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ABSTRACT Real geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations.
As a result, many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are
applied to clustered samples from populations that are structured clinally over space. Here, we use simulations of populations living in
continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic
inference, and genome-wide association studies (GWAS). We find that most common summary statistics have distributions that differ
substantially from those seen in well-mixed populations, especially when Wright’s neighborhood size is, 100 and sampling is spatially
clustered. “Stepping-stone” models reproduce some of these effects, but discretizing the landscape introduces artifacts that in some
cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference
from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations
revealed surprisingly little systematic bias. We also show that the combination of spatially autocorrelated environments and limited
dispersal causes GWAS to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that
this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation
results for inference from genetic variation in real organisms.
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THE inescapable reality that biological organisms live,
move, and reproduce in continuous geography is usually

omitted from population genetic models. However, mates
tend to live near to one another and to their offspring, leading
to a positive correlation between genetic differentiation and
geographic distance. This pattern of “isolation by distance”
(Wright 1943) is one of the most widely replicated empirical
findings in population genetics (Sharbel et al. 2000; Jay et al.
2012; Aguillon et al. 2017). Despite a long history of analyt-
ical work describing the genetics of populations distributed
across continuous geography (e.g., Wright 1943; Rousset
1997; Barton et al. 2002, 2010; Wilkins and Wakeley 2002;
Wilkins 2004; Ringbauer et al. 2017; Robledo-Arnuncio and

Rousset 2010), much modern work still describes geographic
structure as a set of discrete populations connected by migra-
tion (e.g., Wright 1931; Epperson 2003; Rousset and Leblois
2011; Shirk and Cushman 2014; Lundgren and Ralph 2019)
or as an average over such discrete models (Petkova et al.
2015; Al-Asadi et al. 2019). For this reason, most population
genetics statistics are interpreted with reference to discrete,
well-mixed populations, and most empirical papers analyze
variation within clusters of genetic variation inferred by pro-
grams like STRUCTURE (Pritchard et al. 2000) with methods
that assume these are randomly mating units.

The assumption that populations are well mixed has im-
portant implications for downstream inference of selection
and demography. Methods based on the coalescent (Kingman
1982; Wakeley 2009) assume that the sampled individuals
are a random draw from a well-mixed population that is
much larger than the sample (Wakeley and Takahashi
2003). The key assumption is that the individuals of each
generation are exchangeable, so that there is no correlation
between the fate or fecundity of a parent and that of their
offspring (Huillet and Möhle 2013). If dispersal or mate
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selection is limited by geographic proximity, this assumption
can be violated in many ways. For instance, if mean viability
or fecundity is spatially autocorrelated, then limited geo-
graphic dispersal will lead to parent–offspring correlations.
Furthermore, nearby individuals will be more closely related
than an average random pair, so drawing multiple samples
from the same area of the landscape will represent a biased
sample of the genetic variation present in the whole popula-
tion (Städler et al. 2009).

Two areas in which spatial structure may be particularly
important are demographic inference and genome-wide as-
sociation studies (GWAS). Previous work has found that
discrete population structure can create false signatures of
population bottlenecks when attempting to infer demo-
graphic histories from microsatellite variation (Chikhi et al.
2010), statistics summarizing the site frequency spectrum
(SFS) (Ptak and Przeworski 2002; Städler et al. 2009; St.
Onge et al. 2012), or runs of homozygosity in a single indi-
vidual (Mazet et al. 2015). The increasing availability of
whole-genome data has led to the development of many
methods that attempt to infer detailed trajectories of popu-
lation sizes through time based on a variety of summaries of
genetic data (Sheehan et al. 2013; Schiffels and Durbin 2014;
Liu and Fu 2015; Terhorst et al. 2016). Because all of these
methods assume that the populations being modeled are ap-
proximately randomly mating, they are likely affected by
spatial biases in the genealogy of sampled individuals
(Wakeley 1999), which may lead to incorrect inference of
population changes over time (Mazet et al. 2015). However,
previous investigations of these effects have focused on dis-
crete rather than continuous space models, and the level of
isolation by distance at which inference of population size
trajectories becomes biased by structure is not well known.
Here, we test how two methods suitable for use with large
samples of individuals—stairwayplot (Liu and Fu 2015) and
SMC++ (Terhorst et al. 2016)—perform when applied to
populations evolving in continuous space with varying sam-
pling strategies and levels of dispersal.

Spatial structure is also a major challenge for interpreting
the results of GWAS. This is because many phenotypes of
interest have strong geographic differences due to the (non-
genetic) influence of environmental or socioeconomic factors,
which can therefore show spurious correlations with spatially
patterned allele frequencies (Mathieson and McVean 2012;
Bulik-Sullivan et al. 2015). Indeed, two recent studies found
that previous evidence of polygenic selection on human
height in Europe was confounded by subtle population struc-
ture (Sohail et al. 2019; Berg et al. 2019), suggesting that
existing methods to correct for population structure in GWAS
are insufficient. However, we have little quantitative idea of
the population and environmental parameters that can be
expected to lead to biases in GWAS.

Last, someof themost basic tools of populationgenetics are
summary statistics like FIS and Tajima’s D, which are often
interpreted as reflecting the influence of selection or demog-
raphy on sampled populations (Tajima 1989). Statistics like

Tajima’s D are essentially summaries of the SFS, which itself
reflects variation in branch lengths and tree structures of the
underlying genealogies of sampled individuals. Geographi-
cally limited mate choice distorts the distribution of these
genealogies (Maruyama 1972; Wakeley 1999), which can
affect the value of Tajima’s D (Städler et al. 2009). Similarly,
the distribution of tract lengths of identity-by-state among
individuals contains information about not only historical de-
mography (Harris and Nielsen 2013; Ralph and Coop 2013)
and selection (Garud et al. 2015), but also dispersal andmate
choice (Baharian et al. 2016; Ringbauer et al. 2017). We are
particularly keen to examine how such summaries will be
affected by models that incorporate continuous space, both
to evaluate the assumptions underlying existingmethods and
to identify where themost promising signals of geography lie.

To study this, we have implemented an individual-based
model in continuous geography that incorporates overlapping
generations, local dispersal of offspring, and density-dependent
survival.We simulate chromosome-scale genomic data in tens
of thousands of individuals from parameter regimes relevant
to common subjects of population genetic investigation, and
output the full genealogy and recombination history of all
final-generation individuals. We use these simulations to test
how sampling strategy interacts with geographic population
structure to cause systematic variation in population genetic
summary statistics typically analyzed assuming discrete pop-
ulation models. We then examine how the fine-scale spatial
structures occurring under limited dispersal impact demo-
graphic inference from the SFS. Last, we examine the impacts
of continuous geography on GWAS and identify regions of
parameter space under which the results from GWAS may be
misleading.

Materials and Methods

Modeling evolution in continuous space

Thedegree towhich genetic relationships are geographically
correlated depends on the chance that two geographically
nearby individuals are close relatives: in modern terms, by
the tension between migration (the chance that one is
descended from a distant location) and coalescence (the
chance that they share a parent). A key early observation by
Wright (1946) is that this balance is often nicely summa-
rized by the “neighborhood size,” defined in two dimensions
to beNW ¼ 4prs2, where s2 is one-half of themean squared
parent–offspring distance and r is the population density
[see Rousset (1997) for further discussion of parameter def-
initions in one- and two-dimensional habitats]. This can be
thought of as proportional to the average number of poten-
tial mates for an individual (those within distance 2s), or
the number of potential parents of a randomly chosen indi-
vidual. Empirical estimates of neighborhood size vary hugely
across species; even in human populations, estimates range
from 40 to . 5000 depending on the population and method
of estimation (Table 1).
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The first approach to modeling continuously distributed
populations was to endow individuals in a Wright–Fisher
model with locations in continuous space. However, since
the total size of the population is constrained, this introduces
interactions between arbitrarily distant individuals, which
(aside from being implausible) was shown by Felsenstein
(1975) to eventually lead to unrealistic population clumping
if the range is sufficiently large. Another method for model-
ing spatial populations is to assume the existence of a grid of
discrete randomly mating populations connected by migra-
tion, thus enforcing regular population density by edict.
Among many other results drawn from this class of “lattice”
or stepping-stone model (Epperson 2003), Rousset (1997)
showed that the slope of the linear regression of genetic dif-
ferentiation (FST) against the logarithm of spatial distance is
an estimate of neighborhood size. Although these grid mod-
els may be good approximations of continuous geography in
many situations, they do notmodel demographic fluctuations
and limit investigation of spatial structure below the level of
the deme, assumptions whose impacts are unknown. An al-
ternative method for dealing with continuous geography is a
new class of coalescent model, the spatial L-Fleming–Viot
models (Barton et al. 2010; Kelleher et al. 2014).

