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1 Introduction

Human P-glycoprotein (UniProt ID: P08183) is a member of
the human ATP-Binding Cassette (ABC) transporter super-
family (alternative protein names: Multidrug resistance pro-
tein 1, ATP-binding cassette sub-family B member 1, P-gly-
coprotein 1, CD_antigen = CD243; gene names: ABCB1,
MDR1, or PGY1).

It fulfils an important dual role in the process of drug dis-
covery and development: It is recognised in its own right
as a drug target but is also dreaded because of its anti-
target character. Since the discovery of its role as a drug
efflux pump in multidrug resistant tumour cells in 1976,[1]

there has been an on-going search for potent and selective
inhibitors of P-glycoprotein, which might be used for the
treatment of multidrug resistance (MDR) – one of the major
obstacles for a successful cancer chemotherapy.[2] Likewise
the anti-target property of P-glycoprotein is significant, es-
pecially with respect to its importance for the pharmacoki-
netics of compounds being substrates of this xenobiotic
efflux pump. This is of special importance at the blood-
brain barrier, the gastro-intestinal tract, and in the liver.[3]

Inhibitors of P-glycoprotein can affect the disposition of
co-administered substrates, thus Drug-Drug Interaction
(DDI) studies need to be performed if the compound being
clinically developed is known to interact with P-glycopro-
tein.[4] Therefore it is of key importance to be able to study
and understand the interaction of compounds with P-gly-
coprotein both by in silico and in vitro methods at an early
phase of the drug discovery process.

On a molecular basis, P-glycoprotein is well known for its
promiscuous ligand recognition pattern, paving the way for
exploring the chemical world in an enquiry for new scaf-

folds as inhibitor leads of this protein. However, the more
poly-specific P-glycoprotein was recognised to be, the
more difficult it became to postulate a unique binding/
transport site for ligands. This was also recently underpin-
ned by the resolution of a mouse P-glycoprotein crystal
structure, which revealed topologically distinct binding
sites for ligands.[5]
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Given the central importance of this drug transporter it
is therefore not surprising that there is a large panel of bio-
logical assays reported in the literature probing the trans-
port function of P-glycoprotein. However, different biologi-
cal assays designed to probe the response to a certain
agent will also lead to variation in the bioactivity values for
a unique compound. In case of competitive inhibition of
transport, the probe substrate used for measuring inhibi-
tion of transport will play a major role. In addition, the type
of assay used (e.g. transport, cellular accumulation, inhibi-
tion), the cell line, and the assay conditions used (e.g.
probe substrate concentration, duration of experiment) will
certainly influence the outcome.

It seems per se to be a challenging task to interpret bio-
assay data. Also, the huge amount of bioassay data which
is accessible nowadays in the world wide web demands
a systematic structuring and standardization of the data
point entries.[6]

With respect to small compound data the situation
changed significantly when an unprecedented body of bio-
activity data was made available to the public domain. This
is a consequence of several factors, a change to an open in-
novation business model in the pharmaceutical industry,
the development of public-private-partnerships such as the
Innovative Medicines Initative (IMI), large screening initia-
tives such as the NIH Molecular Libraries and Imaging Pro-
gram (MLP),[7] and finally, large scale manual and computa-
tional indexing of the primary literature.[8]

The most prominent examples of such Open Access da-
tabases in the life sciences are the PubChem BioAssay data-
base,[9] and the ChEMBL database.[10,11]

PubChem hosts data from high throughput screening ex-
periments (HTS), while ChEMBL is a manually curated col-
lection of literature data, coming mainly from Structure Ac-
tivity Relationships (SAR) studies. In the field of transport
proteins we also would like to highlight the focussed trans-
porter database TP-search.[12, 13] Compound data presented
herein was also retrieved from literature sources.

All three resources include compound bioactivity data
with a brief tagline description of the underlying assays.
However, the way data are retrieved and the respective
output is different for each of these data sources. When
the complexity of the information on the bioassays is con-
sidered, we obviously have to face some disparities while
comparing data from different sources as well as compar-
ing the individual entries internally. As databases compiled
from literature sources are mainly built from Quantitative
Structure Activity Relationships (QSAR) datasets. These are
generally quite small and biased towards a set of structural-
ly related compounds. Furthermore, as most of these stud-
ies are carried out in an academic set up and typically run
sporadically and at low throughput, assays and assay condi-
tions are different and often not directly comparable.

Thus, in order to establish predictive and robust in silico
models covering a broad chemical space it is necessary to
combine datasets from different studies. Nevertheless, the

final size and quality of such benchmark datasets depends
strongly on the potential of certain assays to be combined.

