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ABSTRACT: Stochastic, intensity-based precursor isolation can
result in isotopically enriched fragment ions. This problem is
exacerbated for large peptides and stable isotope labeling
experiments using deuterium or 15N. For stable isotope labeling
experiments, incomplete and ubiquitous labeling strategies result in
the isolation of peptide ions composed of many distinct structural
isomers. Unfortunately, existing proteomics search algorithms do
not account for this variability in isotopic incorporation, and thus
often yield poor peptide and protein identification rates. We
sought to resolve this shortcoming by deriving the expected
isotopic distributions of each fragment ion and incorporating them
into the theoretical mass spectra used for peptide-spectrum-
matching. We adapted the Comet search platform to integrate a
modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a
traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to
better match the observed m/z distributions. Evaluating previously generated D2O and 15N labeled data sets, we found that Comet-
CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical
spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample.
KEYWORDS: peptide spectrum matching, protein turnover, isotopic envelope 15N, D2O, stable isotope labeling, database searching

■ INTRODUCTION
Standard proteomics identification algorithms and modern
machine learning models have been designed and optimized to
identify monoisotopic peptide precursors.1,2 When a peptide is
isolated with an unknown number of stable isotope-
incorporated amino acids, two problems occur. First, the
isolated precursor mass may not match the masses created
during in-silico digestion of the protein. This first challenge has
been addressed previously through work to estimate
monoisotopic peaks or the inclusion of multiple precursor
windows during search.3 Second, the MS2 fragmentation
spectra present shifts in ion masses consistent with the number
of heavy atoms contained in each fragment. Adjusting for these
shifts is trivial when labeling occurs consistently and
completely at a known amino acid residue. However, when
the isolated precursor peak contains a population of structural
isomers�for example, isotopomers with incomplete 13C or
deuterium labeling at a subset of amino acids�a distribution
of fragment ions at known mass shifts will be present that were
previously difficult to predict. As an example, in a D2O pulse-
chase experiment fragment ions from deuterated peptides often
have isotopic distributions spread across amino acids and the
location of the largest peak depends on both the amount of

protein turnover that has occurred and the number of heavy
atoms contained in the isolated precursor.4 Consequently,
protein turnover experiments based on ubiquitous labeling
strategies, such as using heavy water (D2O) or 15N, inevitably
result in vanishing numbers of successful peptide identifica-
tions as the amount of stable isotope incorporation increases. It
is plausible that the challenges presented by isolating
populations of structural isomers could be resolved by
modifying the theoretical spectra to include isotopic envelope
estimations for each fragment. While some research has been
done to predict fragment ion isotopic distributions based on
mass and other molecular attributes,5 this work was not
considered in the context of the peptide-spectrum-matching
problem.

Here, we aimed to explore the probabilistic effects of mass
isolation on isotopic distributions and determine whether
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knowing the entire state of isotopic labeling in a biological
system a priori could enable prediction of fragment ion
distributions. Because mass isolation for peptide fragmentation
selects the most intense peak from a precursor distribution,
generally with a single number of heavy atoms (Figure 1), the
distribution of heavy atoms on each fragment ion will be
altered by the laws of conditional probability. For a protein
turnover experiment, this would require knowing a priori the
amount of labeling in each pool of free-floating amino acids as
well as the total amount of turnover that had occurred at the
time of sample collection. This information is unlikely to be
known prior to an experiment being performed. However,
exploring a large number of plausible configurations suggests
that fragment ion distributions are primarily determined by the
number of heavy atoms in the precursor, with minimal impact
from the underlying labeling rates. Accordingly, even crude
approximations of the underlying state of amino acid labeling
could lead to substantial gains in peptide spectral matching.

To test this, we introduce a framework for identifying
populations of structural isomers and derive a new search
modality for identifying peptides, which we term “Conditional
fragment-Ion Distribution Search” (CIDS, pronounced “kids”).
The primary aim of CIDS is to improve peptide identification
by accounting for the deviations that occur when data-
dependent acquisition selects non-monoisotopic precursor
peaks. To this end, we derive the theoretical isotope-enriched
distributions for b- and y-fragment ions and integrate them into
the theoretical spectra used in the open-source search
algorithm Comet.6 We evaluate our new software (Comet-
CIDS) on previously published stable isotope incorporation
experiments based on both D2O and 15N labeling strategies.
Comparisons against established search algorithms, Mascot
and Comet highlight the benefits of incorporating fragment ion
distributions during search and how CIDS models affect
peptide-spectral matching, peptide scoring, and protein
identifications.

