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Abstract: Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular
function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the
context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-
week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.)
for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific
overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for
weeks 20–28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation.
Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well
as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice
exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic
steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of
PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in
fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led
to the upregulated expression of processes associated with the browning of fat tissue, including UCP1,
FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression,
and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups
of genes positively correlated with contributions to the browning of adipose tissue, all dependent on
HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with
beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.

Keywords: brown fat; PGC-1α; mitochondria; inflammation; type 2 diabetes; obesity

1. Introduction

Obesity is associated with developing severe metabolic disorders, including type 2
diabetes, metabolic syndrome, and fatty liver disease. Adiposity poses a significant risk
for developing complications of obesity that include cardiometabolic dysfunction [1,2].
Approximately 171 million individuals have diabetes, a number expected to rise to 366
million by 2030 [3]. Adiposity is the precursor of hypertension fatty liver and metabolic
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syndrome, which contribute to the pathogenesis of heart failure (H.F.). Epidemiological
studies suggest that more than 60% of the risk for primary hypertension may be attributed
to obesity. In addition, long-standing hypertension is a major risk factor in the develop-
ment of chronic kidney disease and H.F. [4–6]. Obesity leads to functional and structural
metabolic changes in several organ systems, including liver, skeletal muscle and the brain.
Obesity is a well-described risk factor for neurodegenerative diseases, such as Alzheimer’s,
with oxidative stress and mitochondrial dysfunction contributing to the inflammatory
cascade [6]. In the liver, obesity is the preamble to nonalcoholic fatty liver disease (NAFLD)
and its complications. Indeed, the incidence of NAFLD and obesity are closely related [7–9].

Importantly, obesity leads to the accumulation of peripheral fat (adipose tissue)
around the heart, liver, kidney, and other organs, priming insulin resistance and asso-
ciated metabolic disturbances [10]. Peripheral and visceral adiposity are a major cause for
the generation of reactive oxygen species (R.O.S.) and chronic inflammation, both being
linked to the metabolic syndrome [11]. These factors promote the downregulation of the
expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α), which correlates with metabolic dysfunction and related pathophysiologic conditions.
Reduced levels of PGC-1α are associated with reduced anti-oxidative properties and in-
sulin resistance, critical features of obesity [12,13]. Human and murine studies have shown
that lacking PGC-1α results in multi-organ challenges that are due to increased levels of
reactive oxygen species (R.O.S.) [14,15]. Metabolic dysfunction plays a substantial role in
the inflammation of adipocytes, resulting in a condition called adiposopathy [16,17].

The critical role of PGC-1α involves the master regulation and control of cellular
energy metabolism that affects many tissues. PGC-1α expression stimulates mitochondrial
biogenesis and the expression of antioxidant genes, heme oxygenase 1 (HO-1), and is in-
creased in tissues and organs with high-energy metabolic loads, e.g., adipose tissue, cardiac,
and skeletal muscle [18,19]. In adipose tissues, PGC-1α levels are regulated by stimuli
that include physical activity and fasting in hepatic tissues [10,20]. Following activation,
PGC-1α induces a transcription that initiates the biogenesis of mitochondrial and oxidative
phosphorylation, resulting in tissue-specific gene remodeling. In contrast, the downregula-
tion of PGC-1α expression is associated with metabolic dysfunction, inflammation, and
altered redox control [4]. PGC-1α represents an attractive target with potential therapeutic
benefits in obesity and associated cardiometabolic diseases [21,22].

We examine the impact of the adipocyte-specific expression of PGC-1α in a mouse
model of obesity. We explore the effects on reprogramming white fat to brown-like fat and
its repercussions in vascular and hepatic integrity. Our results represent the first evidence
to date demonstrating that the selective overexpression of PGC-1α in adipose tissues has
a long-lasting effect, preventing obesity-mediated inflammation and insulin resistance in
obese mice in an HO-1-dependent manner.

2. Materials and Methods
2.1. Animal Experimentation and Generation of Transgenic Mice with Adipocyte-Specific
Expression of PGC1α

Animal experiments were performed according to procedures approved by the Institu-
tional Animal Care and Use Committee of New York Medical College. Six-week-old male
C57BL/6J background mice were purchased from Jackson Labs (Bar Harbor, ME). The study
involved three groups of animals (5 mice per group): (1) Lean, (2) H.F.D. control (28 weeks),
and (3) adipose-specific PGC-1α transgenic mice on a H.F.D. for 28 weeks (20 weeks on
a H.F.D. and then the transgene of PGC-1α followed by 8 more weeks of a H.F.D.). Lean
mice were fed ad libitum with a normal chow diet (11% fat, 62% carbohydrate, 27.0%
protein, total calories: 12.6 KJ/g). The high-fat diet (HFD) consisted of 58% fat (from lard),
25.6% carbohydrate, 16.4% protein, and total calories: 23.4 KJ/g (Bio-SERV, Frenchtown,
NJ, USA) [23,24]. A lentiviral-mediated vector carrying PGC-1α (50 µL, 1 × 109 T.U./mL
in saline solution was used to generate PGC1-α-transgenic mice after 20-weeks on a H.F.D.
for an additional 8 weeks of H.F.D. after transfection. Mice were given bolus injections
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into the retro-orbital vein of the lentiviral constructs carrying PGC1-α under the control
of the adiponectin promoter (Transgenic-Adipo-PGC1-α) to specifically target epididymal
adipose tissue. The control H.F.D. mice were similarly injected with a transgenic-adipo-GFP
(green fluorescent protein) vector. The control animals (group 1) were injected with mock
virus (placebo) [17,25,26].

