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Prediction of ISUP grading of clear cell renal cell
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based on CT images
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Abstract
Background: To explore whether radiomics combined with computed tomography (CT) images can be used to establish a model
for differentiating high grade (International Society of Urological Pathology [ISUP] grade III–IV) from low-grade (ISUP I–II) clear cell renal
cell carcinoma (ccRCC).

Methods:For this retrospective study, 3-phase contrast-enhanced CT images were collected from 227 patients with pathologically
confirmed ISUP-grade ccRCC (155 cases in the low-grade group and 72 cases in the high-grade group). First, we delineated the
largest dimension of the tumor in the corticomedullary and nephrographic CT images to obtain the region of interest. Second,
variance selection, single variable selection, and the least absolute shrinkage and selection operator were used to select features in
the corticomedullary phase, nephrographic phase, and 2-phase union samples, respectively. Finally, a model was constructed using
the optimal features, and the receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the
predictive performance of the features in the training and validation queues. A Z test was employed to compare the differences in AUC
values.

Results: The support vector machine (SVM) model constructed using the screening features for the 2-stage joint samples can
effectively distinguish between high- and low-grade ccRCC, and obtained the highest prediction accuracy. Its AUC values in the
training queue and the validation queue were 0.88 and 0.91, respectively. The results of the Z test showed that the differences
between the 3 groups were not statistically significant.

Conclusion: The SVM model constructed by CT-based radiomic features can effectively identify the ISUP grades of ccRCC.

Abbreviations: AUC= area under the curve, ccRCC= clear cell renal cell carcinoma, ICC= intraclass correlation coefficient, ISUP
= International Society of Urological Pathology, LASSO = least absolute shrinkage and selection operator, RCC = renal cell
carcinoma, ROC = receiver operating characteristic, ROI = region of interest, SVM = support vector machine.
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1. Introduction

Renal cell carcinoma (RCC) is the most common primary
malignancy of the kidney, accounting for about 85% to 90% of
renal malignancies. Clear cell renal cell carcinoma (ccRCC) is the
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most common subtype of RCC, accounting for about 70% of
cases.[1] Because of the heterogeneity of ccRCC tumors, different
patients with the same type of tumor are likely to have a different
prognosis. Among the main determinants of the prognosis, the
nuclear grading of the tumor is widely recognized as an important
independent factor.[2–4] Therefore, it is particularly important to
explore a method that can accurately distinguish the nuclear
grading of tumors. Previous studies have shown that models
constructed by screening imaging features from medical images
can accurately distinguish between the high and low grades of
ccRCC, with accuracy ranging from 0.73 to 0.926.[5–8] However,
most of these studies used the Fuhrman nuclear grading standard,
which was proposed in 1982, as a reference.[9] Recent studies
have revealed loopholes in this grading system, resulting in poor
reproducibility of tumor ratings,[4,10,11] and no significant
difference exists in long-term survival rates between patients
rated as grade II and grade III in this standard.[12] This means that
it is futile to use image features to distinguish different nuclear
grades. The International Society of Urological Pathology (ISUP)
standard proposed by the 2012 ISUP conference working group
addresses the above issues, and was recommended by the WHO
in 2016. This grading method can accurately distinguish grades,
and patients at different levels have a different prognosis.[2,3]

With this update of the pathologic grading method, it is worth
exploring whether the imaging method can accurately predict the
grading of ccRCC.
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Radiomics is a technique for automatically extracting
quantitative features from medical images. It is able to extract
hundreds of features from each image, resulting in more detailed
quantitative information about tumors than can be obtained
from clinically used imaging metrics.[13] In recent years, studies
on lung cancer,[14,15] colorectal cancer,[16] renal cell carcinoma,[6]

and bladder cancer[17] have shown that radiomics can provide
useful information for tumor grading, staging, and prognosis.
Based on this, we investigated whether a support vector machine
(SVM) model constructed by extracting features from CT images
could identify the ISUP grade of ccRCC.
In summary, the purpose of this study is to report whether a

CT-based radiomics model can be used to distinguish the grade of
ISUP in ccRCC.
2. Materials and methods

2.1. Patients

The retrospective study was approved by the Ethics Review
Committee of our hospital. The requirement for informed
consent was waived, because CT image acquisition is part of a
routine examination as a noninvasive technique for suspected
patients with RCC.
From March 2014 to March 2018, data were collected from

227 patients (162 men and 65 women, age range 34–77 years)
with ccRCC who underwent surgical resection and exhibited
pathologic results. Patient inclusion/exclusion details are pre-
sented in Figure 1. There was 1 renal mass per patient, so a total
of 227 tumors were included in the experiment.

