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Abstract

Preeclampsia is a major cause of maternal and perinatal deaths. The aetiology of preeclampsia

is largely unknown but a polygenetic component is assumed. To explore this hypothesis, we

performed an in-depth whole-exome sequencing study in women with (cases, N = 50) and with-

out (controls, N = 50) preeclampsia. The women were identified in an unselected cohort of

2,545 pregnant women based on data from the Danish National Patient Registry and the Medi-

cal Birth Registry. Matching DNA was obtained from a biobank containing excess blood from

routine antenatal care visits. Novogene performed the whole-exome sequencing blinded to

preeclampsia status. Variants for comparison between cases and controls were filtered in the

Ingenuity Variant Analysis software. We applied two different strategies; a disease association

panel approach, which included variants in single genes associated with established clinical

risk factors for preeclampsia, and a gene panel approach, which included biological pathways

harbouring genes previously reported to be associated with preeclampsia. Variant variability

was compared in cases and controls at the level of biological processes, signalling pathways,

and in single genes. Regardless of the applied strategy and the level of variability examined,

we consistently found positive correlations between variant numbers in cases and controls (all

R2s>0.88). Contrary to what was expected, cases carried fewer variants in biological pro-

cesses and signalling pathways than controls (all p-values�0.02). In conclusion, our findings

challenge the hypothesis of a polygenetic aetiology for preeclampsia with a common network

of susceptibility genes. The greater genetic diversity among controls may suggest a protective

role of genetic diversity against the development of preeclampsia.

Introduction

Preeclampsia is a leading cause of maternal and perinatal deaths with estimated 343,000

women worldwide dying from preeclampsia in the last decennium [1]. In survivors, preecla-

mpsia is associated with an increased risk of premature death from any cause, cardiovascular

disease, and with adverse pregnancy outcomes in future pregnancies, including preeclampsia

and impaired foetal growth requiring premature induction of delivery [2–6]. Preeclampsia
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affects 3–8% of pregnancies with an increasing incidence, probably due to an increased burden

of maternal obesity and diabetes, and the trend of postponing pregnancy to higher maternal

ages [7–10]. Identifying women at risk of developing preeclampsia enables early preventive

treatment with low-dose aspirin [11].

The aetiology of preeclampsia is poorly understood, however, defect placentation with

impaired utero-placental flow plays an essential role [9,12]. Disturbances in placental growth

factors and regulators of angiogenesis, and reduced immune tolerance to “non-self” tissue in

the placenta and the foetus are additional suggested mechanisms for preeclampsia [7,13]. Clus-

tering of preeclampsia cases within families suggests a genetic etiological component from

maternal, foetal, and/or paternal genes [9,14–16]. Women with an affected first relative are at

three to five-fold increased risk of developing preeclampsia themselves [9,16,17] and within

some families, preeclampsia seems to follow Mendelian patterns for disease inheritance of rare

deleterious genetic variants [15,18]. Family studies based on large cohorts of affected women

and relatives have suggested that variation in activin A receptor type 2A (ACVR2), rho associ-

ated coiled-coil containing protein kinase 2 (ROCK2), endoplasmic reticulum aminopeptidase

1 (ERAP1), and endoplasmic reticulum aminopeptidase 2 (ERAP2) genes are associated with

preeclampsia [19–21], reviewed in [14]. However, for the majority of preeclampsia cases, the

genetic contribution seems more complex and likely polygenetic [14,17]. This was supported

by twin studies showing discordance in preeclampsia phenotype in monozygotic twin pairs,

suggesting only minor genetic contribution [22,23]. Therefore, the findings from family stud-

ies may not be generalizable to the overall preeclampsia population [14,22,23].