Being aware that expert knowledge represents a decisive
skill for studying biological data, in this study we focus on
human P-glycoprotein – definitely the best-characterised
and bioassayed ABC-transporter so far. However, it is worth
noting that the methodologies devised here for P-glycopro-
tein data can also be applied to data on other transporters
which are, in general, less abundant.

The final aim of this study was the annotation/ classifica-
tion of prominent in vitro assays used for the determina-
tion of bioactivities of human P-glycoprotein inhibitors and
substrates as they are represented in the ChEMBL and TP-
search Open Access databases. In addition, we explored
the ability of bioassay data coming from distinct literatures
sources (in ChEMBL or TP-search) to be combined with
each other.

2 Methods

2.1 Regression Analysis

For creating a set suitable for QSAR studies all the data re-
trieved from ChEMBL (version ChEMBL_13) and TP-search
(last update June 26, 2007) were grouped according to
their numerical endpoints IC50 (concentration at half-maxi-
mum inhibition), EC50 (concentration at half-maximum
effect), and Ki (inhibitor constant for the protein-inhibitor
complex). In order to compare data sets from different
assays we set a limit of at least ten compounds being mea-
sured in both assays. With this criterion, almost all the com-
parisons we were able to perform belong to the group
‘IC50’. For Ki readout we could only carry out one compari-
son, for EC50 it was not possible to find any two datasets
with at least ten compounds in common.

In order to draw correlation plots and calculate the corre-
lation coefficient R, the squared correlation coefficient (co-
efficient of determination) R2, adjusted R2, and standard
error we converted the IC50 and Ki values to the pIC50

(�logIC50 [M]) and pKi (�logKi [M]) scale, respectively, in
which higher values indicate exponentially greater potency.

In the results section R2 values are discussed. More de-
tailed information on the regression statistics of the correla-
tions drawn is given as Supporting Information (Table S1).

2.2 Creation of the Classification Dataset for Human
P-Glycoprotein Inhibitors

The SDF file of chemical compounds was created using
a combination of automated and manual protocols using
a number of cheminformatics tools and searches of online
databases. The approach included utilizing name to struc-
ture conversion tools to convert systematic names (IUPAC
names generally) to chemical structures. Where necessary,
stereochemistry (when defined in the systematic name)
was introduced into the chemical structure manually. The
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software tools included ACD/Name (version 12)[14] and the
OPSIN online service.[15] Trivial names and other synonyms
were searched against public domain databases. These
were generally ChemSpider,[16] ChEBI,[17] ChEMBL and Pub-
Chem. Results from multiple data sources were manually
curated for consistency and compared to other reference
resources such as the Merck Index and, where appropriate,
Wikipedia. In some cases the names were ambiguous and
inherent experience of the compounds under study was
used to identify and include the chemicals.

3 Results and Discussion

3.1 Bioassays in ChEMBL and TP-Search for Human
P-Glycoprotein

In order to get a first impression of the composition of the
two databases, we determined the overlap of ChEMBL and
TP-search for human P-glycoprotein inhibitors/substrates
with readout IC50, EC50, and Ki : out of approximately 1200
data point entries (compounds with associated bioactivi-
ties; 846 in ChEMBL and 352 in TP-search) we found only
40 compounds being present in both databases.

Figures 1 and 2 depict the proportion of different assays
for human P-glycoprotein with readout IC50 values as they
appear in ChEMBL and TP-search respectively. Figure 2
shows that the majority of assays with readout IC50 in TP-
search are indirect transport assays, where the inhibition of
a substrates’ transepithelial transport is measured in order
to determine the inhibitory activity of the compounds
under investigation. Major substrates used for these assays
are daunorubicin, digoxin, calcein-AM, LDS-751, and rhoda-
mine 123. However, in ChEMBL almost half of the assays
with readout IC50 are Calcein-AM accumulation assays
(where an increase in a substrates’ intracellular accumula-
tion is measured). Five percent of the assays measure an in-
crease in rhodamine 123 accumulation. Transport assays
are underrepresented in ChEMBL when compared to TP-
search (inhibition of Calcein-AM transport 11 %; inhibition
of [3H]vinblastine transport 9 %). Other assays with an inci-
dence of less than ten percent of all the IC50 assays in
ChEMBL include the measurement of cytotoxic effects, re-
versal of multidrug resistance (MDR), antiproliferative ef-
fects, and radioligand-binding assays.

Inspecting the distribution of assays giving EC50 as well
as Ki values in ChEMBL, we noticed that 61 % (198 com-
pounds) of the data entries with EC50 and 73 % (80 com-
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Figure 1. Proportion of different assays for human P-glycoprotein with readout IC50 in ChEMBL.

Figure 2. Proportion of different assays for human P-glycoprotein with readout IC50 in TPsearch.
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pounds) of the data entries with Ki values were determined
in a daunorubicin efflux (transport) assay. In TP-search there
are very few data points with EC50 or Ki values so that no
general tendencies of assay distributions could be de-
duced.

