
cultures is outlined next.

Day 0 is considered a settling period due to the very 
slow growth observed experimentally during it (Figure 4). 
Simulations are started at day 1, using the experimentally 
reported mean and SD for cell density at day 1 to inform 
the initial cell density in the model. All paired values for β 
and P which are found to match growth at day 3 are then 
evaluated by their ability to predict growth at day 5 as 
described in section ‘Parameterisation’.

Hypothesis: floating of microcarriers and increase in surface 
area.  It is observed that the growth between days 3 and 5 
increases substantially for all but one of the microcarrier 
materials. In line with reports characterising these bioactive 

glass compositions,16 it is hypothesised that during micro-
carrier clustering, glass is dissolved and replaced by cells 
and cell-secreted ECM, resulting in increase in the buoy-
ancy of the clusters and allowing them to float. This is 
observed experimentally as well, with some level of detach-
ment of the microcarriers from the bottom detected. Since 
the carriers are 3D objects, this would free up more space 
for the cells to attach, effectively doubling the available 
area and increasing the rate of proliferation of the cells.

This hypothesis is implemented in the model by dou-
bling the maximum cell density parameter, Nmax, to recreate 
floating, instead of doubling the seeding area. Cell number 
simulations are run without floating and with two different 
time points when floating commences: days 3 and 4. The fit 
to experimental cell number data of all three conditions is 
compared for each material and evaluated for its suitability. 
For instance, in Figure 6, the results of these comparisons 
for material type 5% TiO2 are presented. In this case, the 
closest match is achieved when floating begins on day 3. In 
contrast, for material 7% TiO2, this is found to be day 4. 
These results further support the suitability of this hypothe-
sis, because they match the relative rates of dissolution 
reported by Guedes et al.16 in their material characterisation 
study. There, the 5% TiO2 microcarriers demonstrated a 
slightly greater rate of degradation and Ca2+ release than the 
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Figure 5.  Model fit to experimental data for control groups with seeding numbers of 5,000 and 15,000 cells. Growth parameters 
are set as follows: β = 8 × 10−5 m3/(mol s), d0 = 1.7 × 103 cells/(m2 s) and Nmax = 2.4 × 109 cells/m2. The average relative standard 
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culture medium.
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7% TiO2 samples. Nevertheless, this hypothesis needs to be 
validated experimentally, taking into account the effect of 
the cells on the dissolution rate.

With this further development in the model, parameter 
fits for the growth parameters of each material are found. 
The values for the proliferation β, the combined growth P 
and death d0 parameters are listed in Table 4 for all four 
materials, as well as the estimated point of ‘floating’ of the 
microcarriers and the achieved R2 value indicative of the 
goodness of fit of the parameterisation.

Figure 7 demonstrates how well the model simulations 
fit the in vitro data after parameterisation for material 7% 
TiO2. A value of R2 = 0.99 is obtained for the statistical fit 
found with the corresponding parameters listed in Table 4.

In the following section, we demonstrate how the val-
ues of the growth parameters can be used to compare the 
growth performance of the materials when applied to par-
ticular clinically relevant culture scenarios.

Informing future in vitro experimental work

Here, we demonstrate how the model and the material-
specific growth parameters can be employed to make sug-
gestions for future in vitro experiments. Requirements for 
specific culture operating settings (seeding cell number 

and final cell number or culture duration and final cell 
number), motivated by the clinical application of bone 
grafting, can be applied in the model to inform the choice 
of the remaining condition (culture duration or seeding 
number) and the selection of the microcarrier biomaterial. 
We explain why these culture operating settings are of 
interest and show how they can be chosen with the help of 
the model based on particular desired in vitro results. It is 
important to point out that using the model to make these 
predictions is based on the assumption that the predicted 
performance is preserved at larger scales (the cells have 
not exhausted their growth potential).

A common strategy in the clinic to harvest patient stem 
cells for a bone graft would be to aspirate MSCs from the 
patient’s bone marrow. Typical MSCs concentrations in 
bone marrow aspirate are reported in the literature to range 
from 50060 to 300061 cells/mL. For older patients, the value 
is closer to the lower limit. The cell count per mL goes 
down with the number of aspirations taken in the proce-
dure. The first 1 mL of aspirate usually has the highest cell 
concentration,10 as the removal of subsequent marrow 
causes the site to get filled with blood and dilutes consecu-
tive extractions. For this reason, a material that minimises 
the seeding cell number required to set up a viable culture 
is preferable, as it would reduce the discomfort and trauma 
to the patient.