2.2. Generation of Lentiviral-Mediated PGC1-α Overexpression or Silencing in Adipocytes

3T3-L1 mouse pre-adipocytes were purchased from the ATCC (ATCC, Manassas, VA,
USA). After thawing, 3T3-L1 cells were resuspended in an α-minimal essential medium
(α-MEM; Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (F.B.S.; Invitrogen) and 1% antibiotic/antimycotic solution (Invitrogen). The
cultures were maintained at 37 ◦C under an air/5% CO2 atmosphere and the medium was
changed after 48 h and every 3–4 days thereafter. Upon reaching confluence, the cells were
recovered by the addition of 0.25% trypsin/EDTA (Invitrogen) and sub-cultured [17,27,28].

To generate adipocytes overexpressing PGC1-α or deficient in PGC1-α, 1 × 106 cells
were seeded in 6-well plates one day before transduction. Adipo-ORF PGC1-α lentivirus
and Adipo-sh PGC1-α (Vector builder, Shenandoah, TX, USA) were applied to adipocyte
(3T3-L1) cells to establish stably transduced cell lines. The transduction medium consisted
of 1 × 106 transducing units (T.U.) of lentiviral particles in 0.5 mL α-MEM growth medium,
and this was applied to each well and incubated for 3 h to maximize the contact between
the cells and lentiviral particles. The cells were also treated with the transduction medium
without the lentiviral particles as described [17,25,26].

2.3. Measurement of Fasting Blood Glucose

To evaluate fasting blood glucose levels, mice were fasted for 6 h with free access
to water. A glucose-tolerance test was performed at the end of the experiment. Glucose
(2 g/kg) was administered to each mouse by intraperitoneal, (i.p.) injection. Blood samples
were taken at 0, 30, 60, 90, and 120 min, and glucose was measured using a Contour blood
glucose monitoring system (Bayer, Leverkusen, Germany). After these measurements,
the blood was collected in capillary tubes and used for insulin measurements. Blood was
centrifuged at 2000 rpm for 15 min to separate the plasma. An ultra-Sensitive Mouse Insulin
ELISA kit (cat. no. 90080, Crystal Chem., Elk Grove Village, Illinois) was used according to
the manufacturer’s instruction to quantify insulin in the plasma.

2.4. Western Blot

At the end of the experimental period, the mice were euthanized, organs and tissues
collected, snap-frozen in liquid nitrogen, and stored at −80 ◦C. Frozen mouse adipose
and liver tissues were homogenized in lysis buffer containing protease and phosphatase
inhibitors. Homogenates were centrifuged and supernatants containing solubilized pro-
teins collected and immunoblotted for PGC-1α, HO-1, OPA1, MFN2, Fis1, UCP1, Sirt1,
adiponectin, MnSOD2, Mest, N.O.V., IL-6, Twist1, FGF21, CREG1, PRDM16, AMPK,
pAMPK, A.K.T., pAKT, phosphorylation of insulin receptor (I.R.; pIR Tyr972, pIRS1 Ser307),
pSmad 1–5, pSmad2, P38MAPK, pP38MAPK, and β-actin. Immunoreactive bands were
quantified using Odyssey Application Software version 3.0.21 [13,29,30].

2.5. RT-PCR and R.N.A. Arrays Analysis

Total R.N.A. was obtained from frozen adipose tissue by RNeasy Lipid Tissue (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions. The concentration of total
R.N.A. was determined by the use of a Take3® plate and a Biotek® Plate Reader (Biotek,
Winooski, VT, USA). cDNA was synthesized from 1µg total R.N.A. and 18 s using the
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA,
USA), according to the manufacturer’s protocol, and PCR mRNA calculation was adjusted
to 18 s as a control as described [13,17,31].
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PCR arrays using the RT2 Profiler™ PCR Array Mouse Adipogenesis (Qiagen, product
no. 330231 and Cat. No. PAMM-049Z) were performed following the manufacturers’
protocols. Gene-expression levels were calculated using the ∆∆Ct method after normal-
ization to the housekeeping gene expression (average) and fold change. GeneQuery™
qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one
primer set that can specifically recognize and efficiently amplify a target gene’s cDNA.
Each GeneQuery™ plate contains eight controls, five target housekeeping genes (β-actin,
GAPDH, LDHA, NONO, and PPIH), and genes encoding for pre-adipocyte cell markers,
proliferation, differentiation and adipogenesis, lipid metabolism, and obesity. Genes are
ordered from the largest increase in expression to the largest decrease in expression in
subgroups [32]. In the shortlist, we selected the 10 genes that had the greatest increase
in expression and those 10 genes that had the greatest decrease in expression in lean,
H.F.D. as well as in adipose-tissue-overexpressing PGC1-α. Again, the color code for the
log10 transformed data is shown in the upper left-hand corner of the graph, and H.F. and
HF-Transgenic-adipo-PGC-1α were compared with lean. The correlation plot shows the
Pearson correlation between different gene expressions in the entire set of data. Details of
this method are well described [17,33].