When the underlying literature sources of TP-search and
ChEMBL are examined there is a clear difference in the
highest contributing journal sources of data – TP-search
has a higher fraction of journals concentrating on late-
stage preclinical/clinical development stage reporting of
a compound (e.g. Journal of Pharmacology and Experimen-
tal Therapeutics, Drug Metabolism & Disposition) whereas
ChEMBL has a higher fraction of data from medicinal
chemistry optimisation assays (e.g. Journal of Medicinal
Chemistry, Bioorganic & Medicinal Chemistry Letters).
Therefore, part of the differences in the assay distribution
probably reflects custom and practice in the relevant scien-
tific communities.

Studying the prevalence of substrates and cell lines
being used in the two databases, it was observed that 45 %
of all the compounds (with bioactivities in IC50, EC50 and Ki)
in ChEMBL are measured in assays using daunorubicin as
a substrate and 29 % using calcein-AM. In TP-search there is
a slightly different tendency with 24 % using calcein-AM,
17 % digoxin, and 15 % daunorubicin.

With respect to the cell lines used in the respective
assays, there were around 25 different ones in each of the
databases – a lot of them were identical when comparing
ChEMBL and TP-search. For a list of all the cell lines used
see the Supporting Information (Table S1).

Throughout our study we noticed that assay nomencla-
ture is not homogenous. For instance, the terms ‘efflux’
and ‘transport’, which in the context of P-glycoprotein sub-
strates are equivalent, are both used interchangeably. The
same is true for the equivalents ‘uptake’ and ‘(intracellular)
accumulation’. Additionally, the precision of the assay de-
scription or the assays’ name itself varies: e.g. ‘Calcein-AM
efflux assay’, ‘Calcein-AM accumulation assay’, or just ‘Cal-
cein-AM assay’, which is not even specifying if uptake or
efflux is measured.

The assays were therefore first grouped according to
a description of what is actually measured, which often re-
quired examining the original publications that were cited.
The following major assay types were identified (X is the re-
spective substrate used): ‘Increase in X intracellular accumu-
lation’, ‘Inhibition of X (transepithelial) transport’; ‘Reversal
of Multidrug Resistance (MDR)’; ‘Cytotoxic effect’, ‘Antiproli-
ferative effect’, ‘Inhibition of X-stimulated ATPase activity’,
and ‘Inhibition of X binding’. Further sub-classification is
possible by taking into account the different substrates (X)
and the cell lines used for the experiment.

From this large-scale analysis it is possible to highlight al-
ternate expressions of the same or related assays and then
develop canonical or recommended ways of expressing the
assay, and driving further curation of the underlying resour-
ces.

3.2 Combining Bioactivities from Identical Assays

For ligand-based drug design studies it is generally highly
recommended to measure all compounds in an identical
assay setup. In this manner a very clean and consistent da-
taset is obtained (within the experimental error) which is
able to reflect the structural differences in terms of differen-
ces in the pharmacological activity values.

The assembly of such a dataset (only one assay type/sub-
strate/cell line) from a combination of ChEMBL or TP-search
datasets makes it evident that the largest compound data-
set that can be retrieved from ChEMBL comprises 198 enti-
ties with EC50 values measured in a daunorubicin efflux
assay in MDR CCRF vcr1000 cells. The size of this dataset
definitely satisfies QSAR-related studies, as does the activity
range of six orders of magnitude. However, one weakness
might be the lack of structural diversity of most of the
compounds.[18–20] From a search of TP-search we could ex-
tract a dataset of 37 compounds with IC50 values being the
most comprehensive one. Compounds were measured in
a daunorubicin transport assay/NIH-3T3-G185 and comprise
a sufficient degree of structural diversity. Bioactivities in this
dataset span three orders of magnitude.

3.3 Correlating Bioactivities from Different Assay Setups

In principle there are two general types of models that can
be generated, those based on QSAR methods and those
based on classifications. When combining data from differ-
ent assays certain requirements need to be fulfilled. The
combination of QSAR datasets with a significant overlap of
compounds tested in both assays is highly recommended.
Subsequent correlation analysis will then show if the two
assays can be combined using regression analysis.

Interestingly, despite the huge number of data point en-
tries (~1200) at our disposal when performing the study,
there were only very few datasets with a sufficient number
of compounds (at least ten) available which have been
tested in more than one assay. Thus, the number of correla-
tions we were able to establish was very limited.

In the case of classification models the definition of a ref-
erence compound which is routinely tested in all assays,
and used as a threshold for defining active/inactive, serves
as a valuable approach. It would be a great help to the
community if publications reporting frequently used assays
reported explicitly such internal standard data.