To avoid hard-to-evaluate approximations, we here used
forward-time, individual-based simulationsacross continuous
geographical space. The question of what regulates real pop-
ulations has a long history and many answers (e.g., Lloyd
1967; Antonovics and Levin 1980; Crawley 1990), but it is
clear that populations must at some point have density-
dependent feedback on population size, or else they would
face eventual extinction or explosion. In the absence of un-
realistic global population regulation, this regulation must be
local, and there are many ways to achieve this (Bolker et al.
2003). In our simulations, each individual’s probability of

survival is a decreasing function of local population density,
which shifts reproductive output toward low-density regions,
and produces total census sizes that fluctuate around an equi-
librium. This also prevents the population clumping seen by
Felsenstein (1975) (Supplemental Material, Figure S1). Such
models have been used extensively in ecological modeling
(Durrett and Levin 1994; Bolker and Pacala 1997; Law
et al. 2003; Fournier and Méléard 2004; Champer et al.
2019 preprint), but rarely in population genetics where,
to our knowledge, implementations of continuous space
models before their availability through SLiM (Haller and
Messer 2019) have focused on a small number of genetic loci
(e.g., Slatkin and Barton 1989; Barton et al. 2002; Robledo-
Arnuncio and Rousset 2010; Jackson and Fahrig 2014;
Rossine 2014), which limits the ability to investigate the im-
pacts of continuous space on genome-wide genetic variation
as is now routinely sampled from real organisms. By simulat-
ing chromosome-scale sequence alignments and complete
population histories, we are able to treat our simulations as
real populations and replicate the sampling designs and anal-
yses commonly conducted on real genomic data.

A forward-time model of evolution in continuous space

We simulated populations using the program SLiM v3.1
(Haller and Messer 2019). Each time step consists of three
stages: reproduction, dispersal, and mortality. To reduce the
number of parameters we use the same parameter, denoted
s, to modulate the spatial scale of interactions at all three
stages by adjusting the SD of the corresponding Gaussian
functions. Informally, we think of s as the “dispersal dis-
tance,” although only one of those stages is dispersal.

At the beginning of the simulation, individuals are distrib-
uted uniformly at random on a continuous, square landscape.
Individuals are hermaphroditic, and each time step each

Table 1 Neighborhood size estimates from empirical studies

Species Description Neighborhood size Method Citation

Ipomopsis aggregata Flowering plant 12.60–37.80 Genetic Campbell and Dooley (1992)
Borrichia frutescens Salt marsh plant 20–30 Genetic + survey Antlfinger (1982)
Oreamnos americanus Mountain goat 36–100 Genetic Shirk and Cushman (2014)
Homo sapiens Gainj- and Kalam-speaking

people, Papua New
Guinea

40–213 Genetic Rousset (1997)

Formica sp. Colonial ants 50–100 Genetic Pamilo (1983)
Astrocaryum mexicanum Palm tree 102–895 Genetic + survey Eguiarte et al. (1993)
Spermophilus mollis Ground squirrel 204–480 Genetic + survey Antolin et al. (2001)
Sceloperus olivaceus Lizard 225–270 Survey Kerster (1964)
Dieffenbachia longispatha Beetle-pollinated colonial

herb
227–611 Survey Young (1988)

A. aegypti Yellow fever mosquito 268 Genetic Jasper et al. (2019)
Homo sapiens Gainj- and Kalam-speaking

people, Papua New
Guinea

410 Survey Rousset (1997)

Quercus laevis Oak tree . 440 Genetic Berg and Hamrick (1995)
Drosophila pseudoobscura Fruit fly 500–1000 Survey + crosses Wright (1946)
Homo sapiens Population Reference Sam-

ple data Northeast Europe
1342–5425 Genetic Ringbauer et al. (2017)
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produces a Poisson number of offspring with mean 1/L. Off-
spring disperse a Gaussian-distributed distance away from
the parent with mean zero and SD s in both the x and y
coordinates. Each offspring is produced with a mate se-
lected randomly from those within distance 3s, with prob-
ability of choosing a neighbor at distance d proportional to
the Gaussian density with mean zero and SD s, which is
gðdÞ ¼ expð2d2=2s2Þ=ð2s2Þ.

To maintain a stable population, mortality increases with
local population density. To do this, we say that individuals at
distance d have a competitive interaction with strength g(d).
Then, the sum of all competitive interactions with individual i
is ni ¼

P
j
gðdijÞ, where dij is the distance between individuals i

and j, and the sum is over all neighbors within distance 3s.
Since g is a probability density, ni is an estimate of the number
of nearby individuals per unit area. Then, given a per-unit
carrying capacity K, the probability of survival until the next
time step for individual i is

pi ¼ min

 
0:95;

1
1þ ni=

�
Kð1þ LÞ�

!
: (1)

We choose this functional form so that the equilibrium pop-
ulation density per unit area is close to K, and the mean
lifetime is around L; for more description see the Appendix.

An important step in creating any “spatial model” is deal-
ing with range edges. Because local population density is
used to model competition, edge or corner populations can
be assigned artificially high fitness values because they lack
neighbors within their interaction radius but outside the
bounds of the simulation. We approximate a decline in hab-
itat suitability near edges by decreasing the probability of
survival proportional to the square root of distance to edges
in units of s. The final probability of survival for individual i is
then:

si ¼ pimin
�
1;

ffiffiffiffiffiffiffiffiffi
xi=s

p �
min

�
1;

ffiffiffiffiffiffiffiffiffi
yi=s

p �
3min

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2 xiÞ=s

p �
min

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2 yiÞ=sÞ

p � (2)

where xi and yi are the spatial coordinates of individual i, and
W is the width (and height) of the square habitat. This buffer
roughly counteracts the increase in fitness that individuals
close to the edge would otherwise have, though the effect
is relatively subtle (Figure S2).

To isolate spatial effects from other components of the
model such as overlapping generations, increased variance in
reproductive success, and density-dependent fitness, we also
implemented simulations identical to those above, except that
mates are selected uniformly at random from the population
and offspring disperse to a uniform random location on the
landscape. We refer to this model as the “random mating”
model, in contrast to the first, spatial model.

We stored the full genealogy and recombination history of
final-generation individuals as tree sequences (Kelleher et al.

2018), as implemented in SLiM (Haller et al. 2019). Scripts
for figures and analyses are available at https://github.com/
kern-lab/spaceness.

We ran 400 simulations for the spatial and randommating
models on a square landscape of widthW= 50 with per-unit
carrying capacity K = 5 (census N � 10,000), average life-
time L= 4, genome size 108 bp, recombination rate 1029 per
bp per generation, and drawing s values from a uniform
distribution between 0.2 and 4. To speed up the simulations
and limit memory overhead, we used a mutation rate of 0 in
SLiM and later applied mutations to the tree sequence with
msprime’s mutate function (Kelleher et al. 2016). Because
msprime applies mutations proportionally to elapsed time,
we divided the mutation rate of 1028 mutations per site per
generation by the average generation time estimated for each
value of s (see “Demographic parameters” below) to convert
the rate to units of mutations per site per unit time. We verify
that this procedure produces the same SFS as applying mu-
tations directly in SLiM in Figure S3, in agreement with the-
ory (Ralph et al. 2019b preprint). Simulations were run for
1.6 million time steps (�30N generations).

We also compared our model’s output to a commonly
used approximation of continuous space, the stepping-stone
model, which we simulated with msprime (Kelleher et al.
2016). These results are discussed in detail in the Appendix,
but in general we find that the demographic structure of a
stepping-stone model can depend strongly on the chosen
discretization, and some artifacts of discretization seem to
become stronger in the limit of a fine grid. Formany summary
statistics, finer discretizations (we used a 50 3 50 grid) pro-
duced similar results to the continuous model, but this was
not true for others (e.g., FIS and Tajima’s D), which differed
from the continuous model more at finer discretizations.

Demographic parameters

Our demographic model includes parameters that control
population density (K), mean life span (L), and dispersal
distance (s). However, nonlinearity of local demographic
stochasticity causes actual realized averages of these demo-
graphic quantities to deviate from the specified values in a
way that depends on the neighborhood size. Therefore, to
properly compare to theoretical expectations, we empirically
calculated these demographic quantities in simulations. We
recorded the census population size in all simulations, and
used mean population density (r, census size divided by total
area) to compute neighborhood size as NW ¼ 4prs2. To es-
timate generation times, we stored ages of the parents of
every new individual born across 200 time steps, after a
100 generation burn-in, and took the mean. To estimate var-
iance in offspring number, we tracked the lifetime total num-
ber of offspring for all individuals for 100 time steps following
a 100-time step burn-in period, and calculated the variance in
number of offspring across all individuals in time steps 50–
100. All calculations were performed with information
recorded in the tree sequence, using pyslim (Ralph et al.
2019a).
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Note that s controls the dispersal of offspring away from
only one parent (e.g., the seed parent for plants), while pop-
ulation genetics usually defines dispersal distance to be the
distance to one of the two parents randomly chosen (thus
taking into account the distance from pollen parent as well).
This second component, the distance between mates, has in
our simulations a distribution that is of order s but that de-
pends on the population’s patchiness. If both the between-
mate and dispersal distance have variance s2 along each axis,
then the mean squared distance to a randomly chosen parent
along that axis would be ðs2 þ 2s2Þ=2 ¼ 3s2=2. To match
theory, neighborhood size should be defined in terms of
effective dispersal distance, i.e., the mean squared displace-
ment along an axis between parent–child pairs found moving
back along a lineage (Barton et al. 2002), and effective pop-
ulation density (Rousset 1997). However, we use s and r

as defined here to compute NW because these quantities
are more easily observable in practice than their effective
versions.