2.6. Hematoxylin–Eosin and Masson Trichrome Stain in Liver

The lipid droplets in hepatocytes were assessed on hematoxylin–eosin-stained sections
by measuring the diameter (µm) of randomly chosen 100 lipid droplets/groups at a final
magnification of 400×. The morphometric analyses were performed by two different
observers blinded to the experimental group, using a computer image analysis software
(Image Pro Premier 9.1, Media Cybernetics, Rockville, MD, USA).

NAFLD is characterized by liver histopathological features including steatosis, hepa-
tocyte ballooning, inflammation, and fibrosis, as previously described [9,26]. Perivascular
hepatic fibrosis evaluation was assessed using Masson trichrome staining and liver fibrosis
(blue: collagen fibers; red: hepatocyte cytoplasm). The percentage of perivascular hepatic
fibrosis was calculated using a computerized image analyzer (Image Pro Premier 9.1, Me-
diaCybernetics Inc., Rockville, MD, USA) evaluating 20 randomly chosen liver fields per
experimental animal [9,26].

2.7. Histology, Masson Trichrome Staining, and Immunofluorescence in Adipose Tissues

Adipose and hepatic tissues were collected from all the experimental groups and
prepared for morphological analysis. The dissected tissues were fixed in 10% (vol/vol)
neutral-buffered formalin and embedded in paraffin tissue sections were prepared accord-
ing to standard procedures. Tissue sections of 5 µm thickness were stained with either H&E,
or Oil red O (Histoserv, Germantown, MD, USA), or Masson Trichome (Sigma Aldrich,
St. Louis, Missouri; to quantify collagen, mainly collagen I and III in blue). Alternatively,
sections were processed for immunofluorescence to detect PGC-1α, following the manu-
facturer’s instructions. The stained slides were analyzed using a microscope, and images
captured by a digital camera (Olympus, Tokyo, Japan) and analyzed using ImageJ software.
Two hundred cells/sample were included in the analysis of 5 mice for each genotype. The
morphological analysis was conducted as previously described [13,17,34].

2.8. Measurement of Mitochondrial Oxygen Consumption Rate in Adipocytes

The oxygen consumption rate (O.C.R.) was measured as oxygen consumption per
minute (pmols/min). Additionally, extracellular acidification rate (ECAR) was recorded
and is a measure of glycolysis; the units are (mpH/min). Extracellular flux analyzer XFp
(Seahorse Bioscience, Houston, TX, USA) was used to measure O.C.R. in the cells, which
were overexpressed and knockdown for PGC-1α. Adipocytes derived from 3T3-L1 cells
were plated at 4 × 105 cells/well into Seahorse 8-well microplate. Oligomycin, FCCP,
rotenone, and antimycin were freshly prepared in X.F. assay media. Antimycin A is an
inhibitor of ATP synthase, so O.C.R. reduction after antimycin A treatment represents ATP
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turnover under the specified conditions. FCCP is an uncoupling agent of electron transport
and can generate a proton efflux to induce the maximum respiration termed as respiratory
capacity or uncoupled respiration [17].

2.9. Detection of Nuclear PGC-1α by Immunogold Staining

Mice were sacrificed after the completion of the experiments, and the adipose tissue
was collected to perform immunogold staining to determine PGC-1α expression in the
nucleus. Glutaraldehyde-fixed samples of mice adipose tissues were cut using an ultra-
microtome to obtain ultrathin sections (700 nm) for the post-embedding immunogold
analyses, as previously described [35].

2.10. Statistics

All data are expressed as means ±standard errors of the mean S.E.M. The signifi-
cance of difference in mean values was determined using a one-way ANOVA or repeated-
measures two-way ANOVA, followed by a Tukey’s post hoc multiple-comparison test.
p < 0.05 was considered statistically significant. The p-values were denoted as follows:
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Transgenic-Adipo-PGC-1α Mice Exhibit Glucose Intolerance

We first examined the proper expression of adiponectin-driven PGC-1α in different
tissues of mice fed a H.F.D. As shown in Figure 1A, adipo-PGC1α was highly expressed
(>7-fold) only in the adipose tissue of HFD-fed transgenic mice compared to the control
animals, with negligible levels in the liver, kidney, and heart, confirming the adipocyte
selectivity of the expression system. Mice expressing adipo-PGC-1α exhibited a decreased
impact of H.F.D. on fasting blood glucose levels and an increased tolerance to glucose
challenge (p < 0.05) compared with H.F.D.-fed mice (Figure 1B,C).
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3.2. Adipose-Specific Expression of PGC-1α Rescues Mice from HFD.-Induced Adipocyte
Hypertrophy, Fibrosis, Liver Steatosis, and Lipid Droplet Size