Figure 1. Theoretical background for Comet-CIDS. (A) Isolation of specific precursor peaks alters the isotopic distributions fragment ions. (B)
Example precursor isotope distribution for peptide AAELGAELGAQAISHLEEVSDEGIAAMAAAR and fragment y232+ showing isotopic
distributions after isolation and peptide fragmentation. (C) Convolutional isotopic model estimation of theoretical fragment peaks based on
Comet-CIDS and Comet. The isotopic fragment peaks are colored based on estimated incorporation of stable isotopes. (D) Comet-CIDS
predicted spectra for peptide EQIDIFEGIKDSQAQR using a range of labeling estimations across theoretical spectra. Each fragment is depicted
with a capped line (line and point). Comet spectra have a single peak per fragment. Small insets are shown for several fragments in the full spectra
(purple boxes). Insets show fragment isotope distribution estimates for the range of 1250−1375 m/z and the b111+ fragment alone (red). While the
same total number of fragments are used, the number of peaks considered increases when using CIDS for each of the fragment isotopic
distributions. For the convolutional isotope modeling of CIDS, the indicated amino acid isotopic distribution estimates were used (see
Experimental Procedures). P(Hel.) refers to empirical distributions computed based on work from the Hellerstein group.12
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■ EXPERIMENTAL PROCEDURES

Source Data and Data Analysis for CIDS Testing

Previously collected source data was obtained from Sadygov et
al.4 Raw data files were downloaded from ProteomeXchange
via identifier PXD009493.4 Briefly, protein samples were
collected from male mice (LDLR−/−) at 8 weeks of age. These
mice were given a 20 μL bolus injection of D2O followed by ad
libitum access to 5% D2O drinking water for different numbers
of days (0−21 days, or 0−504 h). Murine liver proteins were
fractionated by SDS-PAGE into 9 gel bands (only 8 available at
the 0 h time point). From this experiment we selected RAW
files from the first replicate of healthy mice at the beginning
middle and end of the experiment (0, 168, and 504 h).

The second data set we analyzed came from a 15N labeling
experiment designed to explore protein turnover rates in
murine eyes.7 Raw files were downloaded from ProteomeX-
change via identified PXD016212. Since the eye is believed to
have a highly stable proteome, the authors collected only a
single sample 12 weeks after replacing the food source with
15N spirulina. Multiple RAW files were provided by the authors
corresponding to the region of the eye collected and we tested
our search algorithm on the single file corresponding to the
lens-cortex.
Raw File Conversion and Database Search

File conversion to mzXML format and monoisotopic peak
estimation was performed using Monocle.6 Spectra were then
searched using either Comet (stable release Comet 2018.01
rev. 5) or Comet-CIDS based on the same revision.6 Mascot
search results were derived from the original publication’s
peptide spectral match output, along with their FDR estimates.
Comet-CIDS was run using various amino acid isotopic
distributions, as discussed throughout the manuscript. For ease
of use, running Comet-CIDS requires only small adjustments
to the common Comet parameters file (Table S1 of the
Supporting Information, SI). Comet search parameters were
otherwise kept at defaults for the stable release using ion trap
tolerances (Peptide Mass Tolerance = 20 ppm, Fragment Ion
Tolerance = 1.0005, Fragment Bin Offset = 0.4, Theoretical
Fragment Ions = 1, Allowed Missed Cleavages = 2, Max
Variable Mods in peptide = 5), including variable modification
of methionines (oxidation −15.9949146221) and static
modification of cysteines (carboxyamidomethylation
−57.02146374). Spectra were searched against a forward−
reverse Uniprot mouse database (downloaded: 05/2017). For
searches termed “high-resolution” all parameters were kept the
same with the exception of: Fragment Ion Tolerance = 0.02,
Fragment Bin Offset = 0.0, Theoretical Fragment Ions = 0.
Comet’s “mass_offset” parameter was used for all deuterium
Comet-CIDS, and otherwise noted, searches (mass_offsets = 0
1.006262, 2.012524, 3.018785, 4.025047, 5.031309, 6.037571,
7.043832, 8.050094, 9.056356, 10.062618). Data for 15N were
searched with the following mass offsets: mass_offsets =
0.0000000, 0.9970349, 1.9940698, 2.9911047, 3.9881396,
4.9851745, 5.9822094, 6.9792443, 7.9762792, 8.9733141,
9.9703490, 10.9673839, 11.9644188, 12.9614537,
13.9584886, 14.9555235, 15.9525584, 16.9495933,
17.9466282, 18.9436631, 19.9406980. Note that, unless
otherwise specified, we compare Comet-CIDS to Comet
where Comet has no additional offset masses as this is
currently standard practice in the field.