Sampling

Our model records the genealogy and sequence variation of
the complete population, but in real data, genotypes are only
observed from a relatively small number of sampled individ-
uals. We modeled three sampling strategies similar to com-
mon data collection methods in empirical genetic studies
(Figure 1). Random sampling selects individuals at random
from across the full landscape, “point sampling” selects indi-
viduals proportional to their distance from four equally
spaced points on the landscape, and midpoint sampling se-
lects individuals in proportion to their distance from the mid-
dle of the landscape. Downstream analyses were repeated
across all sampling strategies.

Summary statistics

We calculated the SFS and a set of 18 summary statistics
(Table S1) from 60 diploid individuals sampled from the final
generationof each simulationusing thepythonpackage scikit-
allel (Miles and Harding 2017). Statistics included common
single-population summaries including mean pairwise diver-
gence (p), inbreeding coefficient (FIS), and Tajima’s D, as
well as [motivated by the results of Rousset (1997)] the cor-
relation coefficient between the logarithm of the spatial dis-
tance and the proportion of identical base pairs across pairs of
individuals.

Following recent studies that showed strong signals for
dispersal and demography in the distribution of shared hap-
lotype block lengths (e.g., Baharian et al. 2016; Ringbauer
et al. 2017), we also calculated various summaries of the
distribution of pairwise identical-by-state (IBS) block lengths
among sampled chromosomes, defined to be the set of dis-
tances between adjacent sites that differ between the two
chromosomes. The full distribution of lengths of IBS tracts
for each pair of chromosomes was first calculated with a
custom python function. We then calculated the first three
moments of this distribution (mean, variance, and skew) and

the number of blocks over 106 bp both for each pair of indi-
viduals and for the full distribution across all pairwise com-
parisons.We then calculated correlation coefficients between
spatial distance and each moment of the pairwise IBS tract
distribution. Because more closely related individuals on av-
erage share longer haplotype blocks, we expect that spatial
distance will be negatively correlated with mean haplotype
block length and that this correlation will be strongest (i.e.,
most negative) when dispersal is low. The variance, skew, and
counts of long haplotype block statistics are meant to reflect
the relative length of the right (upper) tail of the distribution,
which represents the frequency of long haplotype blocks and
so should reflect recent demographic events (Chapman and
Thompson 2002). For a subset of simulations, we also calcu-
lated cumulative distributions for IBS tract lengths across
pairs of distant (. 40 map units) and nearby (, 10 map
units) individuals. Last, we examined the relationship be-
tween allele frequency and the spatial dispersion of an allele
by calculating the average distance between individuals car-
rying each derived allele.

The effects of sampling on summary statistic estimates
were summarized by testing for differences inmean [ANOVA;
R Core Team (2018)] and variance [Levene’s test; Fox and
Weisberg (2011)] across sampling strategies for each sum-
mary statistic.

Demographic inference

To assess the impacts of continuous spatial structure on
demographic inference,we inferred population size histories
for all simulations using two approaches: stairwayplot (Liu
and Fu 2015) and SMC++ (Terhorst et al. 2016). Stairway-
plot fits its model to a genome-wide estimate of the SFS,
while SMC++ also incorporates linkage information. For
both methods, we sampled 20 individuals from all spatial
simulations using random, midpoint, and point sampling
strategies.

As recommended by its documentation, we used stairway-
plot to fit models with multiple bootstrap replicates drawn
from empirical genomic data, and took the median inferred
Ne per unit time as the best estimate. We calculated each SFS
with scikit-allel (Miles and Harding 2017), generated
100 bootstrap replicates per simulation by resampling over
sites, and fitted models for all bootstrap samples using de-
fault settings.

Figure 1 Example sampling maps for 60 individuals on a 50 3 50 land-
scape for midpoint, point, and random sampling strategies, respectively.
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For SMC++, we first output genotypes as VCF with
msprime and then used SMC++’s standard pipeline for pre-
paring input files assuming no polarization error in the SFS.
We used the first individual in the VCF as the “designated
individual” when fitting models, and allowed the program to
estimate the recombination rate during optimization. We fitted
models using the “estimate” command rather than the now-
recommended cross-validation approach because our simula-
tions had only a single contig.

To evaluate the performance of these methods, we binned
simulations by neighborhood size, and took a rolling median
of inferredNe trajectories across all model fits in a bin for each
method and sampling strategy. We also examined how vary-
ing levels of isolation by distance impacted the variance of
Ne estimates by calculating the SD of Ne from each best-fit
model.

Association studies

To assess the degree to which spatial structure confounds
GWAS, we simulated four types of nongenetic phenotype
variationfor1000randomlysampled individuals ineachspatial
SLiM simulation and conducted a linear regressionGWASwith
principal components (PCs) as covariates in PLINK (Purcell
et al. 2007). SNPs with a minor allele frequency (MAF)
, 0.5% were excluded from this analysis. Phenotype values
were set to vary by 2 SD across the landscape in a rough ap-
proximation of the variation seen in height across Europe (Gar-
cia and Quintana-Domeque 2006, 2007; Turchin et al. 2012).
Conceptually, our approach is similar to that taken byMathieson
and McVean (2012), though here we model fully continuous
spatial variation and compare GWAS outputs across a range of
dispersal distances.

In all simulations, the phenotype of each individual is
determined by drawing from a Gaussian distribution with
SD 10 and a mean that may depend on spatial position. In
spatially varying models, the mean phenotype differs by 2 SD
across the landscape.Wethenadjust thegeographicpatternof
mean phenotype to create four types of spatially autocorre-
lated environmental influences on phenotype. In the first
simulation of nonspatial environments, the mean did not
change, so that all individuals’ phenotypes were drawn in-
dependently from a Gaussian distribution withmean 110 and
SD 10. Next, to simulate clinal environmental influences on
phenotype, we increased the mean phenotype from 100 on
the left edge of the range to 120 on the right edge (two
phenotypic SDs). Concretely, the mean phenotype p for an
individual at position (x, y) is p ¼ 100þ 2x=5. Third, we
simulated amore concentrated “corner” environmental effect
by setting the mean phenotype to 120 for individuals with
both x and y coordinates below 20 (2 SD above the rest of the
map). Finally, in “patchy” simulations we selected 10 random
points on the map and set the mean phenotype of all individ-
uals within three map units of each of these points to 120.

We performed PC analysis (PCA) using scikit-allel (Miles
and Harding 2017) on the matrix of derived allele counts by
individual for each simulation. SNPs were first filtered to

remove strongly linked sites by calculating linkage disequi-
librium (LD) between all pairs of SNPs in a 200-SNP moving
window and dropping one of each pair of sites with an R2. 0.1.
The LD-pruned allele count matrix was then centered and all
sites scaled to unit variance when conducting the PCA, follow-
ing recommendations in Patterson et al. (2006).

We ran linear-model GWAS bothwith andwithout the first
10 PCs as covariates in PLINK, and summarized results
across simulations by counting the number of SNPs with
P-values , 0.05 after adjusting for an expected false-positive
rate of , 5% (Benjamini and Yekutieli 2001). We also exam-
ined P-values for systematic inflation by comparing them with
the values expected from a uniform distribution (because no
SNPs were used when generating phenotypes, well-calibrated
P-values should be uniform).

Results from all analyses were summarized and plotted
with the “ggplot2” (Wickham 2016) and “cowplot” (Wilke
2019) packages in R (R Core Team 2018).

Data availability

Scripts used for all analyses and figures are available at
https://github.com/kern-lab/spaceness. Supplemental ma-
terial available at figshare: https://doi.org/10.25386/
genetics.12019008.