For this study, it also must be clearly stated, that the sub-
sequent analysis does not take into account assays espe-
cially designed for measuring substrates of P-glycoprotein,
such as in vitro (direct) transcellular transport assays. These
assays directly measure transport of substrate but report
transport ratios (basolateral-to-apical vs. apical-to-basolater-
al) that are not as easy to correlate with each other as com-
pared to assays based on IC50, EC50, and Ki values. Thus, our
annotation scheme, and the conclusions we are drawing,
are especially aimed for inhibitors of human P-glycoprotein,

S
P

E
C

IA
L

IS
S
U

E

602 www.molinf.com � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2012, 31, 599 – 609

Full Paper Barbara Zdrazil et al.

www.molinf.com


although this does not preclude that certain compounds
discussed herein could also be classified as substrates in
other assays.

3.3.1 Comparison: Same Assay Type, Different Substrates (X),
Same Cell Line

Naturally, Ki values relate more closely to competitive inhib-
itors and a true binding affinity for P-glycoprotein than IC50

values. Ekins et al.[21] published a set of 17 compounds
measured in both a [3H]-vinblastine (radiolabeled) accumu-
lation assay and a calcein-AM (fluorescent) accumulation
assay. Both assays are of the same type (‘Increase in X intra-
cellular accumulation’) and they were both measured in
LLC-PK1 (pig kidney epithelial) cells. Such a comparison is
best suited for predicting whether two different substrates
have overlapping binding sites in this protein or not. In the
case of vinblastine and calcein it has been proposed that
their binding sites only partially overlap.[22] That might be
the reason for the rather poor correlation of the bioactivi-
ties (pKi values; R2 = 0.56; Figure 3 and Table 1).

Other correlations that were obtained from ChEMBL and
TP-search are all based on comparisons of pIC50 values.

Using a fluorescence indicator (displacement) assay
(assay type: ‘Inhibition of X (transepithelial) transport’) with
different fluorescence markers (= fluorescent substrates of
P-glycoprotein) but always the same cell line, NIH-3T3-G185
(MDR1 transfected mouse embryo fibroblast cell line),
Wang et al.[23] evaluated the effect of various inhibitors of
P-glycoprotein on the active transport of the fluorescent
substrates daunorubicin (DNR), LDS-751 (LDS), and rhoda-
mine 123 (Rho).

The resulting activities show very similar values for most
of the compounds when comparing the three different
substrates (see Figures 4–6 and Table 2). Just one com-
pound, quinidine, has a much more potent effect on LDS-

751 (IC50 = 1.0 mM) compared to the other substrates (DNR:
IC50 = 18.8 mM; Rho 123: IC50 = 33.9 mM). Also, if the bioac-
tivity of quinidine measured with LDS-751 as marker is cor-
rect, this gives some very specific information about the
LDS binding site, since its stereoisomer quinine has a 75-
fold decreased affinity value. Of course, the difference in
potency also affects the obtained correlation coefficients
realized for the comparisons LDS-751/DNR and LDS-751/
Rho (see Figures 5 and 6).

Removing this outlier from the two correlations we ach-
ieved very good R2 values of 0.82 (LDS-751/DNR) and 0.90
(LDS-751/Rho), respectively. It is well known that different
substrate markers favour different substrate binding sites
of P-glycoprotein[24–26] and that their responsiveness and
wide applicability depends on their balanced affinity to
more than one site.[23] Thus, the ability to combine assays

S
P

E
C

IA
L

IS
S
U

E

Figure 3. Bioactivity correlation plot: Increase in intracellular [3H]-
vinblastine accumulation vs. increase in intracellular calcein-AM ac-
cumulation in LLC-PK1 cells; units in pKi.

Table 1. Bioactivities (Ki in mM; pKi) measured in same assay type (‘Increase in X intracellular accumulation’): different substrates, same cell
line.

Cell line = LLC-PK1 Ki (mM), Calcein pKi Ki (mM), [3H]-Vinblastine pKi

Bromocriptine 2.8 5.6 4.0 5.4
Clotrimazole 44.0 4.4 29.9 4.5
Cyclosporin A 4.7 5.3 1.3 4.9
Dihydro-ergocristine 511.0 3.3 16 4.8
Dihydro-ergocryptine 360.5 3.4 19.8 4.7
Dihydro-ergotamine >1000 <3.0 119.9 3.9
Ergocornine 105.2 4.0 24.5 4.6
Ergocristine 42.8 4.4 13.3 4.9
Ergocryptine 12.2 4.9 6.4 5.2
Ergometrine 115.5 3.9 >100 4.0
Ergotamine 98.9 4.0 14.3 4.8
Erythromycin >1000 <3.0 37.8 4.4
Fluconazole >1000 <3.0 >400 3.4
Ketoconazole 24.9 4.6 5.3 5.3
Miconazole 55.5 4.3 26.4 4.6
Reserpine 12.2 4.9 1.0 6.0
Troleandomycin 483.3 3.3 87.6 4.1
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with different underlying (fluorescent or radiolabeled) sub-
strates strongly depends on the substrates’ overlap of bind-
ing sites as well as on the series of compounds (inhibitors)
under investigation.

