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Abstract

Background: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target
these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve
AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological
drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and
response to rhythm control therapy.

Methods: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from
the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi
process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed
in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for
prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma
biomarkers.

Discussion: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets

collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater
understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of
stratified approaches to prevention and therapy management.
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Background

Atrial fibrillation (AF) is a common multifactorial
disease that often remains undiagnosed until its first
complication [1, 2]. It affects 2-3% of the population
with growing incidence especially in the ageing Western
population [3-5], with current estimates suggesting
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150,000—200,000 newly diagnosed AF patients per year
worldwide [2, 6, 7]. Patients with AF are at increased
risk of stroke, cardiovascular death, heart failure, and
cardiovascular hospitalisations [8—12]. Although anticoa-
gulation can now prevent most strokes in patients with
AF, other cardiovascular complications remain common
even in optimally-treated patients [13]. Complications
are also caused by side effects of therapy, and in
addition, approximately 2% of AF patients still suffer from
a major bleed even on modern anticoagulants [14, 15].
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Early management of AF to restore and maintain sinus
rhythm for preventing cardiovascular complications is
vital [16]. Unfortunately, there is little evidence guiding
rhythm control therapy approaches to prevent recurrent
AF. Current treatment to prevent AF from recurring is
often unsuccessful, with 30-70% of patients experien-
cing a recurrence within a year after initiation of antiar-
rhythmic drug therapy or catheter ablation [17-19].
Clinical interventions aiming to prevent AF recurrence,
or to maintain sinus rhythm in patients with established
AF, are largely based on “trial and error” approaches
[20]. As a result, effective rhythm control is difficult to
achieve and complications related to recurrent AF are
common. It is clear that stratified approaches to AF pre-
vention and management are needed to improve out-
comes in AF patients. As AF is caused by many different
mechanisms in different patients, there is potential for
markers indicating these underlying mechanistic drivers
of AF to aid the selection of an optimal, individualised
therapeutic approach [21, 22].

In a variety of cardiovascular conditions, blood bio-
markers have been successfully used to identify patients at
risk of adverse outcomes. In AF, biomarkers can identify
patients at risk of developing AF (e.g. natriuretic peptides
[23-25]), and patients at risk of AF-related complications
(e.g. troponin and GDEF-15 relating to stroke and bleeding
in anticoagulated patients with AF [26—29]).

The CATCH ME consortium (www.catch-me.info)
was established with the aim of identifying and validating
markers reflecting the major drivers of AF in patients to
provide evidence for a mechanism-based therapeutic
approach. This manuscript describes the methods that will
be used to integrate markers related to potential causal
mechanisms into prediction models for prevalent AF and
recurrent AF in a large dataset harmonised from 12 dis-
tinct studies. Our analysis will include blood biomarkers
quantified from plasma of a subset of patients.

Analytical approach

The analytical approach has three stages. In stage 1,
models will be developed to predict (a) recurrent AF, (b)
prevalent AF, (c) stroke, (d) cardiovascular death and (e)
worsening of heart failure. These models will include
clinical characteristics as predictors. In stage 2, further
predictors reflecting the major drivers of AF as estab-
lished in the literature as well as those identified in a dif-
ferential gene expression analysis conducted by the
CATCH ME consortium will be added to the model to
evaluate their predictive value over and above clinical
characteristics. Seven a priori hypotheses will be tested
in stage 2 (see below). In stage 3, the predictive value of
the blood biomarkers quantified from plasma samples in
a subset of patients will be assessed.
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Analyses will be undertaken in a combined dataset
created by harmonising and merging individual
patient-level clinical data [30] collected in 12 clinical
research projects. The included studies are led by the
CATCH ME consortium partners and reflect patients
treated with varied treatment strategies in different
health care systems. External validation of predictive
models will be undertaken in a separate dataset. We will
also compare the performance of the model for recur-
rent AF with 4 existing scores: the CHADS, score [31],
the HATCH score [32], the APPLE score [33], and the
ATLAS score [34].

Specific hypotheses to be tested

Different mechanisms of AF should translate into differ-
ent patterns of recurrence, and therefore into different
responses to rhythm control therapy [22]. The following
seven a priori hypotheses were formulated based on
published research.

1. The recurrence of AF differs in patients with and
without a genetic or genomic predisposition to AF
[35] (defined as AF occurring first in those aged
<60 or with a family history of AF). In addition,
we hypothesise that sodium channel blockers are
more effective in preventing AF recurrence than
other antiarrhythmic drugs in patients with a
genetic or genomic predisposition to AF. This is
based on experimental data on PITX2 levels and
on the resting membrane potential [36].