Results

Demographic parameters and run times

Adjusting the spatial dispersal and interaction distance,s, has
a surprisingly large effect on demographic quantities that are
usually fixed in Wright–Fisher models: the generation time,
census population size, and variance in offspring number, as
shown in Figure 2. Because our simulation is parameterized
on an individual level, these population parameters emerge
as a property of the interactions among individuals rather
than being directly set. Variation across runs occurs because,
even though the parameters K and L that control population
density and mean lifetime, respectively, were the same in
all simulations, the strength of stochastic effects depends
strongly on the spatial interaction distance s. For instance,
the population density near to individual i (denoted ni above)
is computed by averaging over roughly NW ¼ 4pKs2 individ-
uals, and so has SD proportional to 1=

ffiffiffiffiffiffiffi
NW

p
; it is more vari-

able at lower densities (recall that NW is Wright’s neighborhood
size). Since the probability of survival is a nonlinear func-
tion of ni, actual equilibrium densities and lifetimes differ
from K and L. This is the reason that we included random
mating simulations, where mate choice and offspring dis-
persal are both nonspatial, since this should preserve the
random fluctuations in local population density while
destroying any spatial genetic structure. We verified that
random mating models retained no geographic signal by
showing that summary statistics did not differ significantly
between sampling regimes (Table S2), unlike in spatial
models (discussed below).
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There are a few additional things to note about Figure 2.
First, all three quantities are nonmonotone with neighbor-
hood size. Census size largely declines as neighborhood size
increases for both the spatial and random mating models.
However, for spatial models this decline only begins for
neighborhood size $10. Spatial and random mating models
are indistinguishable from one another for neighborhood
sizes . 100. Census sizes range from about 14,000 at low
s in the random mating model to 10,000 for both models
when neighborhood sizes approach 1000. The scaling of cen-
sus sizes in both random mating and spatial models appears
to be related to two consequences of the spatial competition
function: the decline of fitness at range edges, which effec-
tively reduces the habitable area by one s around the edge of
the map and so results in a smaller habitable area at high s

values; and variation in the equilibrium population density
given varying competition radii. Furthermore, census size
increases in spatial models as neighborhood size increases
from 2 to 10. This may reflect an Allee effect (Allee et al.
1949), in which some individuals are unable to find mates
when the mate selection radius is very small.

Generation time similarly shows complex behavior with
respect to neighborhood sizes, and varies between 5.2 and 4.9
time steps per generation across the parameter range ex-
plored. Under both the spatial and random mating models,
generation time reaches aminimumat a neighborhood size of
around 50. Interestingly, under the range of neighborhood
sizes thatweexamined,generation timesbetween the random
mating and spatial models are never quite equivalent; pre-
sumably this would cease to be the case at neighborhood sizes
higher than we simulated here.

Last, we looked at the variance in number of offspring, a
key parameter determining the effective population size.
Surprisingly, the spatial and random mating models behave
quite differently: while the variance in offspring number
increases nearly monotonically under the spatial model, the
randommatingmodel actually showsadecline in the variance
in offspring number until a neighborhood size of around 10,
before it increases and eventually equals what we observe in
the spatial case.

Run times for our model scale approximately linearly with
neighborhood size (Figure 3), with the lowest neighborhood
sizes reaching 30N generations in around a day and those
with neighborhood size approaching 1000 requiring up to
3 weeks of computation. As currently implemented, running
simulations at neighborhood sizes . 1000 to coalescence is
likely impractical, though running these models for more

limited timescales and then “recapitating” the simulation us-
ing reverse-time simulation from the resulting tree sequence
in msprime is possible (Haller et al. 2019).

Impacts of continuous space on population genetic
summary statistics

Even though certain aspects of population demography de-
pend on the scale of spatial interactions, it still could be that
population genetic variation iswell described by awell-mixed
population model. Indeed, mathematical results suggest that
genetic variation in some spatial models should be well
approximated by a Wright–Fisher population if neighbor-
hood size is large and all samples are geographically widely
separated (Wilkins 2004; Zähle et al. 2005). However, the
behaviors of most common population genetic summary sta-
tistics other than Tajima’s D (Städler et al. 2009) have not yet
been described in realistic geographic models. Moreover, as
we will show, spatial sampling strategies can affect summa-
ries of genetic variation at least as strongly as the underlying
population dynamics.

SFS and summaries of diversity

Figure 4 shows the effect of varying neighborhood size and
sampling strategy on the SFS (Figure 4 and Figure S5) and
several standard population genetic summary statistics (Fig-
ure 4B; additional statistics are shown in Figure S4). Consis-
tent with findings in island and stepping-stone simulations
(Städler et al. 2009), the SFS shows a significant enrichment
of intermediate frequency variants in comparison to the non-
spatial expectation. This bias is most pronounced below a
neighborhood size of 100, and is exacerbated by midpoint
and point sampling of individuals (depicted in Figure 1).
Reflecting this, Tajima’s D is quite positive in the same situ-
ations (Figure 4B). Notably, the point at which Tajima’s D
approaches 0 differs strongly across sampling strategies,
varying from a neighborhood size of roughly 50 for random
sampling to $ 1000 for midpoint sampling.

One of the most commonly used summaries of variation is
Tajima’s summary of nucleotide diversity, up, calculated as
the mean density of nucleotide differences averaged across
pairs of samples. As can be seen in Figure 4B, up in the spatial
model is inflated by up to threefold relative to the random
mating model. This pattern is opposite to the expectation
from census population size (Figure 2), because the spatial
model has lower census size than the random mating model
at neighborhood sizes , 100. Differences between these
models likely occur because up is a measure of mean time

Figure 2 Genealogical parameters from spatial and
random mating SLiM simulations, by neighborhood
size.
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to most recent common ancestor between two samples,
and at small values of s, the time for dispersal to mix
ancestry across the range exceeds the mean coalescent
time under random mating (for instance, at the smallest
value of s= 0.2, the range is 250 dispersal distances wide,
and since the location of a diffusively moving lineage after
k generations has variance ks2, it takes �2502 = 62,500
generations to mix across the range, which is roughly
10 times larger than the random mating effective popula-
tion size). up using each sampling strategy approaches the
random mating expectation at its own rate, but by a neigh-
borhood size of �100 all models are roughly equivalent.
Interestingly, the effect of sampling strategy is reversed
relative to that observed in Tajima’s D; midpoint sampling
reaches random mating expectations around neighbor-
hood size 50, while random sampling is inflated until
around neighborhood size 100.

Values of observed heterozygosity and its derivative FIS
also depend heavily on neighborhood size under spatial
models as well as the sampling scheme. FIS is inflated above
the expectation across most of the parameter space examined
and across all sampling strategies. This effect is caused by a
deficit of heterozygous individuals in low-dispersal simula-
tions, a continuous-space version of the Wahlund effect
(Wahlund 1928). Indeed, for random sampling under the
spatial model, FIS does not approach the random mating
equivalent until neighborhood sizes of nearly 1000. On the
other hand, the dependency of raw observed heterozygosity
on neighborhood size is not monotone. Under midpoint
sampling, observed heterozygosity is inflated even over the

random mating expectation, as a result of the higher propor-
tion of heterozygotes occurring in the middle of the land-
scape (Figure S6). This echoes a report from Shirk and
Cushman (2014), who observed a similar excess of heterozy-
gosity in the middle of the landscape when simulating under
a lattice model.

IBS tracts and correlations with geographic distance

Wenext turn our attention to the effect of geographic distance
on haplotype block length sharing, summarized for sets of
nearby and distant individuals in Figure 5. There are two
main patterns to note. First, nearby individuals share more
long IBS tracts than distant individuals (as expected because
they are on average more closely related). Second, the dif-
ference in the number of long IBS tracts between nearby and
distant individuals decreases as neighborhood size increases.
This reflects the faster spatial mixing of populations with
higher dispersal, which breaks down the correlation between
the IBS tract length distribution and geographic distance.
This can also be seen in the bottom row of Figure 4B, where
the correlation coefficients between the summaries of the
IBS tract length distribution (the mean, skew, and count of
tracts . 106 bp) and geographic distance approaches 0 as
neighborhood size increases.

The patterns observed for correlations of IBS tract lengths
with geographic distance are similar to those observed in the
more familiar correlation of allele frequency measures such
as Dxy (i.e., “genetic distance”) or FST against geographic
distance (Rousset 1997). Dxy is positively correlated with
the geographic distance between the individuals, and the
strength of this correlation declines as dispersal increases
(Figure 4B), as expected (Wright 1943; Rousset 1997). This
relationship is very similar across random and point sampling
strategies, but is weaker for midpoint sampling, perhaps due
to a dearth of long-distance comparisons. In much of empir-
ical population genetics, a regression of genetic differentia-
tion against spatial distance is a de facto metric of the
significance of isolation by distance. The similar behavior of
moments of the pairwise distribution of IBS tract lengths
shows why haplotype block sharing has recently emerged
as a promising source of information on spatial demography,
through methods described in Ringbauer et al. (2017) and
Baharian et al. (2016).

Spatial distribution of allele copies

Mutations occur in individuals and spread geographically
over time. Because low-frequency alleles generally represent
recent mutations (Sawyer 1977; Griffiths et al. 1999), the
geographic spread of an allele may covary along with its
frequency in the population. To visualize this relationship,
we calculated the average distance among individuals carry-
ing a focal derived allele across simulations with varying
neighborhood sizes, shown in Figure 6. On average, we find
that low-frequency alleles are the most geographically re-
stricted, and that the extent to which geography and allele
frequency are related depends on the amount of dispersal in

Figure 3 Run times of continuous space simulations with landscape
width 50 and expected density 5 under varying neighborhood size. Times
are shown for simulations run with mutations applied directly in SLiM
(dashed lines) or later applied to tree sequences with msprime (solid lines).
Times for simulations run with tree sequence recording disabled are
shown in gray. CPU, central processor unit.
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the population. For populations with large neighborhood
sizes we found that even very low-frequency alleles can be
found across the full landscape, whereas in populations with
low neighborhood sizes the relationship between distance
among allele copies and their frequency is quite strong. This
is the basic process underlying Novembre and Slatkin’s
(2009) method for estimating dispersal distances based on
the distribution of low-frequency alleles, and also generates
the greater degree of bias in GWAS effect sizes for low-fre-
quency alleles identified in Mathieson and McVean (2012).