We analyzed adipocyte diameter and fibrosis in the adipose tissue of lean, HFD-fed
and HFD-fed Transgenic-adipo-PGC-1α mice. As shown in Figure 2, obese mice (HFD-fed)
had enlarged adipocytes (p < 0.05), but in reduced numbers, compared to the lean mice
(Figure 2A–E). The overexpression of PGC-1α attenuated adipocyte hypertrophy and re-
stored adipocyte numbers (Figure 2, p < 0.05). Adipocyte hypertrophy and fibrosis were
also reversed in Transgenic-adipo-PGC-1α mice (p < 0.05 vs. HFD-fed mice, Figure 2F–I).
The increase in brown adipocytes associated with increased PGC-1α expression was ac-
companied by reduced liver steatosis and lipid droplet size in transgenic-PGC-1α mice
(Figure 2J–N).
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Figure 2. Effects of adipocyte-specific overexpression of PGC-1α in high-fat-diet (HFD)-fed mice
compared to lean and untreated HFD mice. Histological analysis of adipose tissue using Hematoxylin–
Eosin of (A) lean, (B) HFD, and (C) HFD+ PGC-1α mice; (D) Adipocyte number and (E) adipocyte
diameter. Masson trichrome staining photomicrographs of PGC-1α expression at the adipose tis-
sue level of (F) lean, (G) HFD, and (H) HFD + PGC-1α mice; (I) Percentage of adipocyte fibrosis,
(J–M) liver macrosteatosis, and (N) liver lipid droplet diameter. Bar 20 µm. Data are expressed as
mean ± S.E.M. (n = 5); * p < 0.05 versus lean; # p < 0.05 vs. HFD.

3.3. Nuclear Localization of PGC-1α in Adipocytes

The transcriptional activity of PGC-1α requires its localization in the nucleus. Figure 3
shows the subcellular localization of PGC-1α (red fluorescence; nuclei shown in blue by
DAPI staining) in the adipocytes from the three groups of animals. HFD mice showed a
reduced (p < 0.05) nuclear localization of PGC-1α compared to lean mice. Importantly, this
was not only reversed, but even increased, in the Transgenic-Adipo-PGC-1α mice fed an
HFD (p < 0.05) (Figure 3A–D), when compared to the lean animals.
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Figure 3. Effects of the adipocyte-specific overexpression of PGC-1α in high-fat-diet (H.F.D.)-fed
mice compared to lean and untreated HFD mice. Iimmunofluorescence photomicrographs of PGC-1α
expression (red staining) at the adipose tissue level of (A) lean, (B) H.F.D., and (C) HFD + PGC-1α
mice. Graph (D) summarizes the immune morphometrical measurement of the nuclear localization
of PGC-1α (A.U.). Quantitative gene expression analysis of (E) PGC-1α, HO-1, Mfn1, and Mfn2;
(F) Fis1 and NOV/CCN3 in adipose tissue of Transgenic-adipo-PGC-1α mice fed with a high-fat
diet. Data are expressed as mean ± S.E.M. (n = 5); **** p < 0.05 versus lean; *** p < 0.05 versus
HFD,* p < 0.05 versus HFD. ** p < 0.05 versus lean (G) Oxygen consumption rates (OCR) in PGC-
1α knockdown (shPGC1α), overexpression (ORF PGC-1α), and control cultured adipocytes, n = 3.
**** p < 0.005, versus control. The maximal respiration capacity represents the sum of all physiological
mitochondrial oxygen consumption.

3.4. mRNA Levels of PGC-1α, HO-1, Mitochondrial Genes, and NOV/CCN3 in the Adipose Tissue
of Transgenic-Adipo-PGC-1α Mice

The mRNA levels of HO-1, PGC-1α, and the mitochondrial fusion-associated proteins
Mfn1 and Mfn2 were decreased in the H.F.D. group as compared to the lean group (p < 0.05);
the effect of a H.F.D. was reversed in the adipose tissues from Transgenic-adipo-PGC-1α
animals (Figure 3E). Conversely, RT-PCR results demonstrated increased mRNA levels
of mito-fission-related Fis1 and NOV/CCN3 in the adipose tissue of the control H.F.D.-
fed mice (Figure 3F), an effect of obesity that was prevented in the adipose tissue of the
Transgenic-adipo-PGC-1α mice fed a H.F.D. Moreover, the mRNA levels of TNF-α, IL1β,
and CCL2 in the H.F.D. group were increased (p < 0.05) compared with those of the Lean
group (not shown). The expression of these genes was reduced (p < 0.05) in the adipose
tissues of Transgenic-adipo- PGC-1α mice on H.F.D.

3.5. PGC-1α Mediated Regulation of Mitochondrial Function in Cultured Adipocytes

To analyze the role of PGC-1α in adipocytes in the context of mitochondrial bioen-
ergetics, we measured mitochondrial respiration in control, knockdown (sh PGC-1α),
and overexpressed PGC-1α (ORF PGC-α) adipocyte cells. Real-time oxygen consump-
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tion rates (O.C.R.s) in adipocytes showed that basal respiration, representing the sum
of all physiological mitochondrial oxygen consumption, was decreased in the mitochon-
dria of PGC-1α deficient cells, indicating a lower respiratory function when compared
with that of the control cells, which was rescued after the overexpression of PGC-1α
(Figure 3G). Oligomycin decreased basal respiration, reflective of the fraction of oxygen
consumption used to generate ATP. In the presence of carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone (FCCP), PGC-1α-deficient cells had a lower O.C.R., which was rescued
by the overexpression of PGC-1α, indicating a lower overall mitochondrial activity. The
extent of non-mitochondrial oxygen-consuming processes was estimated by inhibiting
the respiratory chain with rotenone and antimycin A; there was no change in PGC-1α-
ablated-cell mitochondria, which were rescued after the overexpression of PGC-1α. ATP
turnover was decreased in PGC-1α-ablated cells. The maximum respiration was also lower
in PGC-1α-deficient cells, which was rescued after the overexpression of PGC-1α (p < 0.05)
(Figure 3G).