For all search results, PSMs were filtered to a 1% peptide
and protein false-discovery rate using linear discriminant
analysis and assembled by parsimony.3,8 Mascot search results
were taken from the original data set results files and filtered
based on those reported FDRs. Comet CIDS is freely available
https://github.com/SchweppeLab/CometCIDS. For later
analyses, peptides and proteins were considered deuterated
when after monoisotopic peak correction with Monocle,3 the
best scoring PSM had a delta mass greater than 1 Da.
Conditional Probability Calculations

The fragment ion peak masses become difficult to predict
when isolating a precursor that contains a heavy atom at an
unknown position. For example, if we isolate ions containing a
single 13C isotope, that isotope could have been present in any
of the amino acids within the peptide. The whole peptide must
contain exactly one heavy amino acid, but the location of the
heavy amino acid will vary across the population of ions.
Consequently, each b- and y-fragment ion in the MS2 spectra
will present a set of peaks proportional to the distribution of
isotopes for each ion. We now show that these distributions
can be derived exactly with a small number of assumptions.

Let H be a random variable representing the number of
heavy isotopes contained in an isolated precursor peptide, and
let h be an observed instance of this variable. For each
candidate peptide, we know h, since only one possibility will be
within the mass tolerance of the instrument. We let θ represent
the percentage of peptides that, at the time of sampling, had
been synthesized after label administration. Marginal isotopic
distributions of b- and y-ions (the proportions we would expect
to see if all peptides were fragmented) can be generated using
the concepts described for calculating peptide isotope
distributions. For a peptide of length m, let Bi and Yj represent
random variables for the number of heavy isotopes contained
in randomly sampled bi and yj ions respectively (i = 1, ···, m
and j = 1, ···, m). Further, let P P Q, ,B Y

t
Bi j i and Q t

Yj represent a
shorthand for the marginal isotopic probability distributions of
each b and y ion where, as before, P denotes a distribution
prior to labeling and Qt represents the isotopic distribution of
fragments synthesized between (0, t). These are the
distributions of the respective populations as they would be
seen in a cell, without restricting the total number of heavy
isotopes found in the precursor. We present the derivations for
the b ions (they are analogous to the y ions). Mass isolation
results in the following conditional probability distribution:

p B b H h
p H h B b p B b

p H h
( , )

( , ) ( )
( )i

i i= | = = = | = = |
= |

(1)

Both p(Bi = b|θ) and p(H = h|θ) can be calculated using
convolutions of the underlying amino acid labeling proba-
bilities. Note that in these equations “b” does not specify an
ion type, rather b and h denote the number of heavy atoms in
the bi ion and the precursor, respectively. In the case of a
protein turnover experiment these are not generally known.
However, even rough approximations prove to be valuable, as
we will demonstrate later.

Calculating p(H = h | Bi = b,θ) requires separating out old
and new peptides. If L defines the old, L = o, versus new, L = e,
peptides in the population, then partitioning the ions by L
gives us

p B H p B H L o p L o p B H L e p L e( , ) ( , ) ( ) ( , ) ( )i i i| = | = = + | = = (2)
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where conditioning on L lets us drop θ, since the proportion of
“new” peptides is either 0 or 1 within each stratum of L. Thus,

p B H L o p B H L e( , )(1 ) ( , )i i| = + | =

p H B L o p B L o
p H L o

p H B L e p B L e
p H L e

( , ) ( )
( )

(1 )
( , ) ( )

( )
i i i i| = | =

| =
+ | = | =

| =
(3)

Each of the probabilities in eq 3 can be found using
convolutions of natural and observed amino acid sequences.

p H L o P( )| = =

p H L e Q( ) t| = =

p B L o P( , )i
Bi| = =

p B L e Q( , )i t
Bi| = =

p H h B b L o P h b( , ) ( )i
Y m i( )= | = = =

p H h B b L e Q h b( , ) ( )i t
Y m i( )= | = = = (4)

The last two expressions follow from the complementary
nature of b and y ions and the observation that

p H h B b p B Y h B b p Y h b( ) ( ) ( )i i m i i m i= | = = + = | = = = (5)

A shorthand analytic expression for the conditional
distribution of a b ion (as will be observed in an MS2 spectra)
is given by

p B b H h
P h b P

P
Q h b Q

Q

( , )
( )

(1 )

( )

i

Y B

t
Y

t
B

t

m i i

m i i

( )

( )

= | = =

+
(6)