Effects of space on demographic inference

One of the most important uses for population genetic
data is inferring the demographic history of populations. As

demonstrated above, the SFS and thedistribution of IBS tracts
varies across neighborhood sizes and sampling strategies.
Does this variation lead to different inferences of past pop-
ulation sizes?To ask this,we inferred population size histories
from samples drawn fromour simulated populationswith two
approaches: stairwayplot (Liu and Fu 2015), which uses a
genome-wide estimate of the SFS, and SMC++ (Terhorst
et al. 2016), which incorporates information on both the
SFS and LD across the genome.

Figure 7A shows rolling medians of inferred population
size histories from each method across all simulations,
grouped by neighborhood size and sampling strategy. In gen-
eral, thesemethods tend to slightly overestimate ancient pop-
ulation sizes and infer recent population declines when

Figure 4 Site frequency spectrum (A) (note axes are log-scaled) and summary statistic distributions (B) by sampling strategy and neighborhood size. corr,
correlation; dist, distance; dxy, pairwise genetic distance; IBS, identical-by-state; var, variation. Summary statistics are described in detail in Table S1.
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neighborhood sizes are , 20 and sampling is spatially clus-
tered. However, the overestimation of ancient population
sizes is relatively minor, averaging around a twofold infla-
tion at 10,000 generations before being present in the
worst-affected bins. For stairwayplot, we found that many
runs infer dramatic population bottlenecks in the last
1000 generations when sampling is spatially concentrated,
resulting in 10-fold or greater underestimates of recent pop-
ulation sizes. However SMC++ appeared more robust to
this error, with runs on point- and midpoint-sampled simu-
lations at the lowest neighborhood sizes underestimating
recent population sizes by roughly one-half, and those on
randomly sampled simulations showing little error. Above
neighborhood sizes of about 100, both methods performed
relatively well when averaging across results from multiple
simulations.

However, individual simulations were often inferred to
have turbulent demographic histories, as shown by the
individually inferred histories (shown in Figure S7). In-
deed, the SD of inferred Ne across time points (shown in
Figure 7B) often exceeds the expected Ne for both meth-
ods. That is, despite the nearly constant population sizes in
our simulations, both methods tended to infer large fluc-
tuations in population size over time, which could poten-
tially result in incorrect biological interpretations. On
average, the variance of inferred population sizes is ele-
vated at the lowest neighborhood sizes and declines as
dispersal increases, with the strongest effects seen in stair-
wayplot results with clustered sampling and neighborhood
sizes , 20 (Figure 7B).

GWAS

To ask what confounding effects spatial genetic variation
might have on GWAS, we performed GWAS on our simula-
tions using phenotypes that were determined solely by the
environment, so any SNP showing statistically significant
correlationwith aphenotypewas a false positive. As expected,
spatial autocorrelation in the environment causes spurious
associations across much of the genome if no correction for
genetic relatedness among samples is performed (Figure 8
and Figure S8). This effect is particularly strong for clinal and
corner environments, for which the lowest dispersal levels
cause . 60% of SNPs in the sample to return significant
associations. Patchy environmental distributions, which are
less strongly spatially correlated (Figure 8A), cause fewer
false positives overall but still produce spurious associations
at roughly 10% of sites at the lowest neighborhood sizes.
Interestingly we also observed a small number of false posi-
tives in roughly 3% of analyses on simulations with nonspa-
tial environments, both with and without PC covariates
included in the regression.

The confounding effects of geographic structure are well
known, and it is common practice to control for this by
including PCs as covariates to control for these effects. This
mostly works in our simulations: after incorporating the first
10 PC axes as covariates, the vast majority of SNPs no longer
surpass a significance threshold chosen to have a 5% false
discovery rate (FDR). However, a substantial number of
SNPs—up to 1.5% at the lowest dispersal distances—still
surpass this threshold (and thus would be false positives in
a GWAS), especially under corner and patchy environmental
distributions (Figure 8C). At neighborhood sizes. 500, up to
0.31% of SNPs were significant for corner and clinal environ-
ments. Given an average of 132,000 SNPs across simulations
after MAF filtering, this translates to # 382 false-positive
associations; for human-sized genomes, this number would
be much larger. In most cases the P-values for these associa-
tions were significant after FDR correction but would not pass
the threshold for significance under the more conservative
Bonferroni correction (see example Manhattan plots in Fig-
ure S8).

Clinal environments cause an interesting pattern in false
positives after PC correction: at low neighborhood sizes the
correction removes nearly all significant associations, but at
neighborhood sizes . 250 the proportion of significant SNPs
increases to # 0.4% (Figure 8). This may be due to a loss of
descriptive power of the PCs; as neighborhood size increases,
the total proportion of variance explained by the first 10 PC
axes declines from roughly 10 to 4% (Figure 8B). Essentially,
PCA seems unable to effectively summarize the weak popula-
tion structure present in large-neighborhood simulations given
the sample sizes we tested, but these populations continue to
have enough spatial structure to create significant correlations
between genotypes and the environment. A similar process can
also be seen in the corner phenotype distribution, in which the
count of significant SNPs initially declines as neighborhood size

Figure 5 Cumulative distributions for IBS tract lengths per pair of indi-
viduals at different geographic distances, across three NSs. Nearby pairs
(red curves) share many more long IBS tracts than do distant pairs (blue
curves), except in the random mating model. The distributions of long IBS
tracts between nearby individuals are very similar across NSs, but distant
individuals are much more likely to share long IBS tracts at high NS than at
low NS. IBS, identical-by-state; NS, neighborhood size.
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increases and then increases at approximately the point at which
the proportion of variance explained by PCA approaches its
minimum.

Figure 8D shows quantile–quantile plots for a subset of
simulations that show the degree of genome-wide inflation
of test statistics in PC-corrected GWAS across all simulations
and environmental distributions. An alternate visualiza-
tion is also included in Figure S9. For clinal environments,
2log10ðpÞ values are most inflated when neighborhood sizes
are large, consistent with the pattern observed in the count of
significant associations after PC regression. In contrast, cor-
ner and patchy environments cause the greatest inflation in
2log10ðpÞ at neighborhood sizes, 100, which likely reflects
the inability of PCA to account for fine-scale structure caused
by very limited dispersal. Finally, we observed that PC regres-
sion appears to overfit to some degree for all phenotype dis-
tributions, visible in Figure 8D as points falling below the 1:1
line.

Discussion

In this study, we have used efficient forward-time population
genetic simulations to describe the myriad influences of con-
tinuous geography on genetic variation. In particular, havewe
examined how three main types of downstream empirical
inference are affected by unmodeled spatial population struc-
ture: population genetic summary statistics, inference of pop-
ulation size history, and GWAS. As discussed above, space
often matters (and sometimes dramatically), both because of
how samples are arranged in space and because of the in-
herent patterns of relatedness established by geography.

Effects of dispersal

Limited dispersal inflates effective population size, creates
correlations between genetic and spatial distances, and intro-
duces strong distortions in the SFS that are reflected in a
positive Tajima’s D (Figure 4). At the lowest dispersal dis-
tances, this can increase genetic diversity threefold relative
to random mating expectations. These effects are strongest

when neighborhood sizes are, 100, but in combination with
the effects of nonrandom sampling they can persist up to
neighborhood sizes of $ 1000 (e.g., inflation in Tajima’s D
and observed heterozygosity under midpoint sampling). If
samples are chosen uniformly from across space, the general
pattern is similar to expectations of the original analytic
model of Wright (1943), which predicts that populations
with neighborhood sizes , 100 will differ substantially from
random mating, while those above 10,000 will be nearly in-
distinguishable from panmixia.

Thepatternsobserved in sequencedata reflect theeffects of
space on the underlying genealogy. Nearby individuals co-
alesce rapidly under limited dispersal and so are connected by
short branch lengths, while distant individuals take much
longer to coalesce than they would under random mating.
Mutation and recombination events in our simulation both
occur at a constant rate alongbranchesof thegenealogy, so the
genetic distance and number of recombination events sepa-
rating sampled individuals simply gives a noisy picture of the
genealogies connecting them. Tip branches (i.e., branches
subtending only one individual) are then relatively short,
and branches in the middle of the genealogy connecting local
groups of individuals are relatively long, leading to the biases
in the SFS shown in Figure 4.