3.6. Expression Levels of Mitochondrial Biogenesis and Fusion Genes, UCP1, and
Antioxidant-Associated Proteins in Transgenic-Adipo-PGC-1α Mice

As shown in Figure 4, the protein levels of PGC-1α and HO-1 were reduced in the
adipose tissue of H.F.D.-fed mice as compared to those in the lean animals (p < 0.05), but
were increased in Transgenic-adipo-PGC-1α mice (p < 0.05) (Figure 4A–C). In addition,
the uncoupling protein 1 (UCP1) was increased (p < 0.05) in the adipose tissues of mice
treated with Lenti-adipo-PGC-1α (Figure 4D,E). We examined the effect of a H.F.D. on
mitochondrial fusion and fission genes and found that Mitofusin2 (MFN2) and OPA1
were decreased in the H.F.D. group, whereas Fis2 was increased (p < 0.05). These effects
were reversed in Transgenic-adipo-PGC-1α mice (Figure 4D,F,G). Furthermore, Transgenic-
adipo-PGC-1α mice expressed higher (p < 0.05) levels of Sirt1, adiponectin, and MnSOD2
proteins compared with the H.F.D.-fed mice (Figure 4H–K).
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Figure 4. Effects of the Transgenic-adipo-PGC-1α treatment on the key proteins involved in mito-
chondrial fission and biogenesis and adipocyte browning. Representative Western blot analysis of
(A) PGC-1α and HO-1 (B,C), (D–G) MFN2, Fis1, and UCP1, (H–K) Sirt1, Adiponectin and MnSOD2
with their corresponding β-actin in the adipose tissue of lean, HFD and Transgenic-adipo-PGC-1α
mice. Data are expressed as mean ± S.E.M. (n = 5); * p < 0.05 versus lean; # p < 0.05 versus HFD.

3.7. Expression Levels of Inflammatory Mediators, Insulin Signaling Components, and AMPK in
the Adipose Tissue of Transgenic-Adipo-PGC-1α Mice

The protein expression of the mesoderm-specific transcript (Mest) in the adipose tissue
of the HFD-fed mice was increased as compared to that of the lean group (Figure 5A,B).
In the HFD-fed Transgenic-adipo-PGC-1α mice, MEST expression was reduced (p < 0.05)
compared with that of the control H.F.D.-fed mice. As shown in Figure 5A,C,D, N.O.V. and
Twist1 protein expressions in the adipose tissue of Transgenic-adipo-PGC-1α mice were
reduced (p < 0.05) as compared to those of the H.F.D.-fed mice. In addition, the adipose
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tissue of H.F.D. mice exhibited lower levels of FGF21, pIR tyr972, pAKT, and pAMPK
than those in the lean mice. The expression of all these proteins was normalized in the
Transgenic-adipo-PGC-1α animals (Figure 5E–J).
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Figure 5. Expression of inflammatory mediators and insulin signaling in the adipose tissue of lean,
high-fat-diet (H.F.D.)-fed, and Transgenic-adipo-PGC-1α mice. Representative Western blot analysis
of (A–D) MEST, NOV/CCN3 and TWIST, (E–G) FGF21 and phosphorylated insulin receptor tyrosine
972 (pIRTyr972), (H–J) pAKT and pAMPK with their corresponding A.K.T. and AMPK in the adipose
tissue of lean, H.F.D., and Transgenic-adipo-PGC-1α mice. Data are expressed as mean ± S.E.M.
(n = 5); * p < 0.05 vs. lean; # p < 0.05 vs. H.F.D.

3.8. Identification of Changes in the Correlation Coefficients of Gene Expression by RNA
Array Analyses

We previously examined the effect of thymoquinone on obesity-induced inflammation,
insulin resistance, and the metabolic browning of adipose tissues [36]. We also wanted to
study the effect of PGC-1α expression during adipogenesis, and we examined 88 genes that
are exclusively expressed in adipocytes before and during adipogenesis [32]. As shown in
Figure 6A–F, the mRNA levels of Jun, Lmna, Nr1h3, Rb1, Rxra, and Sfrbf1 were upregulated
in the adipose tissues of HFD mice compared to their corresponding levels in the adipose
tissue of the lean mice. In contrast, when compared to the HFD-fed mice, the levels of all
these genes were reduced, in some cases almost to lean-mice levels in the adipose tissue of
the transgenic-adipo-PGC-1α HFD-fed mice (Figure 6A–F).

