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Abstract

Background: Platelets are essential to physiological hemostasis or pathological thrombus formation. Current antiplate-

let agents inhibit platelet aggregation but leave patients at risk of systemic side-effects such as hemorrhage. Newer

therapeutic strategies could involve targeting this cascade earlier during platelet adhesion or activation via inhibitory

effects on specific glycoproteins, the thrombogenic collagen receptors found on the platelet surface.

Aims: Glycoprotein VI (GPVI) is increasingly being recognized as the main platelet-collagen receptor involved in arterial

thrombosis. This review summarizes the crucial role GPVI plays in ischemic stroke as well as the current strategies used

to attempt to inhibit its activity.

Summary of review: In this review, we discuss the normal hemostatic process, and the role GPVI plays at sites of

atherosclerotic plaque rupture. We discuss how the unique structure of GPVI allows for its interaction with collagen and

creates downstream signaling that leads to thrombus formation. We summarize the current strategies used to inhibit

GPVI activity and how this could translate to a clinically viable entity that may compete with current antiplatelet therapy.

Conclusion: From animal models, it is clear that GPVI inhibition leads to an abolished platelet response to collagen and

reduced platelet aggregation, culminating in smaller arterial thrombi. There is now an increasing body of evidence that

these findings can be translated into the development of a bleeding free pharmacological entity specific to sites of plaque

rupture in humans.
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Introduction

Ischemic stroke is a worldwide leading cause of disabil-
ity and death.1 An important and distinct subtype of
ischemic stroke is due to the acute rupture of athero-
sclerotic plaques seen in large artery disease.2 The
mechanism of cerebral hypoperfusion involves platelets
binding to exposed sub-endothelial collagen (adhesion),
resulting in platelet activation, aggregation, and throm-
bus formation. Unstable thrombi can detach and travel
to cerebral vessels causing stroke. As a result, the cur-
rent management of acute stroke involves using anti-
platelet agents such as aspirin and clopidogrel that
inhibit platelet activation/aggregation, but often at
the risk of off-target adverse effects such as
hemorrhage.3,4

Novel therapeutic strategies could involve targeting
this cascade earlier during platelet adhesion or
activation via inhibitory effects on specific platelet
glycoproteins, the thrombogenic collagen receptors on
their surfaces. Glycoprotein VI (GPVI) is one such

crucial transmembrane collagen receptor and pharma-
cological inhibition of GPVI, in order to stop patho-
logical thrombus formation specific to the site of vessel
injury, is currently being explored.

Hemostasis – clotting and thrombus
formation

Platelets are anucleate cells derived from megakaryo-
cytes. They contain unique cytoplasmic structures,
a- and dense granules that can rapidly release their con-
tents upon activation, promoting thrombus formation.
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Under normal hemostasis numerous protective barriers
to thrombus formation exist to contain it to the injured
site. This includes the continuous lining of endothelium
that prevents platelets coming into contact with the
prothrombotic sub-endothelial matrix,5 expression of
ectonucleoside triphosphate diphosphohydrolase
(CD39/ENTPD1)6 and secretion of prostacyclin
(PGI2) and nitric oxide.

There are four main platelet glycoprotein receptors
that participate in the platelet–collagen interaction and
facilitate thrombus formation. The GPIb-IX-V com-
plex (GPlba, GPIbb, GPIX and GPV) binds to von
Willebrand factor (VWF) immobilized on collagen.
Both GP Ia/IIa (integrin a2b1) and GPVI bind directly
to exposed collagen. GPIIb/IIIa (integrin aIIbb3) are
converted to their high-affinity forms via inside-out sig-
naling in activated platelets, enabling them to bind free
fibrinogen and VWF.