With these equations, we could generate alternative
theoretical MS2 spectra. However, the above expression is
still dependent on the amount of turnover than has occurred,
θ. In order to fully determine the isotopic proportions we
would either need to know the turnover of a given protein in
advance or we need to allow for a simplifying assumption.
Model Simplifications
A simple solution to the problem of having an unknown
amount of turnover in the population of protein molecules, is
to treat θ as a uniform random variable and to integrate it out
of our distribution. This results in a simple average of the pre-
and postlabeling distributions.

p B b H h
P h b P

P
Q h b Q

Q
d

P h b P
P

Q h b Q

Q

( )
( )

(1 )

( )

1
2

( ) ( )
.

i

Y B

t
Y

t
B

t

Y B
t
Y

t
B

t

0

1 m i i

m i i

m i i m i i

( )

( )

( ) ( )i
k
jjjjjj

y
{
zzzzzz

= | = =

+

= +
(7)

More complex prior distributions for θ might be more
realistic, but as we will show, the specific amino acids
distributions used work well even with very crude approx-
imations. This model depends on taking many convolutions of
the amino acid isotopic distributions. Accordingly, we will refer
to the class of models generated from eq 7 as convolutional
isotope models, where the specific model is defined in
conjunction with a set of amino acid isotopic distributions.
From this perspective, it is worth noting that a few further

simplifying assumptions allow us to skip the convolutions
altogether.

Suppose that every amino acid has an equal isotopic
distribution, regardless of when translation occurred, and that
each amino acid that can be labeled can only be labeled once.
Under these assumptions, the unconditional probability of
observing h heavy amino acids in the peptide, p(H = h), is
given by the probability mass function of the Binomial
distribution, ( )h mbinomial , ,

m
1 . Similarly, the unconditional

probability that a b-ion contains b heavy labels, p(Bi = b), is
given by a ( )b ibinomial , ,

m
1 , and

p H h B b P h b

h b m i
m

( ) ( )

binomial , ,
1

i
Y m i( )

i
k
jjj y

{
zzz

= | = =

=

The conditional fragment ion distributions reduce to

( ) ( ) ( ) ( )
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(8)

which is the probability mass function of a hypergeometric
distribution. When the assumptions seem remotely plausible,
the hypergeometric distribution could therefore be used to skip
the computationally intensive amino acid convolutions
entirely, as eq 8 depends only on peptide length and the
number of heavy atoms in the precursor.
Model Assumptions and Configurations
The convolutional isotope models were derived under the
assumption that underlying amino acid isotopic distributions
are known, and that mass isolation selects only precursor
molecules containing a single fixed number of heavy atoms.
Equation 8 further requires that every amino acid has the same
probability of labeling and that only a single heavy atom will be
found on each residue. None of these assumptions are likely to
be true in practice.

It is plausible that metabolomics could be used to measure
the isotopic envelopes of amino acids, but many laboratories
would prefer to skip this step. Furthermore, mass isolation is
not sufficiently precise to completely exclude precursors from
adjacent isotopic masses. While the target analyte will surely
dominate the signal, interference from adjacent isotopic peaks
could still result in deviations to our derived results, especially
when analyzing higher charge states. Despite these limitations,
it is plausible that observed fragment ion structures will adhere
closely enough to our theoretical results for them to serve as
useful approximations.

From either of the equations for conditional fragment ion
distributions, we are able to generate alternative theoretical
spectra for use in a proteomics search algorithm. Placing these
distributions at their corresponding masses results in a new
theoretical MS2 spectrum (see Figure 1). To explore how
variations in model assumptions impact the theoretical results
we generated spectra for the peptides VLWAALLVTFLAG-
CAK (Figure S1) and EQIDIFEGIKDSQAQR (Figure S2)
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using 11 different models for 0−5 heavy atoms (Figure S1). In
addition to standard Comet spectra (peaks of intensity 1 at
each monoisotopic m/z) we test a set of amino acid
distributions that were derived using previously described
logic for how 3% D2O in blood would be synthesized into
amino acids.9 We refer to the latter set of amino acid
distributions as P(Hellerstein) or P(Hel.). Additionally, we
generated spectra from a range of possible amino acid isotopic
distributions applied equally across all 20 amino acids. These
are denoted with the notation P(M0|M1|M2|M3|M4) which
implies a probability mass function on each isotopologue (with
trailing zeroes left blank), and we test search results setting the
mass probabilities as P(99|1), P(97|3), P(80|20), P(75|25),
P(70|30), P(70|10|10|10), P(50|50), P(40|60), P(30|70), P(25|
75), and P(33|33|33).