Previous candidate gene studies and genome-wide association studies have chosen candi-

date genes based on the existent knowledge. More than 50 candidate genes for preeclampsia

within various pathophysiological paths have been suggested, but no universally accepted sus-

ceptibility genes for preeclampsia have yet been identified [14]. Since preeclampsia probably

has a polygenetic aetiology of rare genetic variants, a high-resolution systematic investigation

of the whole exome is needed [24,25]. Kaartokallio et al. used pooled blood samples for an

exome sequencing study, thus comparing the pooled frequency of gene variants to reference

data. The authors concluded that no genetic variants reached statistically significance for pre-

eclampsia [24]. However, this design rendered the origin of genetic variants blurred, i.e., the

reported variants could be clustered within few individuals or the other extreme be spread

across individuals. Thus, transparent whole-exome investigations on single women are war-

ranted to further unravel the genetic contribution in preeclampsia.

Yet, there is no published whole exome sequencing study for preeclampsia in the literature.

Here, we report the first whole-exome sequencing study on blood samples from preeclampsia

cases and controls, allowing direct comparison of the genetic variability in cases and controls.

Materials and methods

Setting

In Denmark, nearly all pregnant women attend a routine antenatal care visit at their general

practitioner during early first trimester. Upon this first trimester visit, the general practitioner

obtains a blood sample for maternal blood typing and screening for human immunodeficiency

virus, hepatitis B virus, and syphilis.

In the period from May 2014 to June 2015, we collected all first trimester blood samples

received for analysis every second day at the Department of Clinical Immunology, Aarhus

University Hospital, Denmark (N = 2,545 women). The present study was based on these sam-

ples. EDTA stabilized whole blood was centrifuged, aliquoted in plasma and cell pellet, and

stored at -80˚C until genomic analysis.
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We obtained data on the course of the 2,545 pregnancies from the Danish National Patient

Registry [26] and the Medical Birth Registry [27]. Those born in or immigrating to Denmark

receives a unique Civil Personal Registration number, enabling accurate linkage among Dan-

ish registries at the individual level [28]. The Danish National Patient Registry has recorded

data on all admissions and discharges from Danish non-psychiatric hospitals according to the

International Classification of Diseases, Eighth Revision (ICD-8) from 1977 until the end of 1993

and Tenth Revision (ICD-10) thereafter [26]. Each hospital discharge or outpatient visit is

coded in the Danish National Patient Registry. The Medical Birth Registry contains prospec-

tively collected data on all deliveries in Denmark since 1 January 1973 [27].

Study population

From the Danish National Patient Registry and the Medical Birth Registry, we identified

women registered with a preeclampsia diagnosis among the 2,545 pregnancies. Danish pre-

eclampsia patients are generally diagnosed according to the criteria for preeclampsia stated in

the American College of Obstetricians and Gynaecologists’ task force report on hypertension

during pregnancy: hypertension (� 140/90 mm Hg) debuting from gestational weeks 20 and

proteinuria (www.acog.org). In total, we identified 58 women with a preeclampsia diagnosis

during index pregnancy). We included the 50 women developing preeclampsia (cases) at the

earliest gestational ages. Skjaerven and co-workers previously reported that especially severe

cases of preeclampsia seemed to have a genetic component [29]. Early onset of preeclampsia is

in clinical practice considered severe preeclampsia. For that reason, we selected the 50 women

with the earliest onset of preeclampsia as cases in the present study. These women accounted

for 86% of the total number of preeclampsia cases in the entire cohort. The distribution of

non-genetic known risk factors for preeclampsia (maternal age, parity, and body mass index;

data not shown) did not differ between the subgroup of women included in the present study

and the total group of preeclampsia cases. Additional non-genetic risk factors for preeclampsia

were un-likely to have played a role for our case-selection and overall conclusions in the study.

Fifty women were randomly included as controls, if they had no history of diabetes, arterial

cardiovascular disease, venous thromboembolism, transient ischemic attack, cerebral ischemic

stroke, hypertension, acute or chronic renal disease or gestational diabetes diagnosed within

the index pregnancy.