In the cases of daunorubicin, LDS-751, and rhodamine
123 it has been postulated that all three preferentially bind
to the same site (the so called ‘R site’).[25,27] This was perfect-
ly reflected by the correlations we obtained.

3.3.2 Comparison: Same Assay Type, Same Substrate (X),
Different Cell Lines (Expressing P-Glycoprotein from Different
Species)

The question as to whether identical assay setups, but dif-
ferent cell lines, will lead to similar activity values becomes
even more interesting if cell lines under investigation are
expressing P-glycoprotein from different species. Schwab
et al.[28] measured in an indirect indicator assay with Cal-
cein-AM as fluorescent dye (assays type: ‘Increase in X in-
tracellular accumulation’) the P-glycoprotein inhibitory ac-
tivity of 28 compounds in both polarized pig kidney epithe-
lial LLC-PK1 cells transfected with human MDR1 (L-MDR1
cells) and in porcine brain capillary endothelial cells (PBCEC
cells). There was quite a good correlation between the
pIC50 values obtained using cells expressing human or por-
cine protein (R2 = 0.73; Figure 7 and Table 3). Vinblastine
was differently classified in both cell lines, being an inhibi-
tor in PBCEC cells but not in L-MDR1 cells. On removal of
this outlier from the correlation plot an R2 of 0.78 could be
achieved. As a general tendency of this correlation we ob-
served that a few inhibitors had lower IC50 values in PBCEC
cells (itraconazole, ritonavir, saquinavir, verapamil). Particu-
larly noticeable is itraconazole with a 70-fold higher inhibi-
tory activity measured in porcine cells than in those trans-
fected with human P-glycoprotein (R2 [vinblastine and itra-
conazole removed] = 0.83).

By performing such comparisons (between P-glycopro-
tein from different species), outliers might provide some
species specific information about binding to this protein.

In general, combining assay data from different cell lines
is quite risky, as distinct types of cells might also express
other ABC-transporters with compound binding profiles
partly overlapping with those for P-glycoprotein, rendering
data interpretation even more difficult.

3.3.3 Comparing Different Assays Types

Going further with the analysis, we also tried to combine
data from different assay types, with different marker (sub-
strate) and different cell lines. Because it is very probable
that different labs performing the same assay might also
achieve slightly different results, we established correlations
by taking into account only data from one publication for
each test series. Unfortunately, this led to data sets with an
overlap of only 7–8 compounds, which is probably not very
representative. Still, we found a good correlation (R2 = 0.72;
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Figure 4. Bioactivity correlation plot: Inhibition of Rho transport
vs. inhibition of DNR transport in NIH-3T3-G185 cells ; units in pIC50.

Figure 5. Bioactivity correlation plot: Inhibition of LDS transport
vs. inhibition of Rho transport in NIH-3T3-G185 cells ; units in pIC50.

Figure 6. Bioactivity correlation plot: Inhibition of LDS transport
vs. inhibition of DNR transport in NIH-3T3-G185 cells ; units in pIC50.
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Figure 8 and Table 4) comparing the pIC50 values of a cal-
cein-AM accumulation assay in L-MDR1 cells to those of
a daunorubicin transport assay in NIH-3T3-G185 cells. How-
ever, when comparing results from a calcein-AM/L-MDR1
accumulation assay to those of transport assays with rhoda-
mine 123/NIH-3T3-G185 (R2 = 0.4) or with LDS-751/NIH-3T3-
G185 (R2 = 0.36), we were not able to establish any correla-
tions between these combinations of substrates and cell
lines (data not shown). Data extracted from ChEMBL/TP-
search were originally reported in the publications of
Schwab et al.[28] and Wang et al.[23] (as described earlier).

Secondly, we also studied possible correlations for
a series of tetrahydroisoquinoline and piperazine deriva-
tives measured in a calcein-AM accumulation assay in
MDCK-MDR1 cells versus a [3H]-vinblastine transport inhibi-
tion assay with Caco-2 cells. An R2 of 0.07 indicated no cor-
relation at all between these assays (data not shown). The
authors of this study (Colabufo et al.)[29] argued that this
lack of any correlation could be either due to the different
cell lines or to the different underlying assays (with differ-
ent sensitivities).[26] The result is also in accordance with the
study by Ekins et al.[21] which suggests that vinblastine and
calcein might only have partially overlapping binding sites.
We also observed that correlations were better for one
compound class (tetrahydroisoquinolines) than for the
other (piperazines). That points to the influence of the in-
hibitors’ chemical structure on the usability of certain bio-
assays.