■ RESULTS AND DISCUSSION
Stochastic isolation of stable isotope containing peptide
precursors during data-dependent experiments results in
nonmonoisotopic fragmentation spectra. While the mono-
isotopic mass of the precursor can be estimated by searching
for more precursor offsets or by incorporating monoisotopic
peak estimation,3,6,10 the effect on fragment isotopic
distributions has not been widely explored for peptide spectral
matching. Crucially, the isotopic distribution of fragment ions
is substantially altered by process of mass isolation (Figure
1A), so that the expected isotopic envelopes for a given
fragment are not the same as they are for the precursor (Figure
1B). Furthermore, the distribution of fragment ion isotopo-
logues follows a predictable pattern where the smaller peaks
are dominated by a single M0 peak while the largest are
dominated by a single peak at the offset matching the number
of heavy atoms in the precursor (Figure 1C). All the fragments
between the smallest and largest ions inevitably display a
transition between these two states. Consequently, variations
in the assumptions about amino acid labeling appear to have a
minimal impact on our theoretical MS2 spectra.

Visualizing theoretical MS 2s for the peptide EQIDIFE-
GIKDSQAQR (Figure 1D) while varying our assumptions
about the underlying state of amino acid labeling, we see that
the spectra are largely similar to all convolutional models
providing a closer approximation to the real data than the peak
structure generated by standard search engines. This relation-
ship held true across a large range of potential amino acid
distributions and variations to the number of heavy atoms
isolated in the precursor (Figures S1 and S2). The M4 peak
observed in the real data for the b11 ion shows another
imperfection of our theory as the assumption of perfect mass
isolation does not allow for the existence of this peak. Yet all of
the Convolutional Isotope Models are far closer to reality than
the theoretical spectrum built with only monoisotopic
fragment ions. These results suggest that any approximation
of the underlying amino acid labeling could serve as a useful
tool in the context of peptide-spectrum-matching.

To test the utility of Comet-CIDS, we searched published
data from a deuterium labeling protein turnover experiment.4

Briefly, murine liver samples were collected from LDLR−/−

mice�a model of nonalcoholic fatty liver disease�fed a
normal diet at 0, 168, and 504 h after a bolus injection of D2O
and subsequent replacement of their drinking water with 5%
D2O. The authors calculated the deuterium body water
enrichment of these samples to be 3%.4 Proteins were
separated by SDS-PAGE into individual bands and each

band was processed for LC-MS/MS analysis on a Q-Exactive
Plus (Thermo). Samples were originally searched with the
Mascot search engine11 with no modifications for the presence
of deuterium, wide fragment ion tolerances (0.6 Da), and
originally filtered to a PSM FDR of 5%. When researching the
data, we used more stringent filtering to reduce the PSM and
protein FDR to 1% for all search results and maintained the
low-resolution search parameters used in the original d2ome
analysis. This was done to enable comparison to the original
search data and because of the slow speed of the CIDS
convolutional isotope modeling (Figure S3).

All searches (Comet and Comet-CIDS) were preprocessed
with Monocle’s monoisotopic peak estimation3 and multiple
peak offsets to account for�and estimate�peptide deutera-
tion (Figure 3A). For the convolutional isotope model, we
used the P(97|3) (probability of 97% with 0 isotopes and 3%
with at least one isotope) as an approximation to the
underlying state of free-floating amino acids based on
deuterium body-water enrichment. The full set of additional
Comet-CIDS parameters is provided in Table S1. Note that
these assumptions are very crude approximations. D2O only
labels nonessential amino acids through the biosynthesis of
amino acids, many of which will incorporate more than one
deuteria.12 As a result, our assumptions both under and
overestimate the amount of labeling. Despite this crude
approximation, the Comet-CIDS strategy still greatly improved
peptide identifications (Figure 2).

Comet and Comet-CIDS performed approximately equally
well at the 0-h time point with both sets of search results
providing a moderate boost over the previously reported
Mascot search results (Figures 2 and S4). Consistent scoring at
the 0-h time point was expected, as no isotopic incorporation
would have occurred at 0 h (Figure 2B, 3A). Importantly,
reproducible PSM sensitivity at 0 h built confidence that the

Figure 2. Peptide spectral match results. (A) PSMs results for Mascot,
Comet, and Comet-CIDS at each of the three time points tested. (B)
Relative improvement compared to published (Mascot) results.
Longer time points resulted in increased improvement with Comet-
CIDS.
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modeled fragment distributions were not artifactually affecting
the PSM sensitivity. Building on this, at longer time points
Comet-CIDS increased the total number of confidently
identified PSMs compared to Mascot by 76% and 110% at
the 168- and 504-h time points, respectively (Figure S4). By
comparison, Comet identified more peptides at the 0- and 168-
h time points (30% and 15%) but actually generated fewer

PSMs than Mascot at 504-h (6%). Thus, Comet-CIDS’
sensitivity improvement was consistently observed in every
gel band, across all time points (Figure S4).