In addition, the main requirement for the success of 
cell-based engineered bone grafts in the clinic is the final 
number of cells delivered. Hernigou et al.10 found that a 
minimum of 50,000 osteogenic cells have to be implanted 
to be successful in inducing healing of non-unions, while 
both increasing the cell number and the cell density reduces 
the time to union and positively affects the outcome. 
Therefore, both minimising the seeding cell number and 
obtaining the desired final cell number are critical 
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Figure 7.  Model fit to experimental data for material 7% 
TiO2, with floating starting at day 4. Growth parameters are 
set as follows: β = 9 × 10−5 m3/(mol s), d0 = 5.03 × 103 cells/(m2 s) 
and Nmax = 2.4 × 109 cells/m2. The initial standard deviation 
is 14%. The vertical dotted lines denote the point when the 
model is reset to initial conditions to mimic replacement of the 
culture medium.

Table 4.  Values for the growth parameters specific to each 
bioactive glass composition used in the static cell culture in vitro 
experiments, found through data fitting.

Material type β (m3/(mol s)) P d0 (cells/
(m2 s))

Floating R2

5% TiO2 5.5 × 10−5 0.58 3240 Day 3 0.93
7% TiO2 9 × 10−5 0.55 5030 Day 4 0.99
2% CoO 6 × 10−5 0.60 3660 Day 3 0.97
5% CoO 3.5 × 10−5 0.38 1350 N/A 0.95
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requirements in the clinic. Ensuring both are met depends 
on the choice of material and can be used to prescribe the 
duration of the cell culture.

Increasing the seeding cell number in our well from 
5000 cells by 1000-cell increments to 14,000 cells and 
evaluating the presence of viable cell growth with the 
parameterised model revealed that 3.73 × 104 cells/cm2 
(in our setup, equivalent to seeding with 12,000 cells) is 
the lowest seeding density supported by all biomaterials. 
With this new seeding number, we use the model to pre-
dict the length of culture required to reach 50,000 final 
cell number for each material, simulation results listed in 
Table 5. This allows experimentalists to first select a bio-
material (the material which requires the shortest culture 
time is preferable) based on these criteria and then to pre-
scribe the duration of the culture for the desired outcome. 
The parameterised model predicts that material 7% TiO2 
achieves a final cell number of 50,000 cells in just 7 days, 
a day fewer than 2% CoO. Materials 5% CoO and 5% 
TiO2 perform comparably, requiring a culture of 9 days. 
This analysis motivates the choice of 7% TiO2 as a mate-
rial capable of maximising cell yield at low seeding 
numbers.

Next, we use the model to inform the seeding density to 
achieve a desired final cell number when the culture dura-
tion is fixed (Table 6). Here, the culture duration is fixed at 
6 days (7 days including an initial settling day), to mini-
mise the time from obtaining a patient cell sample to 
expanding a sufficient cell number for treatment. We focus 
on two desired culture outcomes:

1.	 Maximising the cell yield efficiency. This might be 
desirable during scaling-up of the culture, for 
example, before it is moved to a bigger vessel.

2.	 Achieving final cell number of 50,000 cells, needed 
to promote healing.

The two outcomes are compared for each material for 
cell density equivalent to seeding in our setup with cell 
numbers ranging from 12,000 to 18,000 cells. The results 
reported in Table 6 are designed to act as a reference for 
experimentalists to help them choose appropriate seeding 
cell densities depending on the desired application and the 
choice of material.

In the case of delivering therapeutic cell numbers 
while minimising the culture duration to 1 week, the 

largest variation in seeding numbers reported in Tables 5 
and 6 (part i) are observed for the materials to which the 
cells respond less favourably based on our previous 
analysis: 5% CoO and 5% TiO2. Both require higher 
seeding numbers to ensure therapeutic functionality of 
the engineered tissue. For material 5% CoO, this is con-
siderably more pronounced as the parameterised model 
does not indicate evidence of microcarrier floatation in 
this culture, and as a result it does not experience a boost 
in cell growth rate midway through the simulation. This 
analysis also identifies material 7% TiO2 as the one 
requiring the lowest seeding numbers to achieve both 
desired outcomes, demonstrating its superior perfor-
mance to the remaining materials in this context. This 
would make it the preferred material in the absence of 
any additional demands for the chemical composition of 
the biomaterial.