2.2. CT examination

Triple-phase CT-enhanced images were obtained using a 64-slice
CT scanner (GE Discovery 750 HD BASE (M)). The scanning
parameters were as follows: tube voltage of 120kV, tube current
automatic adjustment technology, scanning range of 500.00mm,
scanning thickness of 1.25mm, rotation speed of 0.6s/circle, and
Figure 1. Flow chart of patient recruitme
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a 512�512 matrix. The patients were injected with a contrast
medium (Omnipaque, 300mg iodine/mL; GE Healthcare,
Shenyang, China) via an elbow vein using a high-pressure
syringe (Missouri XD 2001; Ulrich Medical, Ulm, Germany) at a
rate of 4.5mL/s for a total of 100mL. The corticomedullary
phase scan was performed 25 to 30seconds after the injection of
the contrast medium, the nephrographic scan was performed at
60 to 70seconds, and the excretory phase was scanned at 120 to
180seconds. All patients were scanned while holding their breath
after deep inhalation.
2.3. Data preprocessing

For the 227 patients, all images were enhanced CT scan images.
The image quality and image noise vary depending on the area of
the renal cortex. Therefore, it was necessary to preprocess the
data to ensure that the image features were calculated with the
same specifications. All images were resampled into voxel sizes of
1�1�1mm3 using linear interpolation. Furthermore, a Gauss-
ian filter was used for denoising. Tumor segmentation and feature
extraction were then performed.
2.4. Image analysis and feature extraction

In this study, we selected the largest cross-section of the tumor for
region of interest (ROI) delineation. The delineation of the ROI
was performed by 2 radiologists with 8 and 6 years of CT
interpretation experience, respectively, at Radcloud (Huiying
Medical Technology Co, Ltd, Beijing, China). During the
description, they were unaware of the pathology of the tumor
and the results of the imaging results.
For each ROI, we used Radcloud to extract and calculate

features. A total of 1029 quantitative imaging features were
extracted from the ROI using the Radcloud platform. These
features were then placed into 1 of 4 groups. The 1st group
consists of 95 first-order statistics that quantify the distribution of
voxel intensities within a CT image by common and basic
nt with inclusion and exclusion details.



Figure 2. Schematic diagram of feature extraction and radiomics analysis for clear cell renal cell carcinoma grading. ROC = receiver operating characteristic, ROI=
region of interest.
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measures. The 2nd group of features is based on shape and size,
and contains 15 three-dimensional features reflecting the shape
and size of the region. The 3rd group consists of 295 texture
features calculated by gray level run length and gray level co-
occurrence texture matrix, which can quantify regional hetero-
geneity differences. The 4th group (higher-order statistical
features) includes intensity and texture features obtained from
the wavelet transform of the original CT image. Five types of
filters were used for feature extraction: exponential, square,
square root, logarithmic, and wavelet (wavelet-LLL, wavelet-
HHH, wavelet-HLL, wavelet-HHL, wavelet-LLH, wavelet-
HLH, wavelet-LHL, wavelet-LHH). To reduce the dimensionali-
ty of the features, we used a variance threshold (variance
threshold=0.8), select K best (P< .05), and the least absolute
shrinkage and selection operator (LASSO) algorithm to gradually
select the optimal features. The feature extraction and analysis
process are illustrated in Figure 2.

2.5. Pathologic assessment

Whole tumor specimens were placed in formalin solution and
sent to a pathology laboratory. After staining with hematoxylin
and eosin, histopathologic evaluation was performed by a
pathologist with more than 10 years of experience according to
the ISUP grading system to obtain tumor grading information.
Table 1

Characteristics of patients.

Characteristics of patients Low grade (n=155) High grade (n=72) P

Age, yrs 53 (47, 62) 57 (51, 65) .232
Gender (male/female) 107/48 55/17 .098
2.6. Statistical analysis

The categorical variables were compared using the Chi-squared
test, and the continuous variables were compared using the
Mann–Whitney U test.
Classification was performed using the SVM model. Receiver

operating characteristic (ROC) curve analysis was used to
evaluate the prediction performance of the radiomic signature.
3

The optimal cutoff value was selected as the point when the
sensitivity plus specificity was maximal. The area under the curve
(AUC) was calculated in both the training and validation sets. A
Z test was then used to investigate the difference in the AUC of
the 3 sets of results.
Intraclass correlation coefficients (ICCs) with 95% confidence

intervals (95% CIs) were used to assess the continuous variable.
ICC>0.75 signifies good inter-rater agreement. The ICC
calculation, Mann–Whitney U test, and Chi-squared test were
performed using IBM SPSS Statistics (version 22.0; SPSS,
Chicago, IL). The confidence level was maintained at 95%
and P-values of <.05 were considered significant. The Z test was
performed using MedCalc (version 15.6.1). When Z>1.96 and
P< .05, the difference between the 2 groups was considered to be
statistically significant. Dimensionality analysis, classifier con-
struction, and ROC analysis were performed at Radcloud
(Huiying Medical Technology Co, Ltd). Computer-generated
random numbers were used to assign 80% of the ROIs as the
training data and the other 20% as the validation data.
3. Results