2. The recurrence of AF is more common in patients
with concomitant heart failure than in those
without heart failure (defined as elevated BNP, a
surrogate marker for heart failure [37]). For patients
with heart failure, we hypothesise that catheter
ablation is more effective than antiarrhythmic drugs
at preventing AF recurrence [38—40].

3. The recurrence of AF is more common in obese
patients (BMI > 30). There is experimental and clinical
evidence that increased fatty infiltration and activation
of adipocytes in the atria cause AF [22, 41-43], while
weight reduction reduces recurrent AF in obese
patients with AF [44, 45].

4. The recurrence of AF is more common in
patients with severe hypertension (defined as left
ventricular hypertrophy on echocardiogram or
uncontrolled hypertension at baseline (blood
pressure > 160/90)) [46].

5. The recurrence of AF is more common in patients
with chronic kidney disease (defined as elevated
levels of fibroblast growth factor-23 as a surrogate
marker for atrial fibrosis [47—49]).

6. The prevalence of AF is associated with exercise
intensity, which has been shown to modulate the


http://www.catch-me.info

Chua et al. BMC Cardiovascular Disorders (2019) 19:120

relationship between physical activity and AF.
Exercise load has been shown to correlate with AF
incidence through a U-shaped curve [50].

7. The prevalence of AF is associated with height.
Preliminary data suggests that the autonomic tone
could mediate this relationship. The association
between stature, sex, heart rate and AF will be
tested.

Methods

Studies are eligible for inclusion if they include patients
with AF, or who were at risk of AF, identified within the
health care system. Longitudinal studies (both observa-
tional and randomised trials) are eligible to be included
for assessment of recurrent AF, stroke, cardiovascular
death and worsening of heart failure. Both prospective
and retrospective (including case-control) studies are
eligible. Longitudinal and cross-sectional studies are
eligible for inclusion for assessment of prevalent AF.
Studies have to document diagnoses of AF, key patient
characteristics and interventions (where given), and pro-
vide individual patient datasets in a form suitable for
harmonisation. Twelve studies have been identified from
the CATCH ME collaborators which meet these criteria.
Our rational for taking this approach instead of search-
ing for eligible studies in a systematic review is that ours
is a feasible method in which individual patient data can
be obtained in a useful way.

Description of studies

Individual patient data from the 12 studies will be
merged into a single combined dataset (see Additional
file 1: Supplementary S1). Data relevant to the design
and analysis of the studies were collated from ongoing
and closed studies from five European countries (United
Kingdom, Germany, France, Netherlands and Spain),
contributed by the CATCH ME consortium partners
(See Table 1). To achieve comparability of the same
latent concepts measured in different studies, the ori-
ginal data coding will be retrospectively harmonised
using a semi-automated transformation process during
which the source data is assessed and recoded to a com-
mon format. The data owners have identified a total of
270 variables (179 baseline, 91 follow-up) covering a
wide breadth of information (e.g. patient demographics,
rhythm history, cardiovascular disease history, medications,
study logistics etc.; see Additional file 1: Supplementary S2).
During the harmonisation process, variables from the
original dataset will be mapped to their respective target
variables. Patient records from seven studies will be aug-
mented by biomarker data obtained by analysing plasma
samples from these patients. All biomarkers will be quanti-
fied centrally in a core lab using quality-controlled, standar-
dised processes. Ethical approval for repurposing the data
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will be monitored and overseen by the Atrial Fibrillation
NETwork (AFNET, DE).

Candidate variables for inclusion

One hundred and twenty of the 179 baseline variables
are patient characteristics potentially suitable for inclusion
in the analysis. The most important patient characteristics
will be identified using a Delphi process conducted within
the Consortium. These patient characteristics will include
variables previously associated with AF as well as markers
arising from experiments conducted by CATCH ME part-
ners [22] and others. The Delphi process will rank patient
characteristics according to their expected relative import-
ance in predicting recurrent AF and prevalent AF. Similar
predictors which assess common clinical concepts will be
combined into single variables to minimise the possibility
of collinearity within the analysis and lessen the impact of
missing data. The highest ranked characteristics will go
forward into the statistical selection process (below); the
number included will be determined by the sample size
calculations (see below) which will establish a subset of
characteristics (the candidate predictors). In subsequent
statistical steps, candidate predictors will be assessed to
determine if they are predictive for the outcomes of recur-
rent AF. This subset of candidate predictors, deemed both
clinically and statistically important are referred to as the
confirmed predictors (Fig. 1).