The genealogical patterns introduced by limited dispersal
areparticularly apparent in thedistributionofhaplotypeblock
lengths (Figure 4). This is because IBS tract lengths reflect the
impacts of two processes acting along the branches of the
underlying genealogy, both mutation and recombination,
rather than just mutation, as is the case when looking at
the SFS or related summaries. This means that the pairwise
distribution of haplotype block lengths carries with it impor-
tant information about genealogical variation in the popula-
tion, and correlation coefficients between moments of this
distribution and geographic location contain signals similar
to the correlations between FST or Dxy and geographic dis-
tance (Rousset 1997). Indeed, this basic logic underlies two
recent studies explicitly estimating dispersal from the distri-
bution of shared haplotype block lengths (Baharian et al.

Figure 6 Spatial spread of rare alleles by NS. Each plot shows the distribution (across derived alleles and simulations) of average pairwise distance
between individuals carrying a focal derived allele and derived allele frequency. NS, neighborhood size.
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2016; Ringbauer et al. 2017). Conversely, because haplotype-
based measures of demography are particularly sensitive to
variation in the underlying genealogy, inference approaches
that assume random mating when analyzing the distribution
of shared haplotype block lengths are likely to be strongly
affected by spatial processes.

Effects of sampling

Oneof themost important differencesbetween randommating
and spatial models is the effect of sampling: in a randomly
mating population, the spatial distribution of sampling effort
has no effect on estimates of genetic variation (Table S1), but
when dispersal is limited, sampling strategy can compound
spatial patterns in the underlying genealogy and create perva-
sive impacts on all downstream genetic analyses [see also

Städler et al. (2009)]. In most species, the difficulty of travel-
ing through all parts of a species range and the inefficiency of
collecting single individuals at each sampling site means that
most studies follow something closest to the point sampling
strategy we simulated, in which multiple individuals are sam-
pled from nearby points on the landscape. For example, in
ornithology a sample of 10 individuals per species per locality
is a common target when collecting for natural history mu-
seums. In classical studies ofDrosophila variation the situation
is considerably worse, in which a single orchard might be
extensively sampled.

When sampling is clustered at points on a landscape and
dispersal is limited, the sampled individuals will be more
closely related than a random set of individuals. Average
coalescence times of individuals collected at a locality will

Figure 7 (A) Rolling median in-
ferred Ne trajectories for stairway-
plot and SMC++ across sampling
strategies and NS bins. The dotted
line shows the mean Ne of random
mating simulations. (B) SD of individ-
ual inferredNe trajectories, by NS and
sampling strategy. Black lines are
loess curves. Plots including individ-
ual model fits are shown in Figure
S7. NS, neighborhood size.
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then bemore recent and branch lengths shorter than expected
by analyses assuming random mating. This leads to fewer
mutations and recombination events occurring since their last
commonancestor, causinga randomset of individuals to share
longer average IBS tracts and have fewer nucleotide differ-
ences. For some data summaries, such as Tajima’s D, Watter-
son’s u, or the correlation coefficient between spatial distance
and the count of long haplotype blocks, this can result in large
differences in estimates between random and point sampling
(Figure 4). Inferring underlying demographic parameters
from these summary statistics, unless the spatial locations
of the sampled individuals are somehow taken into account,
will likely be subject to bias.

We observed the largest sampling effects using midpoint
sampling. This model is meant to reflect a bias in sampling
effort toward the middle of a species’ range. In empirical
studies this sampling strategy could arise if, for example,

researchers choose to sample the center of the range and
avoid range edges to maximize the probability of locating
individuals during a short field season. Because midpoint
sampling provides limited spatial resolution, it dramatically
reduces the magnitude of observed correlations between spa-
tial and genetic distances. More surprisingly, midpoint sam-
pling also leads to strongly positive Tajima’s D and an
inflation in the proportion of heterozygous individuals in
the sample, similar to the effect of sampling a single deme
in an island model as reported in Städler et al. (2009). This
increase in observed heterozygosity appears to reflect the ef-
fects of range edges, which are a fundamental facet of spatial
genetic variation. If individuals move randomly in a finite
two-dimensional landscape then regions in the middle of
the landscape receive migrants from all directions, while
those on the edge receive no migrants from at least one di-
rection. The average number of new mutations moving into

Figure 8 Impacts of spatially varying environments and isolation by distance on linear regression GWAS. Simulated quantitative phenotypes are
determined only by an individual’s location and the spatial distribution of environmental factors. In (A) we show the phenotypes and locations of
sampled individuals under four environmental distributions, with transparency scaled to phenotype. As neighborhood size increases a PCA explains less
of the total variation in the data (B). Spatially correlated environmental factors cause false positives at a large proportion of SNPs, which is partially but
not entirely corrected by adding the first 10 PC coordinates as covariates (C). Quantile–quantile plots in (D) show inflation of 2log10ðpÞ after PC
correction for simulations with spatially structured environments, with line colors showing the neighborhood size of each simulation. FDR, false discovery
rate; GWAS, genome-wide association study; PC, principal component; PCA, PC analysis.
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the middle of the landscape is then higher than the number
moving into regions near the range edge, leading to higher
heterozygosity and lower inbreeding coefficients (FIS) away
from range edges. Though here we used only a single param-
eterization of fitness decline at range edges, we believe this is a
general property of noninfinite landscapes as it has also been
observed in previous studies simulating under lattice models
(Neel et al. 2013; Shirk and Cushman 2014).

In summary, we recommend that empirical researchers
collect individuals from across as much of the species’ range
as practical, choosing samples separated by a range of spatial
scales. Many summary statistics are designed for well-mixed
populations, and so provide different insights into genetic
variation when applied to different subsets of the population.
Applied to a cluster of samples, summary statistics based on
segregating sites (e.g., Watterson’s u and Tajima’s D), hetero-
zygosity, or the distribution of long haplotype blocks can be
expected to depart significantly fromwhat would be obtained
from a wider distribution of samples. Comparing the results
of analyses conducted on all individuals vs. those limited to
single individuals per locality can provide an informative
contrast. Finally, we wish to point out that the bias toward
intermediate allele frequencies that we observe may mean
that the importance of linked selection, at least as is gleaned
from the SFS,may currently be systematically underestimated.

Demography

Previous studies have found that population structure and
nonrandom sampling can create spurious signals of popula-
tion bottlenecks when attempting to infer demographic his-
tory with microsatellite variation, summary statistics, or runs
of homozygosity (Ptak and Przeworski 2002; Leblois et al.
2006; Städler et al. 2009; Chikhi et al. 2010; Mazet et al.
2015). Here, we found that methods that infer detailed pop-
ulation trajectories through time based on the SFS and pat-
terns of LD across the genome are also subject to this bias,
with some combinations of dispersal and sampling strategy
systematically inferring deep recent population bottlenecks
and overestimating ancient Ne by around a factor of 2. We
were surprised to see that both stairwayplot and SMC++ can
tolerate relatively strong isolation by distance—i.e., neigh-
borhood sizes of 20—and still perform well when averaging
results across multiple simulations (however, note the high
amount of between-simulation variance seen in Figure S7).
Inference in populations with neighborhood sizes . 20 was
relatively unbiased unless samples were concentrated in the
middle of the range (Figure 7). Although median demogra-
phy estimates across many independent simulations were
fairly accurate, empirical work has only a single estimate to
work with, and individual model fits (Figure S7) suggest that
spuriously inferred population size changes and bottlenecks
are common, especially at small neighborhood sizes. As we
will discuss below, most empirical estimates of neighborhood
size, including all estimates for human populations, are large
enough that population size trajectories inferred by these
approaches should not be strongly affected by spatial biases

created by dispersal in continuous landscapes. In contrast,
Mazet et al. (2015) found that varying migration rates
through time could create strong biases in inferred popula-
tion trajectories from an n-island model with parameters rele-
vant for human history, suggesting that changes in migration
rates through time are more likely to drive variation in inferred
Ne than isolation by distance.

We found that SMC++ was more robust to the effects of
space than stairwayplot, underestimating recent populations
by roughly one-half in the worst time periods rather than
nearly 10-fold as with stairwayplot. Though this degree of
variation in population size is certainly meaningful in an
ecological context, it is relatively minor in population genetic
terms. Methods directly assessing haplotype structure in
phased data examples (e.g., Browning and Browning 2015)
are thought to provide increased resolution for recent demo-
graphic events, but in this case the error we observed was
essentially an accurate reflection of underlying genealogies
inwhich terminal branches are anomalously short. Combined
with our analysis of IBS tract length variation (Figure 5) this
suggests that haplotype-based methods are likely to be af-
fected by similar biases.

A more worrying pattern was the high level of variance in
inferred Ne trajectories for individual model fits using these
methods, which was highest in simulations with the smallest
neighborhood size (Figure 7 and Figure S7). This suggests
that, at a minimum, researchers working with empirical data
should replicate analyses multiple times and take a rolling
average if model fits are inconsistent across runs. Splitting
samples and running replicates on separate subsets, the clos-
est an empirical study can come to our design of averaging
the results from multiple simulations, may also alleviate this
issue.