Whole-exome sequencing

Genomic DNA was purified from the cell pellets using the Qiasymphony DNA Midi kit (Qia-

gen, The Netherlands). The DNA concentration was determined using Qubit Broad Range

DNA kit (Thermofisher). Mean concentration was 174 ng/μL (range 27–394 ng/μL). Novo-

gene Bioinformatics Technology Co., Hong Kong, performed the whole-exome sequencing

blinded to preeclampsia disease status.

Post-sequencing bioinformatics

The variant call files containing variant info were uploaded to Ingenuity Variant Analysis Soft-

ware (Qiagen), hereafter denominated IVA Software, and filtered as illustrated in Fig 1.

Initial filtering

First, we filtered for confidence by excluding variants of call quality below 20 (equivalent to

base call accuracy of 99%), read depth below 10, allele fraction below 25%, and genotype qual-

ity below 30 (equivalent to genotype call accuracy of 99.9%). Subsequently, we excluded
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common variants. These were defined as variants with reported allele frequencies of 0.5% or

greater in one of the following databases: 1000 genomes project [30], NHLBI ESP exomes [31],

Allele frequency Community [32], Exome Aggregation Consortium [33] and gnomAD [34].

Variants predicted to be disease associated were included if the following criteria were met:

variants classified as pathogenic or likely pathogenic according to computed American College

of Medical Genetics and Genomics guidelines [35], disease-associated variants according to

the Human Gene Mutation Database [36] or disease-associated variants according to the

CLINVAR database [37].

Lastly, variants predicted to be deleterious were included according to the following criteria:

frameshift, in-frame insertion and deletions, stop codon changes, missense unless predicted

innocuous by SIFT [38] or polyphen-2 [39], CADD score > 15.0 [40] disrupt splice site up to 2

bases into intron, or predicted to disrupt splicing by MaxEntScan [41]. The initial filtering is

further specified in S1 Appendix.

Biological filtering

We employed two different approaches; a disease association panel approach and a gene panel
approach for the filtering according to biological mechanisms (specified in S1 Appendix). In

the disease association panel approach, we filtered for variants in genes associated with clinical

risk factors for preeclampsia [7]. These included genes associated with abnormal immune tol-

erance, chronic kidney disease, coagulopathy, diabetes, hypertension, preeclampsia, systemic

lupus erythematosus, and thrombophilia. In the gene panel approach, we searched for relevant

biological pathways harbouring genes previously reported to be protective or disease causing

for preeclampsia. These included the renin-angiotensin system pathway, antigen presentation

folding, peptide loading of class I major histocompatibility complex, cell adhesion endothelial

Fig 1. Filtering cascade. Number of variants and genes present after initial filtering and biological filtering.

https://doi.org/10.1371/journal.pone.0197217.g001
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cell contacts by non-junctional mechanisms, DNA double-strand break repair, complement

and coagulation cascades, epoxide hydrolase pathway, myometrial relaxation and contraction

pathways, transforming growth factor-beta signalling pathway. In the gene panel, we addition-

ally included genes previously reported to be associated with preeclampsia in a large genome

wide association study [21]. We exported genes present in these pathways from PathCards

[42].

Biological processes and pathways

We furthermore investigated the genetic variability by comparing the variant frequency for

cases and controls separately of the 100 most significant biological processes and pathways, as

defined by the IVA software. The IVA software defines biological processes as the biological

properties of particular molecules, or the effects that a given molecule has on a disease or func-

tion [43]. Based on classical models of signal transduction and information in the Qiagen

Knowledge Base [43], the Qiagen’s Content Curation team has defined pathways in the IVA

software. The IVA software determined the significance of each particular biological process

or pathway by the use of a right-tailed Fisher’s exact test, testing if the frequency of genetic var-

iants within these processes and pathways was higher than expected by random chance.