Sample size considerations

The number of candidate predictors that can be in-
cluded in model development is determined by the total
number of events for the outcome of interest. We will
follow general guidelines that suggest a minimum of 10
events per parameter be considered in a development
model [54]. This estimate is known to be conservative
for larger lists of parameters, where five events per
parameter may suffice [54—57]. Categorical predictors
are counted as multiple predictors in this assessment,
with the number of indicator variables added to the total
count of predictors.

Stage 1: development of predictive models

Cox regression will be used to develop a predictive
model for time-to-recurrence of AF in patients previ-
ously diagnosed with AF. For other follow-up outcomes
(stroke, cardiovascular death, worsening of heart failure),
Cox regression models will be used if follow-up time is
available, otherwise logistic regression models will be
used. Logistic regression will be used for prevalent AF
prediction (Fig. 2).

Missing data
It is expected that the CATCH ME combined database
will have missing data for candidate predictors which
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120 Patient characteristics

Potential predictors

Clinical input @ (Delphi process)

Candidate predictors

Sub group of patient characteristics

Statistical selection @ (Backward elimination)

Confirmed predictors
Sub group of candidate predictors

i.e. Clinical and statistically important predictors

Fig. 1 Steps to determine confirmed predictors from a set of patient characteristics that will be used for modelling

were not measured in all studies. A detailed assessment
of the quantity of missing data across studies and pre-
dictor variables will be carried out. We will use multiple
imputation using chained equations to account for miss-
ing data, assuming data is missing at random (MAR).
Multiple imputation will be completed separately for
each of the studies after candidate predictors have been
identified [58]. Candidate predictors with more than
70% missing (in any study) will be excluded. Characteris-
tics with less than 70% missing data which are not
candidate predictors will be included in the multiple
imputation procedure as auxiliary characteristics but will
not be included as predictors in the models.

The percentage of participants with incomplete data on
the candidate predictors will be used to determine the
number of imputations required. For example, if in one
study 37% of individual participants have incomplete data
across all of the eligible candidate predictors then, the num-
ber of imputations required would be 37 [59, 60]. Required
numbers of imputations will be computed for each study,
and we will use the maximum value to ensure it is possible
to combine the multiple imputed datasets across all studies.

Statistical selection and non-linearity
To develop each model we will use backward elimin-
ation (BE) to select confirmed predictors from the list of

eligible candidate predictors using a p-value of 0.157.
This significance level has been chosen as it is consid-
ered a good proxy to use in place of the Akaike informa-
tion criterion (AIC) approach [61]. Age and sex will be
forced to remain in the statistical selection process irre-
spective of whether they are statistically significant. The
original study will also be included in the model. All
continuous predictors will be kept in their original for-
mat and will not be dichotomised or categorised to min-
imise information loss [40]. Continuous characteristics
will be assessed for non-linearity. Predictors found to be
non-linear will be incorporated using multivariable frac-
tional polynomials (MFP) to allow non-linear relation-
ships. Transforming the continuous predictors using
MEP will produce models that are more precise and are
more likely to satisfy model assumptions [41].

Combining multiple imputation and statistical selection
procedure

The statistical selection procedure and non-linearity as-
sessments will be performed on the combined imputed
datasets (combined across studies and imputations).
Multiple imputation datasets are usually combined using
Rubin’s rule [40]. However when using statistical selec-
tion on multiply imputed data it is likely that for each
imputed dataset different predictors will be selected.



Chua et al. BMC Cardiovascular Disorders

(2019) 19:120

Page 6 of 9

Predicting recurrent AF and prevalent AF
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Fig. 2 Summary of the analysis on the CATCH ME combined dataset

including the terms:

- Riskscore

- Treatments (if applicable)

- Patient/ control groups according to
the hypothesis statement

- Interactions (if application)

- Adjustment for original study

Assessment for
between group
differences

Hence, the repeated use of Rubin’s Rule across these dif-
ferent selected predictors is computationally challenging.
We therefore will use an approximation to Rubin’s rule
outlined in Wood, White [62].

Statistical analysis model and performance measures

Model performance will be assessed, primarily looking
at the calibration and discrimination of the model.
The calibration of the model will compare the prob-
ability of the observed risk to the expected risk using
a calibration plot. For determining the models dis-
criminatory ability we will assess using the C-statistic

(Harrell’s C-statistic) and its corresponding 95% confi-
dence interval [63].