3.9. Upregulated Genes in the Adipose Tissues of Transgenic-Adipo-PGC1 Mice

Figure 7 shows the effect of a H.F.D. on the expression levels of adiponectin, Insr, LpL,
PRMD16, Shh, Sirtuin 1, Slc2a, Taz, UCP1, and Vdr (Figure 7A–J). All these genes were
downregulated (* p < 0.05, ** p < 0.005) in the adipose tissues of H.F.D. mice, as compared to
their corresponding levels in the adipose tissues of the lean mice. As expected, these genes
were upregulated (# p < 0.05, ## p < 0.005) in the adipose tissues of transgenic-adipo-PGC-
1α HFD mice as compared to their levels in the H.F.D. mice. Specifically, PRMD16, UCP1,
Sirtuin1 and adiponectin are known to be positively regulated by PGC-1α and participate
in the ‘browning’ of fat tissue. The robust increase in UCP1 and PRMD16 observed in the
adipose tissue of transgenic-adipo-PGC-1α H.F.D. mice is of particular significance since
this suggests increased energy consumption and mitochondrial respiration (Figure 7A–J).
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Figure 6. The mRNA expression of (A) Jun proto-oncogene (Jun), (B) lamin A (Lmna), (C) nuclear
receptor subfamily 1 group H member 3 (Nr1h3), (D) R.B. transcriptional corepressor 1 (Rb1),
(E) retinoid X receptor alpha (Rxra), and (F) secreted frizzled-related protein 1 (Sfrbf1) in the adipose
tissue of lean, high-fat-diet (H.F.D.)-fed and Transgenic-adipo-PGC-1α mice. Data are expressed as
mean ± S.E.M. (n = 5); * p < 0.05, ** p < 0.005 vs. lean; # p < 0.05, ## p < 0.005 vs. HFD.
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Figure 7. The mRNA expression of (A) adiponectin, (B) insulin receptor precursor (Insr), (C) lipopro-
tein lipase (Lpl), (D) Prdm16, (E) Sonic hedgehog (Shh), (F) silent mating-type information regulation
2 homolog (Situin1), (G) solute carrier family 2 member 4 (Slc2), (H) Tafazzin (Taz), (I) Uncoupling
protein 1 (UCP1), and (J) vitamin D receptor (Vdr) in the adipose tissue of lean, high-fat-diet (H.F.D.)-
fed and Transgenic-adipo-PGC-1α mice. Data are expressed as mean ± S.E.M. (n = 5); * p < 0.05,
** p < 0.005 vs. lean; # p < 0.05, ## p < 0.005 vs. HFD.

3.10. Effect of HO-1 Inhibition on the Phosphorylation of Insulin Receptor and Markers of
Brown-like Fat in Transgenic-Adipo-PGC-1α Mice

As shown in Figure 8A–C, the adipose tissue of the H.F.D. mice showed a lower level
of phosphorylation of the insulin-receptor substrate 1 Ser307 (pIRS1 Ser307) and the receptor
itself (pIR tyr972) compared to that of the lean group (p < 0.05). In the transgenic-adipo-
PGC-1α mice fed an H.F.D, however, the phosphorylation levels of these two proteins
were restored.

The inhibition of H.O. activity by SnPP in the Transgenic-adipo-PGC-1α mice fed
with an HFDreversed the increase in the phosphorylation of pIRS1 Ser307 and pIR tyr972

(p < 0.05).
FGF21 and CREG1 are key transcriptional regulators in brown and beige adipocyte for-

mation, and optic atrophy-1 (OPA1) controls mitochondrial fusion processes. Figure 8D–G
shows reduced levels of FGF21, CREG1, and OPA1 in the adipose tissue of HFD-fed mice
as compared to those of the lean animals, an effect that was normalized in transgenic-adipo-
PGC-1α H.F.D.-fed mice. Once again, SnPP downregulated FGF21, CREG1, and OPA1
protein expression in the Transgenic-adipo-PGC1α mice.
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Figure 8. Effects of SnPP treatment on insulin-receptor phosphorylation and mitochondrial fission
in the adipose tissue of Transgenic-adipo-PGC-1α mice fed with high-fat diet (H.F.D.). Representa-
tive Western blots of (A) phosphorylated insulin-receptor substrate 1 serine307 (pIRS1 ser307) and
phosphorylated insulin-receptor tyrosine972 (pIR Tyr972) with the corresponding quantitation to
β-actin (B,C). (D) Representative Western blots of FGF21, CREG1, and OPA1 with the corresponding
quantitation to β-actin (E–G). Data are expressed as mean ± S.E.M. (n = 5); * p < 0.05 versus lean;
# p < 0.05 versus H.F.D.; + p < 0.05 vs. PGC-1α.

3.11. Effect of SnPP on the Expression of the PGC-1α Target

In adipose tissues, AMPK phosphorylation plays a role in insulin-receptor phospho-
rylation. As shown in Figure 9A,D the levels of pAMPK were reduced in mice fed with a
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H.F.D. compared to the levels in the lean mice. In contrast, pAMPK was increased (p < 0.05)
in the Transgenic-adipo-PGC-1α mice and prevented by SnPP. The same pattern was ob-
served in the expression of UCP1 and PRDM16 (Figure 9E–G). These data suggest that
adipose tissue PGC-1α mediates beneficial effects on the insulin signaling pathway in an
HO-1-dependent manner. (Figure 9A–G).
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Figure 9. Effects of SnPP treatment on browning markers and AMPK phosphorylation in the adipose
tissue of Transgenic-adipo-PGC-1α mice fed with a high-fat diet. Representative Western blots
of (A) PGC-1α, HO-1, pAMPK, and AMPK with the corresponding quantitation to β-actin (B–D).
(E–G) UCP1 and PRDM16. Data are expressed as mean ± S.E.M. (n = 5); * p < 0.05 vs. lean;
# p < 0.05 versus H.F.D.; + p < 0.05 vs. PGC-1α. Effects of SnPP treatment on inflammatory mediators
and transforming growth factor β (TGF-β) signaling (pSmad 1–5 and pSmad 2) in the adipose
tissue of Transgenic-adipo-PGC-1α mice fed with a high-fat diet. Representative Western blots of
(H–J) NOV/CCN3 (H) and IL-6 (J) with the corresponding quantitation to β-actin; Representative
Western blots of pSmad 1–5 and pSmad2 with the corresponding quantitation to β-actin (9; K–M);
and phosphorylation of pP38 MAPK (9N) with the corresponding quantitation to pP38 MAPK. Data
are expressed as mean ± S.E.M. (n = 5); * p < 0.05 versus lean; # p < 0.05 versus H.F.D.; + p < 0.05
versus PGC-1α.
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The effect of SnPP on inflammation and TFG-β signaling is shown in Figure 9H–N. We
observed that SnPP increased the expression of NOV/CCN3 and IL-6 in adipose tissues, as
compared to the lean mice fed with a normal chow diet.