Statistics

The correlations of variants in the two groups were examined by linear regression, based on

least squares residuals. Difference in variant prevalence was assessed using binomial distribu-

tion, as the probability of the observed prevalence given prevalence was equal in the groups.

We defined the level of significance as 0.05. Raw p-values were corrected for multiple compari-

sons by the Bonferroni approach, unless otherwise stated. Ninety-five percent confidence

intervals are presented in brackets []. Data analysis was made in Stata 11.0, StataCorp, USA.

Ethics

The Ethics Committee of Central Regional Denmark and the Danish Data Protection Agency

approved the study (record number/date 1-16-02-294-13/ 20.06.2013 and record number 1-

10-72-46-16).

Results

We collected blood samples from 2,545 unique women attending their first antenatal visit at

their general practitioner. Of those, 58 (2.2%) subsequently had a preeclampsia diagnosis regis-

tered in the Danish Medical Birth Registry. We included the 50 women who developed pre-

eclampsia at the earliest gestational ages. Table 1 shows demographic characteristics of women

developing and not developing preeclampsia.

Women developing preeclampsia were younger, delivered infants with lower birth weights,

and had a lower gestational age in comparison to controls. The raw sequencing data obtained

in the case and control groups were of similar coverage and quality (Table 2). The p-values for

all quality parameters were all> 0.1.

Comparison of the 100 most variable biological processes in cases and

controls

Using the disease association panel, we identified the 100 most variable biological processes in

each of the two groups. The two groups shared 94 of these processes (Fig 2A). All women had

variants in each of these biological processes. For the shared variant processes, we found a
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strong and highly significant correlation of total variant number (Fig 2B) and number of genes

carrying variants (Fig 2C) across the case and control groups. Cases had 10% [9.4%–11%]

fewer variants per biological process and 7.6% [6.8%–8.3%] fewer genes with variants per bio-

logical process compared to the control group (p<0.0001). To explore this difference further,

we identified the biological processes in which variant frequency differed between the two

groups. We found 40 different biological processes with a lower number of variants in cases

than in controls (Fig 2D).

We repeated these analyses using the gene panel. Even more biological processes, 97 of the

100, were shared for the case and control group (Fig 2E). Again, the two groups correlated

strongly in number of variants in single processes (Fig 2F) and the number of genes harbour-

ing variants (Fig 2G). In addition, cases had fewer variants per process (3.9% [1.2%–6.6%])

and fewer genes were affected per process (10% [8.5%–12%]) compared to controls (p�0.005).

However, the variant frequency did not differ for any single biological process.

Comparison of the 100 most variable pathways in cases and controls

We then addressed variability in pathways, as defined in the IVA Software. When using the

disease association panel, we found that 82 pathways were shared for cases and controls (Fig

3A). Both the number of variants per pathway and the number of genes harbouring variants

Table 1. Characteristics of women with (cases) and without (controls) preeclampsia.

Cases (N = 50) Controls (N = 50)

Median 10–90 percentile Median 10–90 percentile

Gestational age at blood sampling, days 76 69–87 80 66–91

Gestational age at blood sampling, weeks+days 10+6 – 11+6 –

Maternal age at blood sampling, years 25 20–35 30 24–37

Maternal body mass index, kg/m2 24 20–33 23 19–29

Gestational age at delivery, days 267 237–282 281 266–291

Birth weight, grams 3,088 1,605–3,770 3,505 2,804–4,140

https://doi.org/10.1371/journal.pone.0197217.t001

Table 2. Whole-exome sequencing quality data.