Our analysis suggests that many empirical analyses of
population size history usingmethods like SMC++are robust
to error caused by spatial structure within continuous land-
scapes. Inferences drawn from static SFS-based methods like
stairwayplot should be treated with caution when there are
signs of isolation by distance in the underlying data (for
example, if a regression of FST against the logarithm of geo-
graphic distance has a significantly positive slope), and in
particular an inference of population bottlenecks in the last
1000 years should be discounted if sampling is clustered, but
estimates of deeper time patterns are likely to be fairly accu-
rate. The biases in the SFS and haplotype structure identified
above (see also: Wakeley 1999; Städler et al. 2009; Chikhi
et al. 2010) are apparently small enough that they fall within
the range of variability regularly inferred by these ap-
proaches, at least on data sets of the size we simulated.

GWAS

Spatial structure is particularly challenging for GWAS, be-
cause the effects of dispersal on genetic variation are com-
pounded by spatial variation in the environment (Mathieson
and McVean 2012). Spatially restricted mate choice and dis-
persal causes variation in allele frequencies across the range
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of a species. If environmental factors affecting the phenotype
of interest also vary over space, then allele frequencies and
environmental exposures will covary over space. In this sce-
nario, an uncorrected GWAS will infer genetic associations
with a purely environmental phenotype at any site in the
genome that is differentiated over space, and the relative
degree of bias will be a function of the degree of covariation
in allele frequencies and the environment (i.e., Figure 8C,
bottom panel). This pattern has been demonstrated in a va-
riety of simulation and empirical contexts (Yu et al. 2005;
Price et al. 2006; Kang et al. 2008, 2010; Mathieson and
McVean 2012; Bulik-Sullivan et al. 2015; Sohail et al. 2019;
Young et al. 2018; Berg et al. 2019).

Incorporating PC positions as covariates in a linear-regres-
sion GWAS (Price et al. 2006) is designed to address this
challenge by regressing out a baseline level of average differ-
entiation. In essence, a PC-corrected GWAS asks “what re-
gions of the genome are more associated with this phenotype
than the average genome-wide association observed across
populations?” In our simulations, we observed that this pro-
cedure can fail under a variety of circumstances. If dispersal is
limited and environmental variation is clustered in space
(i.e., corner or patchy distributions in our simulations), PC
positions fail to capture the fine-scale spatial structure re-
quired to remove all signals of association. Conversely, as
dispersal increases, PCA loses power to describe population
structure before spatial mixing breaks down the relationship
between genotype and the environment. These effects were
observed with all spatially correlated environmental pat-
terns, but were particularly pronounced if environmental ef-
fects were concentrated in one region, as was also found by
Mathieson and McVean (2012). Though increasing the num-
ber of PC axes used in the analysis may reduce the false-
positive rate, this may also decrease the power of the test
to detect truly causal alleles (Lawson et al. 2020).

In this work, we simulated a single chromosome with size
roughly comparable to one human chromosome. If we scale
the number of false-positive associations identified in our
analyses to a GWAS conducted on whole-genome data from
humans, wewould expect to see several thousandweak false-
positive associations after PC corrections in a population with
neighborhood sizes up to at least 1000 (which should include
values appropriate for many human populations). Notably,
very few of the spurious associations we identified would be
significant at a conservative Bonferroni-adjusted P-value cut-
off (see Figure S8). This suggests that GWAS focused on
finding strongly associated alleles for traits controlled by a
limited number of variants in the genome are likely robust to
the impacts of continuous spatial structure. However, meth-
ods that analyze the combined effects of thousands or mil-
lions of weakly associated variants, such as polygenic risk
scores (Wray et al. 2007; International Schizophrenia
Consortium et al. 2009), are likely to be affected by subtle
population structure. Indeed, as recently identified in studies
of genotype associations for human height in Europe (Sohail
et al. 2019; Berg et al. 2019), PC regression GWAS in

modern human populations do include residual signals of
population structure in large-scale analyses of polygenic
traits. In addition to errors associated with varying pat-
terns of LD and allele frequency among populations, the
confounding of environmental and genetic effects on phe-
notypes introduced by population structure is expected to
lead to low predictive power when polygenic scores are
generated for populations outside the original GWAS co-
hort, as was shown in a recent study finding lower poly-
genic score predictive power outside European populations
(Martin et al. 2019).

In summary, spatial covariation inpopulation structure and
the environment confounds the interpretation of GWAS
P-values, and correction using PCs is insufficient to fully sep-
arate these signals for polygenic traits under a variety of
environmental and population parameter regimes. Other
GWAS methods such as mixed models (Kang et al. 2008)
may be less sensitive to this confounding, but there is no
obvious reason that this should be so. One approach to esti-
mating the degree of bias in GWAS caused by population
structure is LD score regression (Bulik-Sullivan et al. 2015).
Though this approach appears to work well in practice, its
interpretation is not always straightforward and it is likely
biased by the presence of linked selection (Berg et al. 2019).
In addition, we observed that in many cases the false-positive
SNPs we identified appeared to be concentrated in LD peaks
similar to those expected from truly causal sites (Figure S8),
which may confound LD score regression.

We suggest a straightforward alternative for species in
which the primary axes of population differentiation are
associated with geography (note this is likely not the case
for some modern human populations): run a GWAS with
spatial coordinates as phenotypes and check for P-value in-
flation or significant associations. If significant associations
with sample locality are observed after correcting for popu-
lation structure, the method is sensitive to false positives in-
duced by spatial structure. This is essentially the approach
taken in our clinal model (though we add normally distrib-
uted noise to our phenotypes). This approach was recently
taken with polygenic scores for UK Biobank samples in
Haworth et al. (2019), finding that scores are correlated with
birth location even in this relatively homogenous sample. Of
course, it is possible that genotypes indirectly affect individ-
ual locations by adjusting organismal fitness and thus habitat
selection across spatially varying environments, but we be-
lieve that this hypothesis should be tested against a null of
stratification bias inflation rather than accepted as true based
on GWAS results.

Where are natural populations on this spectrum?

For how much of the tree of life do spatial patterns circum-
scribe genomic variation? In Table 1, we gathered estimates
of neighborhood size from a range of organisms to get an idea of
how strongly local geographic dispersal affects patterns of var-
iation. This is an imperfect measure: some aspects of genetic
variation are most strongly determined by neighborhood
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size (Wright 1946), others (e.g., number of segregating
sites) by global Ne, or the ratio of the two. In addition,
definitions of population density in genetic vs. ecological
studies may lead to varying estimates of neighborhood size
for a given species, and these empirical examples may be
biased toward small-neighborhood species because few
studies have quantified neighborhood size in species with
very high dispersal or population density.

However, fromtheavailabledatawefindthatneighborhood
sizes in the range we simulated are fairly common across a
range of taxa. At the extreme low end of empirical neighbor-
hood size estimates we see some flowering plants, large mam-
mals, and colonial insects likeantswithneighborhood sizes less
than roughly 100. Species such as this have neighborhood size
estimates small enough that spatial processes are likely to
strongly influence inference. These include some human pop-
ulations such as the Gainj- and Kalam-speaking people of
PapuaNewGuinea, inwhich the estimated neighborhood sizes
in Rousset (1997) range from 40 to 410 depending on the
method of estimation. Many more species occur in a middle
range of neighborhood sizes between 100 and 1000, a range in
which spatial processes play aminor role in our analyses under
random spatial sampling but are important when sampling of
individuals in space is clustered. Surprisingly, even some flying
insects with huge census population sizes fall in this group,
including fruit flies (Drosophila melanogaster) and mosquitoes
(Aedes aegypti). Last, many species likely have neighborhood
sizes much larger than we simulated, including the recent
ancestors of modern humans in northeastern Europe
(Ringbauer et al. 2017). For these species, demographic in-
ference and summary statistics are likely to reflect minimal
bias from spatial effects as long as dispersal is truly continuous
across the landscape. While that is so, we caution that associa-
tion studies in which the effects of population structure are
confounded with spatial variation in the environment are still
sensitive to dispersal even at these large neighborhood sizes.

Other demographic models

Any simulation of a population of reproducing organisms
requires some kind of control on population sizes, or else
the population will either die out or grow very large after a
sufficiently longperiodof time.Theusual choice of population
regulation for population genetics—a constant size, as in the
Wright–Fisher model—implies biologically unrealistic inter-
actions between geographically distant parts of the species
range. Our choice to regulate population size by including a
local density-dependent control on mortality is only one of
many possible ways to do this. We could have instead regu-
lated fecundity, or recruitment, or both; this general class of
models is sometimes referred to as the “Bolker–Pacala
model” (Bolker and Pacala 1997). It is not currently clear
how much different choices of demographic parameters, or
of functional forms for the regulation, might quantitatively
affect our results, although the general predictions should be
robust to similar forms of regulation. As is usual in population
genetics, the populations are entirely intrinsically regulated.