The protein levels of NOV/CCN3 and IL-6 in the adipose tissue of Transgenic-adipo-
GC-1α mice fed with an HFD were reduced when compared to the mice fed with a HFD
(p < 0.05). Interestingly, the levels of these proteins were (p < 0.05) increased when the
transgenic-adipo-PGC-1α mice were treated with SnPP (Figure 9H–J).

The phosphorylation of Smad1–5 and Smad2, as well as that of p P38MAPK in adipose
tissues were significantly elevated in the H.F.D. group as compared to the lean group
(Figure 9K–N), while these increases were normalized in the PGC-1α-transduced mice
(p < 0.05). SnPP blunted the inhibitory effects of PGC-1α on pSmad 1–5, pSmad 2 and
p38MAPK. These data suggest that PGC-1α suppresses the activation of the TGF-β/Smad
signaling pathways, an effect that was clearly dependent on HO-1 (Figure 9K–N).

4. Discussion

We provided evidence demonstrating that the adipocyte-specific overexpression of
PGC-1α ameliorates metabolic dysfunction in mice fed with an HFD, as evidenced by im-
proved insulin sensitivity. In addition, an examination of gene profile expression in adipose
tissues revealed that these effects are related to PGC-1α promoting the reprogramming
of white fat into brown adipocytes, with improved oxygen consumption and increased
levels of adiponectin. The impact of the adipocyte-selective expression of PGC-1α was
also evident on distal tissues. Transgenic-adipo-PGC-1α mice displayed reduced adipocyte
hypertrophy, associated with a reduction in molecules within the TGF-β signaling pathway,
and of the inflammatory markers nephroblastoma-overexpressed/cellular communication
network factor 3 (NOV/CCN3), Twist1, and IL-6. In contrast, mitochondrial biogene-
sis, fission, and expression of genes linked to beige adipocytes were upregulated in the
Transgenic-adipo-PGC-1α mice. The improvement in metabolic function by selective PGC-1
α expression was HO-1-dependent, since SnPP abrogated the positive effects of PGC-1α on
both adipocyte browning and inflammation, as well as attenuating the improvement in
cardiometabolic function.

PGC-1α is one of the key regulators of mitochondrial biogenesis and cellular energy
metabolism [37]. PGC-1α has been shown to regulate HO-1 expression and is cardioprotec-
tive in epicardial fat, attenuating cardiovascular risk [31,32]. The central role of PGC-1α
in adipose tissue regarding energy homeostasis has been established in mice with the
adipocyte-specific deletion of PGC-1α, which results in insulin resistance and increased
lipidemia when animals are fed with an HFD [38]. It is widely recognized that a close
relationship exists between PGC-1α activity, insulin sensitivity, and the prevention of type
2 diabetes, most likely due to the essential role of PGC-1α in mitochondrial biogenesis and
glucose/fatty acid metabolism [39]. PGC-1α is highly expressed in tissues with a high-
energy demand, such as the brain, heart, liver, and kidney [37], and its induction, along
with sirtuin 1 (Sirt1) and AMPK, play a key regulatory role in mitochondrial biogenesis
upon energy stress [40]. We showed that PGC-1α expression in the adipose tissue of mice
fed with an HFD resulted in a decrease in mitochondrial fission genes, such as mitochon-
drial fission 1 protein (FIS1), and an increase in mitochondrial fusion-associated genes,
such as mitofusion 2 (MFN2). Adipocyte dysfunction is manifested by the secretion of
pro-inflammatory adipocytokines, such as TNFα, IL1β, and IL6, which also adversely affect
vascular tone [7]. Our data show an elevation in the pro-inflammatory and pro-fibrotic
protein N.O.V., which was reduced in adipocytes overexpressing PGC-1α. We have shown
in previous work in obese mice that the expression of N.O.V. negatively correlates with
HO-1 and PGC-1α levels and with mitochondrial function [26,28,36]. Not surprisingly,
N.O.V. plasma levels positively correlate with obesity and metabolic syndrome [41,42], and
N.O.V. is highly expressed in the epicardial fat of obese patients [32]. Obesity-induced
inflammation has been reversed by APO A-1 mimetic-like proteins via HO-1 upregula-
tion [43] and accompanies the upregulation of the Wnt canonical signaling cascade [43–45].
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We show the important relationship of PGC1α and HO-1 in reversing the effects of obesity
on cardiometabolic dysfunction.