Cases

Mean (SD)

Controls

Mean (SD)

Raw data (Gb) 7.7 (0.6) 7.6 (0.7)

Q30 (%) 91.6 (1.1) 91.4 (1.0)

Effective sequences on or near target (Mb) 5,558 (415) 5,461 (443)

Mean sequencing depth on target 70 (5) 68 (6)

Fraction of target covered with at least 20x 0.95 (0.01) 0.95 (0.01)

Total number of SNP 218,254 (14,170) 220,074 (13,638)

Number of transitions 151,996 (9,940) 153,109 (9,500)

Number of transversions 66,257 (4,245) 66,965 (4,150)

Number of novel SNP 17,600 (4,735) 16,497 (3,613)

Number of SNP in CDS 22,883 (888) 23,001 (998)

Number of stop gains 86 (6) 88 (7)

Number of stop loss 12 (2) 12 (2)

SD: standard deviation; Gb: Giga-bases. Q30: the percent of bases with phred-scaled quality scores greater than 30.

Mb: Mega-bases

https://doi.org/10.1371/journal.pone.0197217.t002
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correlated strongly and significantly in the two groups (Fig 3B and 3C). On average, cases had

6.7% [1.1%–12%] fewer variants per pathway and 14% [7.8%–20%] fewer variant genes per

pathway compared to controls (p�0.02).

When applying the gene panel approach, we observed that 87 pathways were shared for

cases and controls (Fig 3D). Both the number of variants per pathway and the number of

genes harbouring variants correlated strongly in the two groups (Fig 3E and 3F). On average,

cases had 18% [11%–26%] fewer variants per pathway and 21% [14%–27%] fewer variant

genes per pathway than controls (p<0.0001).

Fig 2. Comparison of the 100 most variable biological processes in cases and controls. Variant processes were identified with the disease association panel
(A-D) or the gene panel (E-G). A: The number of unique and shared variant harbouring processes. For shared variant processes, correlation of total variant

number (B) and number of genes carrying variants (C). Number of variants in 40 processes which less frequently carried variants in cases (D). E: Number of

unique and shared variant processes. For shared variant harbouring processes, correlation of total variant number (F) and number of genes carrying variants

(G).

https://doi.org/10.1371/journal.pone.0197217.g002
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Comparison of variant genes in cases and controls

We then studied variants in single genes. Again, we applied the disease association panel. Cases

had variants in 1,018 genes and controls had variants in 1,255 genes, whereas both groups had

variants in 1,949 genes (Fig 4A). The total number of variants in the shared genes again

showed a strong and highly significant correlation between the two groups (Fig 4B). Fig 4C

depicts raw data on shared genes with the most skewed prevalence of variants (raw p-values

below 0.05, but without significant difference after Bonferroni correction for multiple

Fig 3. Comparison of the 100 most variable pathways in cases and controls. Variant pathways were identified with the disease association panel (A-C) or the

gene panel (C-F). A: Number of unique and shared variant harbouring pathways. For shared variant pathways, correlations of total variant number and number

of genes carrying variants are presented in B and C, respectively. D: Number of unique and shared variant harbouring pathways. For shared variant pathways,

correlations of total variant number and number of genes carrying variants are presented in E and F.

https://doi.org/10.1371/journal.pone.0197217.g003
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comparison). We then applied the gene panel. Cases had variants in 162 genes, controls had

variants in 208 genes, whereas both groups shared 261 genes harbouring variants (Fig 4D).

The total number of variants in the shared genes correlated strongly between the two groups

(Fig 4E) and no difference was observed in variant numbers for any of these genes. Fig 4F

depicts raw data on shared genes with the most skewed prevalence of variants (raw p-values

below 0.05, but without significant difference after Bonferroni correction for multiple

comparison).

Rare deleterious variants more frequent in cases

We performed a sensitivity analysis for uncovering the maximum genetic variability between

cases and controls. We did so by comparing the frequency of rare deleterious variants for cases

and controls directly. We selected for genes harbouring deleterious variants more frequent in

preeclampsia cases than in controls (variants in single genes in�10% of cases and�2% of con-

trols). Five genes were identified; methylenetetrahydrofolate reductase (MTHFR), inositol

1,4,5-trisphosphate receptor type 1 (ITPR1), discs large MAGUK scaffold protein 2 (DLG2),
sucrose isomaltase (SI), and ataxin 1 (ATXN1) (Table 3).