More broadly, this analysis implies that the prediction of
drug-drug interactions will require both a better characteri-
sation of existing drugs and development of sub-site spe-
cific models in order to have higher predictivity.

3.4 QSAR and Classification Datasets for Human
P-Glycoprotein Inhibitors

Based on this study it was not possible to build up a large
dataset of P-glycoprotein inhibitors based on the combina-
tion of different assays. The largest set contains 198 com-
pounds and was obtained by merging three SAR datasets
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Table 2. Bioactivities (IC50 in mM; pIC50) measured in same assay type (‘Inibition of transepithelial transport’): different substrates, same cell
line.

Cell line = NIH-3T3-G185 IC50 (mM), DNR pIC50 IC50 (mM), Rho pIC50 IC50 (mM), LDS pIC50

Carvedilol 4.6 5.3 6.6 5.2 6 5.2
Clarithromycin 3.8 5.4 15.1 4.8 7.2 5.1
Clofazimine 0.6 6.2 1 6.0 1.1 6.0
Cyclosporin A 1.4 5.9 1.7 5.8 1.8 5.7
Dipyridamole 22.7 4.6 34.3 4.5 23.7 4.6
Emetine 9.2 5.0 9.6 5.0 2.4 5.6
Felodipine 26.3 4.6 >60 4.2 32.3 4.5
Fluphenazine 6.5 5.2 10.4 5.0 5.7 5.2
Ketoconazole 5.6 5.3 53.4 4.3 23.4 4.6
Lovastatin 26.3 4.6 114.4 3.9 32.7 4.5
Nicardipine 3.2 5.5 >25.8 4.6 5.6 5.3
N-Norgallopamil 3.6 5.4 8.6 5.1 4.9 5.3
Progesterone 96.2 4.0 192.2 3.7 88.1 4.1
Quinidine 18.8 4.7 33.9 4.5 1 6.0
Quinine 22.6 4.6 87.6 4.1 74.4 4.1
Reserpine 0.5 6.3 3.9 5.4 2.1 5.7
Simvastatin 8.9 5.1 56.8 4.2 26.1 4.6
Tamoxifen 6.4 5.2 31.4 4.5 12.1 4.9
Taxol 54 4.3 70.2 4.2 53.9 4.3
Terfenadine 1.8 5.7 2.7 5.6 2.5 5.6
Trifluo-erazine 7.2 5.1 10.9 5.0 6.3 5.2
Troleando-mycin 68.3 4.2 86.3 4.1 78.2 4.1
Verapamil 4.2 5.4 6.5 5.2 4.7 5.3
Vinblastine 17.7 4.8 29.5 4.5 19.9 4.7

Figure 7. Bioactivity correlation plot: Increase in intracellular cal-
cein accumulation: measured in PBCEC cells (porcine) vs. L-MDR1
cells (human); units in pIC50.
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from ChEMBL, which were all measured in a daunorubicin
transport assay in MDR CCRF vcr1000 cells (see Supporting
Information, File S1).[18–20] Even though 24 % of the com-
pounds with IC50 values for human P-glycoprotein in TP-
search have also been measured in a daunorubicin trans-
port assay (see Figure 2), none of these assays uses CCRF
vcr1000 cells. Our studies suggest that bioactivities from
daunorubicin-, LDS-751-, and rhodamine 123-transport
assays can be combined in the case of NIH-3T3-G185 cells.
It is not clear if the same is true for other cell lines. Thus, it
was not possible to combine the 198 dataset with other
datasets measured in different assay setups.

Recently, other groups combined different literature
sources (and thus data coming from different assays) for

the generation of large classification databases by setting
certain thresholds.

Broccatelli et al.[30] used a classification scheme derived
from the observations of Rautio et al.[22] inhibitor (IC50)<
15 mM; non-inhibitor (IC50)>100 mM. Rautio et al. tested
twenty compounds with different protocols using five dif-
ferent probe substrates. However, not all combinations of
assay types/probe substrates/cell lines could be taken into
account.

Chen et al.[31] based the determination of whether a com-
pound is an inhibitor or not on the experimental MDRR
(multidrug resistance reversal) ratio. Comparing these two
databases (of approximately 1200 compounds each) we
found 33 collisions (differently classified compounds).
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Table 3. Bioactivities (IC50 in mM; pIC50) measured in same assay type (‘Increase in X intracellular accumulation’): same substrate, different
cell lines.