The transforming growth factor (TGF-β) family transmits signals via serine/threonine
kinase receptors and transcription factors called Smads, and is a central regulator of
fibrogenesis in a number of tissues, including the liver [46]. A recent study indicates that
TGF-β negatively regulates the presumptive beige progenitor cells in white fat, with the
potential to switch to beige adipocytes [47]. Thus, interference with TGF-β/Smad signaling
via the manipulation of PGC-1α provides a promising approach for the development of
therapeutic interventions for obesity and the metabolic syndrome [48]. It is reported that
TGF-β inhibition in Smad3−/− mice increases PGC-1α expression, which mediates the
induction of mitochondrial biogenesis and uncoupling protein 1 of brown adipocyte (UCP1)
expression [49]. The data presented in this paper further suggest that adipose tissues with
an increased expression of PGC-1α and concomitant HO-1 induction suppresses TGF-β
signaling and the inflammatory mediators that prevent the formation of beige adipocytes,
providing a link between PGC-1α and TGF-β in an HO-1-dependent manner.

Increased adiposity and adipocyte inflammation impair insulin signaling and con-
tribute to the development of insulin resistance and metabolic dysfunction [50], which are
characterized by the inhibition of the antioxidant genes PGC-1α and HO-1 [31]. PGC-1α
acts upstream of HO-1 and is required for HO-1 expression in cultured adipocytes; in vivo,
knocking down PGC-1α abolishes the beneficial effect of HO-1 on adiposity, cardiac func-
tion, insulin signaling, and mitochondrial function and biogenesis [13,27–29]. Increased
adiposity and insulin resistance also impair liver function, leading to NAFLD (nonalcoholic
fatty liver disease) that can progress to NASH (nonalcoholic steatohepatitis). The develop-
ment of NAFLD and/or NASH is closely related to overnutrition and obesity, as well as to
inflammation [9,51,52], increased R.O.S. production, and mitochondrial dysfunction [53].
Several models of NAFLD highlight the importance of the anti-oxidative system and mito-
chondrial genes in the maintenance of liver function and the prevention of the progression
of fatty liver to NAFLD [26,36,54–56].

We also studied the effect of PGC-1α expression on the process of adipogenesis, and
we examined 88 genes that are exclusively expressed in adipocytes before and during
adipogenesis [32]. The mRNA levels of Jun, Lmna, Nr1h3, Rb1, Rxra, Sfrbf1 were up-
regulated in the adipose tissues of HFD mice, compared to their corresponding levels in
the adipose tissue of the lean mice. In contrast, when compared to the HFD-fed mice,
all these genes were reduced, in some cases almost to lean-mice levels in the adipose
tissue of the transgenic-adipo-PGC-1α HFD-fed mice. We showed the effect of HFD on
the expression levels of adiponectin, Insr, LpL, PRMD16, Shh, Sirtuin 1, Slc2a, Taz, UCP1,
and Vdr. All these genes were downregulated in the epididymal adipose tissues of HFD
mice, as compared to their corresponding levels in the adipose tissues of the lean mice.
These genes were upregulated in the adipose tissues of the transgenic-adipo-PGC-1α HFD
mice as compared to their levels in the HFD mice. Specifically, PRDM 16, UCP1, Sirtuin1,
and adiponectin are known to be positively regulated by PGC-1α and participate in the
‘browning’ of fat tissue. The robust increase in UCP1 and PRDM16 observed in adipose
tissues from transgenic-adipo-PGC-1α HFD mice is significant, since this suggests increased
energy consumption and mitochondrial respiration.

We showed that the pharmacological induction of PGC-1α and HO-1 as well as adipocyte-
specific HO-1 overexpression ameliorates NAFLD and NASH in obese mice [9,26,57–59]. In
the present study, the specific PGC-1α overexpression in adipocytes was sufficient to
ameliorate liver steatosis and reduce the NAFLD activity score (N.A.S.) in obese mice,
suggesting a paracrine or endocrine influence of adipocyte PGC-1α in improving liver
function and morphology.

Our results support the hypothesis that PGC-1α induction in adipocytes leads to HO-1
expression to satisfy its requirement for increased levels of HO-1 activity and to regulate
critical aspects of insulin signaling, mitochondrial integrity, anti-inflammatory effects, and
adipose tissue browning. The present results indicate and confirm previous reports that
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the recruitment of HO-1 is essential to mediate the beneficial effects of PGC-1α on the
improvement of mitochondrial function, adipocyte browning, vascular tone, and reduced
inflammation [60–62].

5. Conclusions

The adipocyte-specific overexpression of PGC-1α promotes the conversion of white
adipocytes to a beige phenotype, with the subsequent reduction in inflammation and
improvement in insulin sensitivity. This can be attributed, in part, to the inhibition of
adipocyte-derived N.O.V., but also of the TGF-β signaling pathway. The improvement in
mitochondrial function and insulin signaling also suggests the involvement of autophagy
as one of the mechanisms potentially upregulated in transgenic-adipo-PGC-1α mice that
can contribute to the reprogramming of white adipocytes into brown cells through the
stimulation of UCP1 and PRDM16. Our findings unveil the manipulated expression of
adipocyte PGC-1α as a novel strategy with potential therapeutic impact to improve obesity-
linked cardiometabolic diseases (Figure 10).
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