Conclusion

A strategy is proposed for in vitro expansion of bone cells 
(MG63 cell-line) on bioactive phosphate-glass microcar-
riers for the development of engineered bone grafts. The 
ability of four glass materials doped with either TiO2 or 
CoO to promote cell culture expansion is tested experi-
mentally. A mathematical model is derived to describe 
this experimental setup in static culture conditions and it 
is parameterised against the in vitro measurements to gen-
erate quantitative predictions. The parameterisation pro-
cess enables the model to reproduce the in vitro behaviour 
observed and to examine how the choice of biomaterial 
determines culture outcome.

The interplay between biomaterial, seeding cell number 
and culture duration and their effect on the final cell number 
are studied in particular. The model is capable of simulating 
clinically relevant scenarios aiming to minimise the seeding 
number or culture duration while producing the target final 
cell number and examining how these differ based on the 
biomaterial. The model is flexible and a useful tool to inves-
tigate a range of different experimental features in future, 
for example, the influence of spatial heterogeneity in cell 

Table 5.  Material performance predictions in terms of the 
time to reach 50,000 cells (required for a successful therapy) 
from the lowest common seeding cell number: 12,000 cells.

Seeding cell density 3.73 × 104 cells/cm2

Material 7% TiO2 2% CoO 5% CoO 5% TiO2

Time to reach 
50,000 cells

7 days 8 days 9 days 9 days

Table 6.  Seeding cell density for each material that (i) 
maximises the cell yield after 6 days in culture (as measured 
by the fold increase from starting cell number) and (ii) is the 
lowest required to reach 50,000 cells after 6 days of culture.

Seeding density (×104 cells/cm2)

Material Maximise cell yield Expand culture to 
50,000 cells

5% TiO2 4.35 4.97
7% TiO2 4.35 4.04
2% CoO 4.66 4.66
5% CoO 3.73 6.84
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seeding on the well base, or the role of flow in stimulating 
the growing cell population. Among the bioactive glasses 
investigated, the material with 7% TiO2 is predicted to per-
form best by meeting the required final cell number in the 
shortest time and starting from the lowest cell number. The 
ability of the model to predict the biomaterial performance 
in detail is used to inform future in vitro experiments by 
selecting the most promising materials and by proposing 
appropriate operating culture conditions to achieve better 
outcomes. The collaboration between modelling and experi-
mentation can streamline the development of this culture 
expansion strategy by saving time and recourses.

Our work demonstrates how mathematical modelling 
can be used to generate a hypothesis about the behaviour 
of the tissue culture in vitro (floating microcarriers), which 
can then be tested in the laboratory. This is a good example 
of the collaborative potential between modellers and 
experimentalists. An alternative to our floating hypothesis 
might be that the sudden boost in proliferation is due to a 
complex growth behaviour in which the proliferation rate 
of the cells is non-constant but instead can be described by 
a complex function which can be dependent on multiple 
factors, including age of the cell culture, oxygen availabil-
ity or rate of matrix synthesis. Growth could be bolstered 
midway through the culture by natural cell-driven pro-
cesses such as fibronectin deposition (improving cell 
attachment affinity) and increase in growth factor concen-
tration as a result of the higher number of cells present.

Currently, our simulations predict that a steady growth 
rate is maintained beyond the current time limit of 7 days 
in culture. This, however, is not what is observed experi-
mentally. Growth during the second week of culture is 
irregular and does not surpass the peak cell yield at day 5. 
This behaviour can be explained by the culture maturing 
and entering an intensive state of matrix synthesis, but our 
model does not currently provide for this. Spatial hetero-
geneity of cell spreading also affects cell yield, its effect 
most prominent at early time points where cells proliferate 
into free spaces faster. This becomes less significant with 
time when confluency is reached and overcrowding leads 
to a drop in dividing cell number until a similar cell num-
ber is reached throughout (in 1–2 days).62,63 Following this, 
the maintenance of a uniform nutrient field is instrumental 
in preserving uniform cell spreading. Supported by a 
homogeneous oxygen distribution across the base of the 
well, uniform cell spreading and growth are assumed in 
our model.

However, at later time points, lack of access to nutrients 
in densely cellularised parts of any culture become more 
common due to barriers formed by the newly deposited 
matrix. Thus, accounting for cell spreading is something 
we plan on including in the future to improve the flexibil-
ity and functionality of the model. To reconcile the model 
to experimental data for long-term cultures, we need to 
introduce an element of ECM production. An alternative 
explanation for the growth slowdown can be a lack of 

resources. This would be indicative of a need to transfer 
the culture to a bigger vessel, which also provides medium 
mixing. Current research undertaken by our group aims to 
address these questions by introducing medium mixing in 
the mathematical model and investigating its effect on the 
growth of the cell culture.
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