The improvement from Comet-CIDS increased the total
number of peptides observed per protein (Figure 3B).
Regression analysis of the total peptides observed per protein
identified estimated a 1.8-fold increase at 168 h, and 2.5-fold
increase at 504 h (Figure 3C). The time dependent gain in
PSMs suggests that the increased sensitivity is not randomly
occurring across the entire set of PSMs. Notably, the gains
predominantly occur in a set of highly valuable peptides�the
ones that contain deuteria (Figure 3A). At the 504-h time
point, more than 50% of observed PSMs were derived from
deuterated peptides when using Comet-CIDS (Figure S5) and
these are precisely the peptides that enable estimation of
protein turnover rates. These data suggest that Comet-CIDS is
highly effective at identifying deuterated PSMs. Comet and
Comet-CIDS had highly correlated PSM scoring (XCorr) for
most peptides with a subset of the data demonstrating
substantial improvements (Figure S6).

Improved PSM sensitivity also resulted in gains to the total
number of protein identifications and our ability to detect
relevant gene set enrichments (Figure 4, S7). We found that
Comet-CIDS improved protein identifications at the 504 h
time point by 11% − 1903 with Comet to 2119 with Comet-
CIDS. This resulted in an identification rate in line with the 0 h
time point with no stable-isotope incorporation (2491/2465).
We observed that, as with the PSMs, these gains were
dependent on labeling time with a greater improvement seen
after 504 h compared to 168 h. A small number of peptides
were identified by Comet but not by Comet-CIDS (Figure
4B). However, this effect was not dependent on labeling time
and thereby not likely to result in the loss of deuterated protein
identifications. In addition to the time dependent gains in
protein identifications, we observed that for protein
components of CORUM complexes, Comet-CIDS improved
the peptide coverage of proteins in a similar time dependent
manner (Figure S7). Moreover, the 381 proteins identified
exclusively by Comet-CIDS are associated with proteostasis
and protein processing (Figure S7B). In particular, across
multiple annotation classes, we observed enrichment for terms
associated with metabolism, translation, mRNA processing,
and protein translocation. There is a clear link of these
processes to protein turnover,13 but it is additionally
interesting that proteins within these general functional classes

Figure 3. Time dependent effects on PSMs. (A) Increased labeling
time results in more Comet-CIDS identifications compared to Comet.
The majority of PSMs gained by Comet-CIDS are derived from
deuterated precursors (dotted lines) and the sum of the PSMs
identified in Comet plus the deuterated peptides from Comet-CIDS
comes close to the total number of Comet-CIDS identifications
(shown with an x). (B) Comparison of the total peptides observed for
each protein identified using Comet versus using Comet-CIDS.
Average peptides per protein are indicated for each by dotted lines.
(C) The increased number of peptides-per-protein was driven by a
consistent improvement in identifications across time points. Dotted
line is a log−linear regression.

Figure 4. Comet-CIDS increase protein identifications across time points. (A) Comet-CIDS improved protein identifications at longer time points.
Similar to PSM results, longer time points resulted in more deuterated proteins. Interestingly these include an increase in proteins annotated as liver
proteins demonstrating improved coverage of tissue-specific proteins collected from murine liver tissue. (B) Comet-CIDS improved total peptide
and protein identifications largely intersected with the original Comet protein identifications. Proteins or peptides identified by Comet but not
Comet-CIDS (Lost − Purple), identified with both (Shared − Red), or identified with only Comet-CIDS (Gained − Brown) are noted. Bars
represent the percentage of peptides or proteins identified relative to the 0 h Comet identifications.
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are likely deuterated to a degree that obfuscates their
identification without consideration of stable-isotope incorpo-
ration during searching.