Internal validation

To assess optimism and overfitting, the bootstrap method
will be used to internally validate the development models.
One hundred bootstraps will be used on each of the im-
puted datasets [64, 65]: each of the imputed and boot-
strapped datasets will be analysed individually to determine
the calibration and C-statistic values and these will be
appropriately combined across the imputed datasets to
produce a single value of calibration and C-statistic. The
calibration value will be used to adjust the coefficients to
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‘shrink’ their value (shrinkage factor) hence allowing us to
adjust for over-optimism within our development models.
Completing internal validation will affect both the calibra-
tion and discrimination values in addition to the coefficient
values found in the development model, as they will all be
adjusted for the over-optimism. The values reported for the
final models will be corrected by the shrinkage factor, along
with both optimism adjusted and original C-statistic and
calibration values.

Comparison of developed models to currently available
models

We will compare predictions from our new models with
those of the CHADS, score [31], HATCH score [32],
APPLE score [33], and ATLAS score [34] for recurrence
of AF within the CATCH ME combined dataset. Models
will be compared using C-statistics.

Stage 2: tests of seven specified hypotheses

The seven a priori hypotheses outlined above will be
tested, adjusting for differences in case-mix using the
prediction models developed for prevalent and recurrent
AF. Cox-regression models will be used for recurrent AF
statements and logistic regression for prevalent AF state-
ments. Each model will include a calculation of the predict-
ive risk for each patient computed using the prediction
model as a fixed offset term, and additional terms for study
to allow for baseline differences in risk. The hypotheses will
be tested by adding covariates and interactions to these
models. Statements 1-5 pertaining to recurrent AF will
use the predicted risk of AF obtained from the predict-
ive model as an offset term. The remaining statements
relate to prevalent AF and will use the predicted risk of
AF in the same way.

Specifically the first and second hypotheses statements
will be assessed by testing for an interaction between
treatment and patient status (genetic predisposition for
AF/heart failure). Further hypotheses will compare out-
comes between two or more groups. These hypothesis
tests will be performed on complete data for treatment
and these covariates. In summary, the models addressing
each hypothesis statement will consist of the predictive
risk of AF, the appropriate characteristics and interac-
tions as per the hypothesis and will also adjust for study.

Stage 3: plasma biomarkers

The statistical predictive ability of selected biomarkers quan-
tified in a subset of patients will be investigated for recurrent
AF and prevalent AF. The predictive value of each of the
biomarkers will be assessed univariately and in addition to
the predicted risk of AF recurrence and prevalent AF ob-
tained from the developed models (included as an offset
term to adjust for differences in case-mix) whilst adjusting
for study. Biomarkers will be considered individually and in
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combination (see Additional file 2: Supplementary Statistical
Analysis Plan for full details).

Discussion

AF requires chronic and multidimensional management.
Providing all treatment options is challenging and inef-
fective for optimal patient care. While stroke prevention
therapy can be selected based on a few clinical parame-
ters in most patients with AF, selecting rhythm control
therapy is currently based on personal preferences, local
protocols, or availability of treatments. Evidence sup-
porting stratification of rhythm control therapy options
in patients with AF would thus meet a clinical need.
Similarly, knowledge of the major drivers of recurrent
AF could inform strategies to prevent AF, e.g. through
targeted modification of risk factors. This retrospective,
harmonised, individual patient data analysis will use infor-
mation from 12 datasets collected in five European coun-
tries. Both expert consensus (using a Delphi process) and
statistical selection will be applied for a rigorous identifica-
tion of relevant predictors. Our novel approach will com-
bine clinical characteristics with plasma biomarkers to
identify the best predictors of recurrent AF and prevalent
AF and use the models to test mechanistic hypotheses and
investigate the predictive value of the biomarkers. The het-
erogeneity of the data will pose analytical and interpretive
challenges, however, it will simultaneously drive the pio-
neering of novel methods for interrogating existing datasets
while maintaining the quality and integrity of the data. It is
envisioned that the outcome of this analysis would provide
a greater understanding of the factors associated with re-
currence of AF, potentially allowing development of strati-
fied approaches to prevention of recurrent AF.

Additional files

Additional file 1: Supplementary S1: Individual dataset descriptions.
Supplementary S2: Variables extracted from datasets for the combined
database (DOCX 75 kb)

Additional file 2: Statistical analysis plan - CATCH ME —-Prognostic
development models (DOCX 281 kb)
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