Presence of previously reported genes associated with preeclampsia

Finally, we investigated the presence of variants in four selected genes previously reported in

relation to preeclampsia; the ROCK2,ACVR2A, ERAP1, and ERAP2 genes [17,19–21]. We

chose to include rather frequent variants (<10%) to be able to assess potential accumulation of

Fig 4. Comparison of variant genes in cases and controls. Genes containing variants were identified with the disease association panel (A-C) or the gene panel
(C-F). A: Number of unique and shared variant harbouring genes. For the shared genes, correlation of total variant number is depicted in B. C: Genes with

extreme distribution of variant numbers between groups (uncorrected p-values below 0.05). D: Number of unique and shared variant harbouring pathways.

For the shared genes, correlation of total variant number is depicted in E. F: Genes with extreme distribution of variant numbers between groups (uncorrected

p-values below 0.05).

https://doi.org/10.1371/journal.pone.0197217.g004
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more frequent variants among cases. For ROCK2, we identified one variant among cases and

one among controls. For ACVR2A, we identified one variant among cases and none among

controls. We identified four ERAP1 variants among cases and none among controls. For

ERAP2, we identified 30 variants among cases and 18 among controls. When we searched for

more rare variants (<1%), no difference was detected (Table 4).

Discussion

We demonstrated a high degree of genetic concordance for cases and controls. Our findings

therefore challenge the suggested hypothesis of a polygenetic aetiology for preeclampsia with a

common network of susceptibility genes [13,20]. Our findings support previous twin studies

that reported only minor genetic contribution for preeclampsia [22,23). The occurrence of

preeclampsia in our cohort was lower (2.2%) than reported by others [6–9], but similar to pre-

vious reports on preeclampsia registration in the Danish Medical Birth Registry [26]. This may

Table 3. Rare predicted deleterious variants found in�10% of women with preeclampsia (cases) and 2% of controls.

Gene Symbol

Transcript ID

Transcript Variant Protein Variant gnomAD§ CADD

Score�
Clinvar/ HGMD

(Variant Class) ¤

Variants present

Cases Controls

MTHFR
NM_005957.4

c.�3046G>A 0.372 <10 RCV000344422.1 (VUS) 1 0

c.�2594C>T 0.206 <10 RCV000293884.1 (VUS) 1 0

c.�1294G>A p.A1430A 0.054 11.4 RCV000370067.1 (VUS) 1 0

c.1970G>C p.�657S 0.001 <10 CM035841 (Low activity) 1 0

c.1409A>T p.E470V 0.168 23.3 RCV000319501.1 (VUS) 1 1

c.870C>T p.N290N 0.020 10.1 RCV000310090.1 (VUS) 1 0

ITPR1
NM_002222.5

c.-2A>G 0.041 15.2 RCV000399171.1 (VUS) 1 0

c.195C>G p.R65R 0.172 13.0 RCV000336374.1 (VUS) 1 0

c.971C>A p.A324D 0.003 23.4 - 1 0

c.2985A>G p.S995S 0.092 <10 - 1 0

c.5076C>T p.N1692N 0.188 15.7 RCV000278808.1 (VUS) 1 0

c.6007C>T p.H2003Y - 29.6 RCV000177981.1

RCV000359508.1 (VUS)