Calcein accumulation/cell line: IC50 (mM), L-MDR1 pIC50 IC50 (mM), PBCEC pIC50

Astemizole 1.30 5.9 0.30 6.5
Cimetidine >50 4.3 >50 4.3
Clotrimazole 6.70 5.2 1.30 5.9
Colchicine >50 4.3 >50 4.3
Cyclosporin A 0.80 6.1 0.50 6.3
Dexamethasone >50 4.3 >50 4.3
Digoxin >50 4.3 >50 4.3
Enkephalin (dpdpe) >50 4.3 >50 4.3
Erythromycin >50 4.3 43.00 4.4
Etoposide >50 4.3 >50 4.3
Hydrocortisone >50 4.3 >50 4.3
Ivermectin 0.10 7.0 0.20 6.7
Ketoconazole 4.8 5.3 1.00 6.0
Mibefradil 1.80 5.7 1.50 5.8
Miconazole 3.50 5.5 2.00 5.7
Midazolam >50 4.3 >50 4.3
Morphin >50 4.3 >50 4.3
Nelfinavir 3.40 5.5 0.35 6.5
Nicardipine 2.3 5.6 0.95 6.0
Pimozide 2.90 5.5 0.80 6.1
Quinidine 5.6 5.3 2.20 5.7
Ranitidine >50 4.3 >50 4.3
Ritonavir 12.00 4.9 1.50 5.8
Saquinavir 12.00 4.9 1.60 5.8
Terfenadine 1.4 5.9 1.10 6.0
Verapamil 6.3 5.2 0.40 6.4
Vinblastine >50 4.3 2.00 5.7

Table 4. Bioactivities (IC50 in mM; pIC50) measured in same assay type (‘Increase in X intracellular accumulation’): different substrate, differ-
ent cell lines.

IC50 (mM), Calcein/L-MDR1 pIC50 IC50(mM), DNR/NIH-3T3-G185 pIC50

Cyclosporin A 0.8 6.1 1.4 5.9
Itraconazole 2.1 5.7 1.7 5.8
Ketoconazole 4.8 5.3 5.6 5.3
Nicardipine 2.3 5.6 3.2 5.5
Quinidine 5.6 5.3 18.8 4.7
Terfenadine 1.4 5.9 1.8 5.7
Verapamil 6.3 5.2 4.2 5.4
Vinblastine >50 4.3 17.7 4.8
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From our point of view, one can achieve a cleaner and
more robust dataset by not considering only one threshold,
but by using a tailored threshold for every assay. This could
be fulfilled by carefully inspecting the bioactivity measures
of a compound that has been determined in many different
assays. To our knowledge, verapamil is one of the broadest
studied molecules interacting with P-glycoprotein. Table 5

lists all the IC50 values for verapamil with the respective un-
derlying assays that we could find in ChEMBL and TP-
search for human P-glycoprotein. Considering the respec-
tive (inhibitor) assays with determined verapamil-activity,
we could classify all compounds having an equal or better
affinity/potency than verapamil in a certain assay as inhibi-
tor. Compounds with an activity value lower than verapamil
were classified as non-inhibitors. In this way we created
a benchmark dataset useful for P-glycoprotein classification
studies, which comprises 77 inhibitors and 126 non-inhibi-
tors (see Supporting Information, File S2).

We recommend measuring verapamil activity routinely
when running a certain assay for a compound dataset. As
a consequence, the pool of available information on vera-
pamil thresholds will increase and then further serve for
building up larger classification databases. In addition, vera-
pamil bioactivities in certain assay setups already give an
indication of the ability to combine them.

4 Conclusions

In conclusion, combining different bioactivity values from
different assay setups should always be made with caution.
Our study indicates that for inhibitors of human P-glyco-
protein it is possible under certain conditions to combine
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Figure 8. Bioactivity correlation plot: Increase in DNR accumula-
tion in L-MDR1 cells vs. increase in calcein-AM accumulation in
NIH-3T3-G185 cells ; units in pIC50.

Table 5. IC50 values (in mM) for verapamil in ChEMBL and TP-search.

Assay Cell line Substrate (= X) IC50 (mM)

Inhibition of X transepithelial transport Caco-2 Digoxin 2.1
Caco-2 Fexofenadine 8.4
LLC-PK1 Digoxin 224.0
LLC-PK1 Calcein-AM 6.3
NIH-3T3-G185 DNR 4.2
NIH-3T3-G185 Rho123 6.5
NIH-3T3-G185 LDS-751 4.7
NIH-3T3-G185 Fluo-3-AM 446.5
NIH-3T3-G185 Calcein-AM 28.9
NIH-3T3-G185 JC-1 42
NIH-3T3-G185 Tetramethyl-rosamine 38.2