The study included 155 patients in the low-grade group (51 at
grade I, 104 at grade II) and 72 in the high-grade group (59 at
grade III, 13 at grade IV). The gender and age characteristics in
Table 1 show that there was no significant correlation between
patient characteristics and grade.

http://www.md-journal.com


Figure 3. LASSO algorithm for feature selection in model 3. (A) LASSO path. (B) MSE path. (C) Coefficients in LASSO model. Using LASSO model, 7 features
corresponding to the optimal alpha value were selected. 1 and 2 represent the corticomedullary phase and nephrographic phase, respectively.
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We obtained 609, 590, and 1199 features using the variance
threshold for the corticomedullary, nephrographic, and 2-phase
joint samples, respectively, and then obtained 138, 51, and 189
features using the select K best method. Finally, 7, 5, and 7
optimal features were screened using the LASSO algorithm. In
the 2-phase joint sample, the 7 features selected were the Zone
Entropy, Long Run Low Gray Level Emphasis, Large Area High
Gray Level Emphasis, Sum Entropy, Large Area Low Gray Level
Emphasis, Root Mean Squared, and Run Variance. The LASSO
path, mean squared error (MSE) path, and characteristic
coefficients in the LASSO model are shown in Figure 3. The
inter-rater agreement ranged from 0.973 to 0.998 for the above
image features.
The model was constructed using the selected features of the

corticomedullary, nephrographic, and 2-phase joint samples,
named Model 1, Model 2, and Model 3, respectively. Model 3
achieved the best training results with the SVM classifier. The
AUCs of the training and validation sets were 0.88 (95% CI:
0.77–0.95; sensitivity 0.85, specificity 0.89) and 0.91 (95% CI:
0.65–0.99; sensitivity 0.83, specificity 0.89), respectively. The
ROC curves of each group are shown in Figure 4.
The results of the classifiers constructed in models 1 and 2

show that the prediction accuracy of the nephrographic-phase
data was poor, with the AUC of the validation set reaching only
0.56. For the classifier constructed using corticomedullary phase
data, although the AUC of the validation set reached 0.87, its
specificity was low at only 0.67. The AUC was bigger in model
4

3 than in model 2 (Z=2.277, P= .023). This indicates that the
difference between the model constructed using the nephro-
graphic phase data and the result of the 2-phase joint model is
statistically significant. No significant AUC difference was found
between model 1 and model 3 (P> .05). The ROC curve analysis
results for the training and verification sets are presented in
Table 2.
4. Discussion

In this study, we sought to investigate whether CT-based
radiomic models could distinguish between high- and low-grade
ccRCC in the context of the updated nuclear grading standards.
We found that the SVM model established using radiomic
features provides an effective identification of the simplified
ccRCC grading.
Previous studies have shown that CT-based radiomics is a

valuable tool in distinguishing high- and low-grade ccRCC. The
radiomics model with texture features constructed by Ding et al
exhibits high prediction accuracy in identifying the grading of
ccRCC, with an AUC value of 0.771.[6] Their results were
superior to those obtained using CT image features or the
RENAL nephrometry score for high- and low-grade ccRCC
predictions, which achieved AUC values of 0.70 and 0.73,
respectively.[5,7] In the present study, the AUC value of the model
based on 2-phase joint features reached 0.91, which is somewhat
higher than the AUC results of previous studies. This may be due



Figure 4. Different receiver operating characteristic (ROC) curves for support
vector machine classifiers. Comparison of ROC curves between model 1,
model 2, and model 3 for the prediction of ISUP grading in the (A) training and
(B) testing data sets.

Table 2

Receiver operating characteristic analysis by support vector
machine classifiers of training and testing sets.

Model 1 Model 2 Model 3

Training set
AUC 0.85 0.78 0.88
95% CI 0.73–0.94 0.65–0.88 0.77–0.95
Sensitivity 0.85 0.75 0.85
Specificity 0.86 0.6 0.89

Testing set
AUC 0.87 0.56 0.91
95% CI 0.60–0.99 0.28–0.80 0.65–0.99
Sensitivity 0.83 0.67 0.83
Specificity 0.67 0.44 0.89

Model 1 was constructed using the selected features of the corticomedullary phase samples. Model
2 was constructed using the selected features of the nephrographic phase samples. Model 3 was
constructed using the selected features of the 2-phase joint samples.
AUC= area under the curve, CI = confidence interval.