Alternatively, population size could be regulated by interac-
tions with other species (e.g., a Lotka–Volterra model) or
extrinsically specified by local resource availability (e.g., by
food or nest site availability). Indeed, our model could be
interpreted as a caricature of such a model: as local density
increases, good habitat is increasingly occupied, pushing in-
dividuals into more marginal habitat and increasing their
mortality. Many such models should behave similarly to ours,
but others (especially those with local population cycling)
may differ dramatically.

Population genetic simulations often use grids of discrete
demes, which are assumed to approximate continuous space.
However, there are theoretical reasons to expect that increas-
ingly fine grids of discrete demes do not approach the con-
tinuousmodel (Barton et al. 2002). If continuous space can be
approximated by a limit of discrete models, this should be
true regardless of the precise details of the discrete model.
Although we carefully chose parameters to match our con-
tinuous models, we found that some aspects of genetic vari-
ation diverged from the continuous case as the discretization
got finer. This suggests that these models do not converge in
the limit. However, many populations may indeed be well
modeled as a series of discrete, randomly mating demes if,
for example, suitable habitats are patchily distributed across
the landscape. There is a clear need for greater exploration of
the consequences for population genetics of ecologically re-
alistic population models.

Future directions and limitations

As we have shown, a large number of population genetic
summary statistics contain information about spatial popula-
tion processes. We imagine that combinations of such sum-
maries might be sufficient for the construction of supervised
machine learning regressors (e.g., Schrider and Kern 2018)
for the accurate estimation of dispersal from genetic data.
Indeed, Ashander et al. (2018 preprint) found that inverse
interpolation on a vector of summary statistics provided a
powerful method of estimating dispersal distances. Expand-
ing this approach to include the haplotype-based summary
statistics studied here and applying machine learning regres-
sors built for general inference of nonlinear relationships
from high-dimensional data may allow precise estimation
of spatial parameters under a range of complex models.

One facet of spatial variation thatwedid not address in this
study is the confounding of dispersal and population density
implicit in the definition of Wright’s neighborhood size. Our
simulations were run under constant densities, but Guindon
et al. (2016) and Ringbauer et al. (2017) have shown that
these parameters are identifiable under some continuous
models. Similarly, though the scaling effects of dispersal we
show in Figure 4 should occur in populations of any total size,
other aspects such as the number of segregating sites are also
likely affected by the total landscape size (and so total census
size). Indeed, our finding that stepping-stone and continu-
ous-space models match in only certain aspects of genetic
variation (Figure A1) shows that qualitatively similar models
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can produce different results dependent on the specific pa-
rameterizations used. While we believe our continuous
model is a more appropriate depiction of many species’ de-
mographies than lattice models, it is likely that some popu-
lations and breeding systems do more closely resemble a
series of interconnected randommating populations. As with
all population models, the best approximation for any empir-
ical systemwill depend on the natural history of the species in
question. Much additional work remains to be done to better
understand how life history, range size, and habitat geometry
interact to shape genetic variation in continuous space, which
we leave to future studies.

Though our simulation allows incorporation of realistic
demographic and spatial processes, it is inevitably limited by
the computational burden of tracking tens or hundreds of
thousands of individuals in every generation. In particular,
computations required for mate selection and spatial compe-
tition scale approximatelywith the product of the total census
size and the neighborhood size, and so increase rapidly for
large populations and dispersal distances. The reverse-time
spatial L-Fleming–Viot model described by Barton et al.
(2010) and implemented by Kelleher et al. (2014) allows
exploration of larger population and landscape sizes, but
the precise connection of these models to forward-time de-
mography is not yet clear. Alternatively, implementation of
parallelized calculations may allow progress with forward-
time simulations.

Finally, we believe that the difficulties in correcting for
population structure in continuous populations using PCA or
similar decompositions is a difficult issue, well worth consid-
ering on its own. How canwe best avoid spurious correlations
while correlating genetic and phenotypic variation without
underpowering themethods? Perhaps optimistically, we posit
that process-driven descriptions of ancestry and/or more
generalized unsupervised methods may be able to better
account for carrying out this task.
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Appendix

Comparisons with Stepping-Stone Models

We also compared our model results to a regular grid of discrete populations, which is commonly used as an approximation of
continuous geography. An important reason that this approximation is often made is that it allows more efficient, coalescent
simulations; we implemented these using msprime (Kelleher et al., 2016). In this class of model, we imagine an n3 n grid of
populations exchanging migrants with neighboring populations at rate m. If these models are good approximations of the
continuous case we expect that results will converge as n / N (while scaling m appropriately and keeping total population
size fixed), so we ran simulations while varying n from 5 to 50 (Table A1). To compare with continuous models, we first
distributed the same effective number of individuals across the landscape as in our continuous-space simulations (�6100,
estimated from up of randommating continuous-space simulations). We then approximated themean per generation dispersal
distance s given a total landscape widthW as the product of the probability of an individual being a migrant and the distance
traveled by migrants: s ¼ 4mðW=nÞ. This means that m in different simulations with the same s scales with

ffiffiffi
n

p
. We ran

500 simulations for each value of n while sampling s from U(0.2, 4). We then randomly selected 60 diploid individuals from
each simulation (approximating diploidy by combining pairs of chromosomes with contiguous indices within demes) and
calculated a set of six summary statistics using the scripts described in the summary statistics portion of the main text.

In general, we find that many of the qualitative trends are similar among continuous and stepping-stone models and that, at
low neighborhood sizes, many (but not all) statistics from stepping-stone models approach the continuous model as the
resolution of the grid increases. For example, up is lower in stepping-stone models at low neighborhood sizes (i.e., lowm), but
increases to approach the continuous case as the resolution of the landscape increases. Similar patterns are observed for
observed heterozygosity. However, uW behaves differently, showing a nonmonotonic relationship with grid resolution. This
results in an increasingly positive Tajima’s D in grid simulations at small neighborhood sizes, to a much greater extent than
seen in a continuous model. In contrast to up, increasing the resolution of the grid causes Tajima’s D to deviatemore fromwhat
is seen in the continuousmodel. Similarly, although FIS approaches the continuous case as the resolution of the grid increases at
very small neighborhood sizes, at intermediate neighborhood sizes the continuous case best matches intermediate grid
resolutions.

Thesedifferences relative toour continuousmodelmainly reflect twoshortcomingsof the reverse-time stepping-stonemodel.
If we simulate a coarse grid with relatively large populations in each deme, we cannot accurately capture the dynamics of small
neighborhood sizes becausematingwithin each deme remains random regardless of themigration rate connecting demes. This
likely explains the trends in up, observed heterozygosity, and FIS. However, increasing the number of demes while holding the
total number of individuals constant results in small within-deme populations for which even the minimum sample size of
1 approaches the local Ne (Table A1). This results in an excess of short terminal branches in the coalescent tree, which
decreases the total branch length and leads to fewer segregating sites, deflated uW, and inflated Tajima’s D. Overall, the
stepping-stone model reproduces important features of spatial structure in our continuous space model, such as a decline in up
and correlations between spatial and genetic distance with increasingmigration, but introduces artifacts caused by binning the
landscape into discrete demes.

Demographic Model

Local population regulation is controlled by two parameters, L and K. Here, we show that these should be close to the average
life span of an individual and the average number of individuals per unit area, respectively. We chose our demographic model
so that every individual has on average 1/L offspring each time step, and if the local population density of an individual is n,
then their probability of survival until the next time step is:

p ¼ min

 
0:95;

1
1þ n=

�
Kð1þ LÞ�

!
: (A1)

Table A1 Stepping-stone simulation parameters

Demes per side (n) Ne per deme Samples per deme

5 244 20
10 61 10
20 15.25 2
50 2.44 1
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Wecapped survival at 0.95 so thatwewouldnothaveexceptionally long-lived individuals in sparsely populatedareas, otherwise
an isolated individual might live for a very long time. Since 12 p � n=ðKð1þ LÞÞ, mortality goes up roughly linearly with the
number of neighbors (on a scale given by K), as would be obtained if, for instance, mortality is due to agonistic interactions.
Ignoring migration, a region is at demographic equilibrium if the per-capita probability of death is equal to the birth rate, i.e., if
12 p ¼ 1=L (note that there is no effect of age in the model, which would make the analysis more complicated). Solving this
for n, we get that in a well-mixed population, the equilibrium density should be around

n ¼ K
Lþ 1
L21

(A2)

individuals per unit area. At this density, the per-capita death rate is 1/L, so themean lifetime is L. This equilibriumdensity is not
K, but (since L = 4) is two-thirds larger. However, in practice this model leads to a total population size that is around K
multiplied by total geographic area (but which depends on s, as discussed above). The main reason for this is that since
offspring tend to be near their parents, individuals tend to be “clumped,” and so experience a higher average density than the
density one would compute by dividing census size by geographic area (Lloyd 1967). To maintain a constant expected total
population size would require making (say) K depend on s; however, typical local population densities might then be more
dissimilar.

Figure A1 Summary statistics for two-dimensional coalescent stepping-stone models with fixed total Ne and varying numbers of demes per side. The
black “infinite” points are from our forward-time continuous space model. Interdeme migration rates are related to s as described above.
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