While the results from applying Comet-CIDS to the d2ome
data were very encouraging, they came at a substantial cost in
processing time. The convolutional isotope models are built in
real time during database searches and, owing to the time
necessary to model each fragment, require a substantial
increase in total search time (Figure S3). However, all the
results suggested that the number of heavy atoms in the
precursor would be the most important variable in determining
the structure of the isotopologues. Accordingly, we reran the
analyses implementing the hypergeometric model (eq 8),
which generates very similar MS2 spectra despite the relaxed
assumptions that underlie the model (Figure 5A). Our

implementation of the hypergeometric model relies on
precalculated intensities and searching the data in this way
reduced computing times by 15-fold (Figure 5B) with minimal
differences in the number of unique peptides identified (Figure
5C). Compared to traditional Comet search, the hyper-
geometric model in Comet-CIDS was only 3.9-fold slower,
whereas with the convolutional isotope model, Comet-CIDS
was 56-fold slower. Thereby, even the most time and memory
intensive searches (for example, multiple precursor offsets or
high-resolution fragment binning) can be accomplished
relatively quickly�that is, less than MS acquisition times.
Note that we also included a comparison against Comet
searched with all the offsets used in Comet-CIDS. This
comparison was attempted to determine how much of the
increase in computing time resulted from searching more

Figure 5. Comparison of convolutional isotope and hypergeometric models for CIDS. (A) Convolutional isotope and hypergeometric models
produce similar fragment ion distributions. Insets show specific fragment ions from the larger spectra. Both b- (gray) and y-ions (blue) are
highlighted in the insets below. For all spectra, fragments from the convolutional isotope model are on top and from the hypergeometric model are
on the bottom of the reciprocal plots. (B) Search times for different CIDS models for the 504 h d2ome data set. “None” refers to no model being
used (Comet), “None-MOs” refers to no model being used with 10 mass offset windows used in the Comet search. Hypergeomteric modeling
reduces CIDS search times by 15× for the 504 h D2Ome data set. The speed increase of the hypergeometric modeling enables high-resolution
searching as well. Total MS run time is noted with the dotted line and median search times are shown for each set of searches. (C) Comparison of
unique peptides identified by the hypergeometric model or the original convolutional isotope model.

Figure 6. Hypergeometric models for CIDS increases peptide identification for isotopically labeled peptides. (A) Hypergeometric (HG) modeling
is fast enough to enable high-resolution (HR) Comet searching which generates more peptide identifications than Comet (with or without mass
offsets or high-resolution searching) or the low resolution hypergeometric CIDS searches. (B). CIDS can be applied to additional isotopically
enriched data types such as 15N labeled, murine lens cortex samples. The hypergeometric CIDS modeling improves detection of peptides by 28%
compared to Comet alone and 8% compared to Comet with multiple mass offsets.
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masses, however it also revealed that simply searching for all
the likely precursor masses provides a substantial increase in
PSMs (Figure 6A). It was not obvious that increasing the
search space without adjusting the MS2 spectra would be
beneficial, and we are unaware of any examples in the literature
where other groups have employed such a strategy. Nonethe-
less, it does appear to be the best strategy other than using
Comet-CIDS. Importantly, the speed and memory improve-
ments of the hypergeometric modeling enabled searches using
high-resolution Comet fragment binning resulting in a further
increase in total PSMs identified for each of the d2ome gel
bands (Figure 6A).

The peptide and protein identification improvements
highlighted in this manuscript would be expected for any
protein turnover technology that partially labels amino acids
but up to this point we have only considered deuterium
labeling. To demonstrate this, we analyzed 15N labeled murine
lens cortex epithelial proteins.7 These samples were derived
from mice that had been exclusively fed a 15N diet after
weaning. Since the eye is believed to have a highly stable
proteome, the authors collected only one sample 12 weeks
after replacing the food source with 15N spirulina. 15N labeling
does not share the toxicity concerns that limit label
administration in D2O experiments. Therefore, labeling rates
tend to be far higher, resulting in wider isotope distributions in
MS1 scans.

In this experiment, there was also an a priori expectation that
many proteins would not be turned over at all. Therefore, the
authors chose to study only a single time point 12 weeks after
label administration began. To account for the diffuse MS1
isotopes we increased the number of offset masses in addition
to the monoisotopic precursor searched from 10 (in the D2O
data) to 20. This created the unfortunate situation where we
might routinely search for more masses than would be possible
(small peptides) and still potentially fail to search for enough
mass offsets for larger peptides with high nitrogen content.
Furthermore, the overall lack of turnover in the eye suggests
that for most PSMs, Comet-CIDS would provide little benefit
over Comet, at least on average. Nonetheless, we found that
our Comet-CIDS pipeline improved identifications compared
to Comet by 28%, with an 8% gain in PSMs relative to the
default Comet search with the 20 mass offsets included (Figure
6B).

■ CONCLUSIONS
By modeling the isotopologue distributions of MS2 fragment
ions, we found that it is possible to improve peptide spectral
matching compared to conventional database search methods.
Both the theoretical and observed benefits occur specifically
when a nonmonoisotopic precursor, composed of many
structural isomers, has been isolated for fragmentation. By
integrating the CIDS approach with the Comet database
search platform, we provide a novel means to integrate
isotopically labeled peptide fragment ion distributions at
database scale. Relative to standard search strategies, the
benefits for protein turnover experiments can be substantial.