1 0

c.6321+1G>T - 23.5 - 1 0

DLG2
NM_001142699.1

c.�137C>T - 22.3 - 2 0

c.1799C>T p.T600M 0.012 33.0 - 1 0

c.837G>T p.G279G 0.005 18.0 - 1 0

c.357+188529C>T 0.375 15.6 - 1 0

c.-16T>C 0.004 16.4 - 1 0

SI
NM_001041.3

c.5279G>A p.G1760D 0.017 22.7 - 1 0

c.2923T>C p.Y975H 0.409 26.6 RCV000366023.1 (VUS) 2 0

c.1958G>T p.G653V - 33.0 - 1 0

c.878G>A p.G293D 0.000 31.0 - 1 0

ATXN1
NM_000332.3

c.2114G>C p.S705T - 16.8 - 1 0

c.772G>T p.G258C 0.172 24.2 - 1 0

c.642G>T p.Q214H 0.368 11.6 - 1 0

c.302C>T p.T101M 0.019 24.5 - 1 0

c.-748G>C 0.002 15.9 - 1 0

§) gnomAD frequency in %

�) CADD score above 20 belongs to the 1% most deleterious variants.

¤) Clinical significance reported in ClinVar.–Not present in database. VUS: variant of unknown significance.

https://doi.org/10.1371/journal.pone.0197217.t003
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be explained by heterogeneity in the definition of preeclampsia used in different studies

[13,16] and the fact that only preeclampsia requiring hospital admission are registered in the

Danish Medical Birth Registry [30].

Cases did not appear more distinct from the reference genome than controls concerning

variants in biological processes. Using the disease association panel, the controls carried a

slightly higher frequency of variants in a higher number of genes compared to preeclampsia

cases. This suggests that general variant accumulation, in the studied processes, does not con-

tribute to the development of preeclampsia. Contrary, our finding that preeclampsia cases

were less genetic diverse might be suggestive of a protective role of genetic diversity.

The genetic concordance was high for cases and controls for the signalling pathways. In the

gene panel approach, cases carried slightly fewer variant genes per pathway than controls. The

raw data from both the disease association panel and gene panel uncovered more variants in the

von Willebrand factor gene, the polymerase DNA epsilon gene, and the ITPR1 gene. Neverthe-

less, correction for multiple comparisons eliminated the statistical significant difference in var-

iant numbers for any of the shared genes.

The overrepresentation of ERAP2 variants in cases was explained by frequent variants.

There was no difference when looking at the more rare variants (<1%). We found that delete-

rious variants in the MTHFR, ITPR1, DLG2, SI, and ATXN1 genes were more frequent in cases

compared to controls. The variants detected in MTHFR are reported in ClinVar as possibly

associated with neural tube defects except p.�657S. p.�657S is reported in relation to MTHFR

deficiency [44,45]. Variants in the MTHFR genes have, together with the most frequent

inherited thrombophilia markers Factor V Leiden mutation and the prothrombin variant

(G20210A), been reported associated with preeclampsia [17,46]. However, several reports have

Table 4. Predicted deleterious variants in ROCK2, AVCR2A, ERAP1, and ERAP2 in women with (cases) and without (controls) preeclampsia.

Gene Symbol

Transcript ID

Transcript Variant Protein Variant gnomAD§ CADD score� Clinvar/ HGMD

(Variant Class) ¤

Variants present

Cases Controls

ROCK2
NM_004850.4

c.2833A>C p.M945L - 22.5 - 0 1

c.407T>G p.F136C 0.095 26.0 - 1 0

ACVR2A
NM_001616.4

c.1077+36A>G - 0.025 15.2 - 1 0

ERAP1
NM_016442.4

c.2101-89C>T - 0.184 15.6 - 1 0

c.1939G>A p.V647I 0.297 27.8 CM0911242 (DM?) 1 0

c.1398G>A p.Q466Q 0.009 15.6 - 1 0

c.663+145G>A - 0.055 15.9 - 1 0

ERAP2
NM_022350.4

c.291C>T p.I97I 7.912 18.3 - 12 8

c.641C>T p.P214L 1.824 32.0 - 2 0

c.995T>C p.V332A 0.010 <10 - 1 0

c.1040C>T p.T347M 2.149 26.8 - 5 2

c.1232T>G p.L411R 0.399 28.2 RCV000179970.1 (Benign) 0 1

c.2006T>A p.L669Q 3.937 26.9 CM0911418 (DP) 6 3

c.2045A>T p.D682V 0.020 24.0 - 0 1

c.2726A>T p.D909V 0.002 23.3 - 0 1

c.2740-27G>A - 0.375 16.4 - 4 1

c.2855T>C p.L952P 0.120 26.7 - 0 1

§) gnomAD frequency in %

�) CADD score above 20 belongs to the 1% most deleterious variants.