Table 3

International Society of Urologic Pathology (ISUP) and Fuhrman grad

Fuhrman grading system

Nucleoli Nuclear shape

Grade I Inconspicuous or
absent

Small, round, uniform, irregular

Grade II Visible at �400
magnification

Irregular in outline at �400
magnification, variable in size

Grade III Prominent/large even
at �100
magnification

Obvious irregular outline, large,
hyperchromasia, marked
variability in size and shape

Grade IV Cells large, pleomorphic with bizarre multilobed giant cells and heavy ch

Sun et al. Medicine (2019) 98:14 www.md-journal.com
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to 2 reasons. Firstly, the evaluation criteria for the 2 groups of
grading systems are different.[12] The details of the ISUP and
Fuhrman grading system are shown in Table 3. The ISUP grading
system in which nuclear size is taken as the classification
standard, enabling each grade to be effectively distinguished, was
used in this study. All of the above studies used the Fuhrman
grading criteria, which consider nuclear size, nuclear shape, and
nucleolar prominence as references.[9] Subjective ratings can only
be made by pathologists when the grading of the 3 parameters is
divergent.[5] This directly leads to inaccurate grading and poor
reproducibility of grading results.[4,10,11,18] Secondly, unlike the
work of Ding et al, this study did not include nontexture features,
and there were significant differences in the choice of
dimensionality reduction analysis methods. Another study
showed that the high and low grades of ccRCC could be
predicted using a variety of models, of which the SVM model
achieved the highest accuracy (AUC value of 0.860).[19]

However, this study was based on the Fuhrman grading system.
This may be the main reason for the difference from the results
of the present study. These 3 studies have reached a similar
conclusion that CT texture analysis is a useful and promising
method for noninvasive prediction of ccRCC pathologic nuclear
grading.
ing system.

Nuclear size, mm ISUP grading system

∼10 Nucleoli absent or inconspicuous
and basophilic at �400
magnification

∼15 Nucleoli conspicuous and
eosinophilic at �400
magnification, and visible but
not prominent at �100
magnification

∼20 Nucleoli conspicuous and
eosinophilic at �100
magnification

romatic clumps, extreme irregular outlines Extreme nuclear pleomorphism
and/or sarcomatoid and/or
rhabdoid differentiation and/or
tumor giant cells

http://www.md-journal.com
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The results of the present study show that the 3 models
constructed using radiomic features can achieve higher accuracy
in terms of predicting the ISUP grades. There was no statistically
significant difference between model 3, constructed using the 2-
stage joint data, and model 1, constructed using the cortico-
medullary phase data. This demonstrates that the value of the
nephrographic phase data is limited in the prediction of the ISUP
grading. Moreover, model 3 obtained the highest AUC value of
0.91, and strong sensitivity and specificity values of 0.83 and
0.89, respectively. Therefore, in clinical practice, we recommend
that image data should be used as comprehensively as possible to
predict the ISUP grading of ccRCC.
This study had the following limitations. First, the sample size

in this experiment was relatively small. Although a positive result
has been obtained, a larger sample of experiments is still needed
for verification in the future. Second, we only used the ROI of the
largest cross-section to extract features, and did not perform data
analysis of the whole tumor ROI. However, previous studies have
shown that the radiomic features of 2-dimensional data
extraction result in better performance in the prognosis of
NSCLC.[20]Moreover, we performedwhole-tumor delineation in
a preliminary experiment, but it was difficult to obtain high
prediction accuracy in the test cohort in the 2-phase joint model,
and the specificity of each group model was low.
Overall, our research may have important clinical implications

because, for patients with ccRCC, different grades represent
different postoperative cancer-free survival rates and different
risks of metastasis.[11] According to our present study, models
constructed using radiomic features have comparable perfor-
mance to percutaneous biopsy in predicting ISUP grading. Thus,
accurate nuclear grading prediction information can be obtained
with noninvasive CT examination, and the risk caused by needle
biopsy can be avoided.[21] Moreover, the method allows for
repeated noninvasive assessment of nuclear grading during
follow-up. With the development of immunotherapy, this
provides a new direction for the treatment of RCC. However,
different immune characteristics will also have an impact on the
adoption of immunotherapy. This is confirmed in the study of
immunotherapy for RCC by Gigante et al and Cavalcanti
et al.[22,23] However, it is still unknown whether radiomics can
help in the identification of immune features. This is worth
exploring, and will be our next research direction.
5. Conclusion

The results from this study show that, in the context of the
updated ccRCC pathologic nuclear grading system, an SVM
model based on CT images can accurately distinguish between
the high and low grades of the ISUP system.
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