Increase in X intracellular accumulation MDCK Rho123 9.8
EMT6/AR 1.0 DNR 5.8
MDCK2 Calcein-AM 14.0
PBCEC Calcein-AM 0.4
LLC-PK1 Calcein-AM 6.3
L-MDR1 Calcein-AM 18.9

Reversal of MDR P388/VMDRC.04 Vincristine 3.1
AML-2/D100 Vincristine 0.4
MES-SA/DX5 Paclitaxel 4.8
MES-SA/DX5 Paclitaxel 5.3[b]

MES-SA/DX5 Paclitaxel 5.5[a]

HCT15/CL02 Paclitaxel 2.2
HCT15/CL02 Paclitaxel 2.4[b]

HCT15/CL02 Paclitaxel 2.6[a]

Cytotoxic effect P388/VMDRC.04 x 53.0
Radioligand-binding assay (competition experiment) Caco-2 [3H]-verapamil 1.5

Caco-2 [3H]-verapamil 2.4[a]

Caco-2 [3H]-verapamil 2.1

[a] R-Enantiomer; [b] S-Enantiomer.

Mol. Inf. 2012, 31, 599 – 609 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.molinf.com 607

Annotating Human P-Glycoprotein Bioassay Data

www.molinf.com


data coming from the same assay type, if the cell lines
used are also identical and the fluorescent or radiolabeled
substrate have overlapping binding sites.

As a result of this study we have determined that there
is only a very limited number of datasets with an appropri-
ate number of compounds (at least ten) available, which
have been measured in more than one assay and thus can
serve for determining correlations. In order to prove our hy-
potheses, and to be able to find new inter-correlations be-
tween assays, there is an urgent need for a chemically di-
verse dataset measured in a panel of different assays, with
different markers, and different cell lines.

It was observed throughout this study that expert knowl-
edge is needed to organize and annotate existing bioactiv-
ity data, in this case specifically for human P-glycoprotein.
There are several useful tools available which could help to
increase the systematic structuring of bioassay data. One is
MIABE (Minimum Information About a Bioactive Entity),
which provides a formal list of information that should be
provided when describing the synthesis and subsequent
analysis of any potentially bioactive entity.[32] Another ex-
ample is the STRENDA (standards for reporting enzymologi-
cal data)[33] Commission. Again, this initiative aims at pro-
viding a check-list of information that should be included
when reporting data, but focusing on enzyme data. In addi-
tion, STRENDA tends to give recommendations for uniform
assay standards and standardization of enzyme data. Above
all, the BioAssay Ontology project (BAO) should be men-
tioned, which has been initiated to facilitate the standardi-
zation of annotating the screening setup and the data gen-
erated.[34] In the BAO, there are already more than 350
assays from PubChem annotated with standardized BAO
terms.[35] By defining the assay type and the compound
action, functional viability and uptake assays can be sepa-
rated from binding assays, while the activation or inhibition
is annotated elsewhere. A standardized vocabulary enables
extended searches regarding assay design, which can in-
clude both detection technology and instrument, dye spec-
ification, and other assay conditions. However, of the ABC
superfamily of transport proteins there is only one member,
the Multidrug resistance-associated protein 1 (UniProt ID:
P33527; alternative protein names: ATP-binding cassette
sub-family C member 1, Leukotriene C(4) transporter = LTC4
transporter ; gene names: ABCC1, MRP, or MRP1) represent-
ed in the beta version of the BAO search tool.[36] This indi-
cates that by far more work needs to be done to improve
the coverage of this important antitarget family. Emerging
standardization efforts as represented by BAO also under-
pin the importance of a bioassay annotation/classification
at the time of assay data disposition.

Standardized vocabulary for assay design and technology
would also allow making data interoperable and would re-
markably increase the capabilities of data integration plat-
forms, such as Open PHACTS.[37,38] This furthermore will pro-
mote enhanced access and use of data within both public
sources and the pharmaceutical industry. Even more inter-

esting would be the possibility to mark specific assays as
interchangeable, which would allow to remarkably amplify
the chemical space for certain targets. This will significantly
increase the usefulness of those huge data repositories
freely available.

Supporting Information

Table S1: Regression statistics of correlation plots (Fig-
ures 3–8).

Table S2: Cell lines used for bioassays determining bioac-
tivities of compounds interacting with human P-glycopro-
tein in ChEMBL and TP-search.

File S1: sdf file of 198 chemical compounds with chemi-
cal structures and bioactivity values included measured in
a daunorubicin efflux assay in MDR CCRF vcr1000 cells.

File S2: sdf file of 203 chemical compounds being either
classified as inhibitors or non-inhibitors of human P-glyco-
protein with chemical structures included.

In addition, sdf-files of the two datasets will also be avail-
able from our web-page pharminfo.univie.ac.at and from
chemspider.com.
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