¤) Clinical Significance reported in ClinVar.–Not present in database. DM: disease-causing mutation, DP: disease-associated polymorphism.

https://doi.org/10.1371/journal.pone.0197217.t004
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also largely refuted this association [14,46]. The IPTR1 gene has been reported to be involved

in maintenance of normal blood pressure through IP3R1-mediated regulation of eNOS [47].

The DLG2 gene is previously reported differentially expressed in transcripts of decidua basalis

in preeclampsia [48]. Based on these findings, we cannot rule out a possible role of the

MTHFR, ITPR1, and DLG2 gene variants for risk of developing preeclampsia.

Variants in SI were reported in ClinVar as a variant of unknown significance. The ATXN1
gene is a causative factor for spinocerebellar ataxia-1 [49] and has been suggested to participate

in the highly conserved Notch signalling pathway with regulatory importance for embryonic

development [50]. The variants in the SI and ATXN1 genes demonstrated in the present study

are of more dubious clinical relevance for preeclampsia.

Presence of previously reported genes associated with preeclampsia

The AVCR2, ROCK2,ERAP1, and ERAP2 genes previously reported associated with pre-

eclampsia [19–21], reviewed in [14] were not found to be more frequent in cases compared to

controls in the present study. Thus, our findings do not support previous findings of their pos-

sible contribution to risk of developing preeclampsia.

Strengths and limitations

The major strength in the present study was the robust study design based on blood samples

from an unselected cohort of pregnant women representative for the general Danish popula-

tion of pregnant women. The Danish tax-paid health care system ensures free access for all

inhabitants, including free antenatal care at midwives and general practitioners. Therefore,

blood samples collected as a part of this antenatal care constituted a unique source for studying

genetic variability according to risk of developing preeclampsia. The study was also strength-

ened by the fact that we based our case-identification on nationwide Danish registry data free

from recall bias. The Danish Medical Birth Registry has complete coverage for all women giv-

ing birth in Denmark. The validity of the preeclampsia diagnosis is high in The Danish Medi-

cal Birth Registry, i.e., a positive and negative predictive value of 88% and 97% [26,37]. To

further validate our case-selection, we obtained maternal demographic data and data on birth

outcomes for both cases and controls. These data showed lower gestational ages and birth

weights in the case group, consistent with the known clinical course in preeclampsia. Finally,

we performed an in-depth sequencing and bioinformatics analysis of the entire exome of both

cases and controls. This enabled direct comparison of variant frequencies in the two groups

with reference to the reference genome [43].

We did not have access to data on family history of preeclampsia. Therefore, we cannot

entirely rule out a family history of preeclampsia in the controls. The sample size may have

limited the power of the present study, potentially leading to false-negative results [51]. How-

ever, we believe, that if any clinically relevant differences in the frequencies of protective or dis-

ease causing variants were present, it would have shown in the present study.

Conclusion

In this explorative whole-exome sequencing study, we found no evidence of a common net-

work of genetic variability predisposing to preeclampsia. Preeclampsia affects the reproductive

success, wherefore it is biologically plausible that preeclampsia susceptibility genes are under

negative evolutionary control, thereby keeping the population frequencies of susceptibility var-

iant low [23]. The present study indicates that genetic markers carry a minor potential for pre-

dicting preeclampsia. Cases even had a reduced genetic variability compared to controls.
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Future studies should focus on the clinical impacts of this reduced variability in women suffer-

ing from preeclampsia.
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