We explored the utility of the Comet-CIDS approach in the
context of protein turnover experiments. Using previously
acquired data, we demonstrated that Comet-CIDS can
improve the detection of isotopically labeled peptides and
proteins in pulse-chase protein turnover experiments. In
addition to the improved coverage of the proteome, we
anticipate that the increased PSMs per protein will have a

highly beneficial impact on quantitative performance. Identify-
ing PSMs that were lost due to peptide deuteration leads to
larger sample sizes and could mitigate problems associated
with missing data, which persist despite the best efforts to plug
in missing values with imputations or by matching masses
across runs.14−16 Furthermore, since Comet-CIDS specifically
improves the identification of labeled peptides, we anticipate
that the quantitative benefits for protein turnover estimation
will predominantly fall upon the proteins undergoing turnover
during the course of the experiment.

Finally, we note that fragmentation biases are inherent to
nearly all DDA experiments. Therefore, CIDS has the potential
to provide benefits beyond stable isotope-based protein
turnover experiments as CIDS better predicts the isotopic
fragment distributions resulting from selection of non-
monoisotopic precursor peaks. Traditional DDA experiments
continue to rely on stochastic, intensity-dependent selection of
13C/15N isotopic peaks from a given precursor’s isotopic
distribution17 and theoretical spectra in standard database
searching strategies�and modern machine learning models�
were designed for detecting monoisotopic peaks.1,2 Yet, in
cases where high intensity 13C-containing precursor peaks are
isolated, resulting in the presence of large 13C fragment peaks,
CIDS should be able to match peptides that would go
unidentified with traditional searches. In addition, future
applications could target structural isomers where the
probability of labeling individual amino acids is completely
unknown, as happens routinely in protein footprinting
experiments.18 Because the process of precursor mass isolation
has a strong and highly predictable impact on the isotopic
distribution of fragment ions, we believe that incorporating this
structure into search algorithms could have many unexpected
benefits, enabling the use of a large set of previously unusable
observations.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00247.

Table S1. Additional parameters for Comet-CIDS
implementation. Figure S1. Comet-CIDS theoretical
spectra for the peptide VLWAALLVTFLAGCAK.
Individual fragment ions are shown with capped lines
to highlight the fragment distributions. Insets to the
right of each full spectra highlight the b91+ fragment ion
distribution as a function of the number of incorporated
deuterium. Each individual peak in the CIDS theoretical
spectra has similar isotopic distribution profiles which
can be built using CIDS on a per peptide/spectrum
basis. Models with blank spectra indicate where the
marginal probability of observing a particular number of
deuteria in the precursor (Qt in eq 7), was below the
default setting of 0.0001 (’isotope_min_prob = 0.0001′,
Table S1). Figure S2. MS2 spectra of EQIDIFEGIKDS-
QAQR and the Comet-CIDS predicted spectrum as a
function of labeling estimation for free-floating amino
acid distribution. Figure S3 Search times for Comet,
Comet with 10 mass offset windows, and Comet-CIDS
(convolutional isotope model) with 10 mass offsets.
Median search times and relative time differences are
highlighted in the plot. Figure S4. (A) Boxplot of total
PSMs for individual runs within each time point data set.
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(B) Total PSMs per run for each individual band across
the full data set of the three time points. Figure S5. Total
PSMs identified at individual time points and those
attributed to deuterated peptides. Deuterated peptides
were annotated as those with a mass shift of a 1 or more
deuterons after initial monoisotopic peak correction (see
Experimental Procedures). Figure S6. XCorr comparison
between PSMs from Comet and Comet-CIDS at 0 h (A)
and 504 h (B). Left plots show matching scans for PSMs
filtered to 1% protein FDR. Plots shown on the right
correspond to matched scans from unfiltered data. (C)
XCorr distributions for PSMs unique to Comet (top,
purple) and Comet-CIDS (bottom, brown). Figure S7.
Improved peptide and protein identifications are
involved in proteostasis. (A) Within CORUM com-
plexes, Comet-CIDS consistently improved protein
coverage for constituent proteins. (B) Significant
enrichment for the 381 proteins identified with
Comet-CIDS, but not Comet, at the 504-h time point.
BioPlanet: NCATS BioPlanet; GO-BP: GO Biological
Process; GO−CC: GO Cellular Component; GO-MF:
GO Molecular Function; WikiPathway. Enrichment
calculated using Enrichr (PDF)
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