Fibrous collagen is the ligand for both GPVI and
integrin a2b1. Each collagen monomer comprises
three 1000 amino acid polypeptides arranged in a
triple helix, and bundles of these monomers align to
form collagen fibers.7 With atherosclerotic plaque rup-
ture, the sub-endothelial fibrillar collagens (types I and
III) are exposed to the blood stream. Under high shear

(arterial flow), VWF becomes immobilized on the
exposed collagen fibers and binds with the GPIb-IX-V
complex8–10 (Figure 1). Platelets translocate on the col-
lagen surface until firmly arrested through almost sim-
ultaneous binding with integrin a2b1 and GPVI. GPVI
engagement with collagen (via GPVI dimers) initiates a
signaling cascade leading to platelet activation and
inside-out signaling (and intracellular calcium mobiliza-
tion) that converts low affinity forms of integrins aIIbb3
and a2b1 into their active forms, as well as further clus-
tering of GPVI receptors.8

Activated platelets rapidly synthesize thromboxane
A2 (TxA2) and secrete this, along with the contents
of their alpha (fibrinogen, P-selectin, and VWF
multimers) and dense granules (ADP).9 An increase in
intracellular calcium in response to ADP and TxA2
induces platelet shape change to an irregular shape
with multiple filipoidal surfaces. This facilitates the for-
mation of a close structure of folded platelets in the
platelet plug.

Now non-activated platelets are recruited into the
growing thrombus, also becoming activated by
ADP and TxA2. GPVI-activated platelets provide a
pro-coagulant surface for the generation of throm-
bin—separately through the coagulation cascade by

Figure 1. Collagen-binding receptors (GPIb, GPVI, and integrin a2b1) involved in platelet adhesion and activation. Sub-

endothelial collagen exposed upon vessel injury binds to von Willebrand factor (vWF) in the blood (step 1). Platelets become

tethered to collagen fibers by their vWF receptor GPIb—a weak interaction—so platelets transiently bind and detach, moving

along the collagen (step 2). Platelets become firmly attached when their collagen receptors GPVI dimer and integrin a2b1 binds to

collagen; signaling through either GPVI or GPIb converts integrin a2b1 to its high affinity form (step 3). GPVI engagement with

collagen initiates a signaling cascade that culminates in platelet activation, spreading, and granule contents release (step 4),

recruiting other platelets and forming a thrombus (steps 5 and 6). Integrin aIIbb3 (not shown) becomes activated through inside-

out-signaling, enabling it to bind fibrinogen, through which inter-platelet bridges can be formed, allowing thrombus propagation.
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releasing several substances like FV, FXIII, fibrinogen,
and Protein S. This further activates platelets and con-
verts fibrinogen to fibrin, resulting in a strong mesh
structure.

Glycoprotein VI and its structure

Glycoprotein VI, a 62-kDA transmembrane
glycoprotein exclusively expressed in platelets and
megakaryocytes, is associated with an immunoreceptor
tyrosine-based-activation motif (ITAM) containing sig-
naling subunit FcRg (Figure 2).10 Its gene is mapped to
19q13.4 of the human genome. GPVI contains two
IgG-like extracellular domains (D1 and D2) linked by
a peptide strand; D2 is connected to the transmem-
brane domain via a glycosylated stem; and its 51
amino acid cytoplasmic tail is required for signal
transmission.11,12

GPVI exists in both monomeric and back-to-back
dimeric forms on the platelet surface13 and forms a
non-covalently linked complex with the Fc receptor g-
chain (FcRg) via a salt bridge formed between their
transmembrane domains. FcRg itself is also a dimer,

held together by covalent links and is essential for
GPVI expression, as FcRg knockout mice do not
express GPVI.14 Dimerization or multimerization of
GPVI was first suggested by Berlanga et al.15 but
proof of the actual existence on platelets was first pro-
vided by Jung et al.16 Later, they found that constitu-
tive dimers of GPVI make up of about 20% of the total
GPVI13,17 in resting platelets of normal individuals and
platelet activation increases the number of dimers.17

Only GPVI dimer has high affinity for collagen, while
the monomer binds weakly if at all. Inhibition by dimer
specific antibody m-Fab-F markedly inhibited collagen-
induced platelet aggregation, highlighting its role as the
functional form of GPVI.

Interaction with collagen and signaling

So how does GPVI interact with the fibrous suben-
dothelial collagen exposed upon vessel injury to
induce platelet activation? Much of this data has been
gained by using snake venom-derived convulxin and
CRP (collagen-related peptide) in vitro, which activate
platelets in a similar way to collagen.7,18 CRP, a triple

Figure 2. Structures of GPVI monomer and dimer. The extracellular domain of each monomer comprises two IgG domains (D1

and D2) and a mucin-like Ser/Thr-rich domain connecting D1/D2 to the transmembrane domain. The binding site recognizing the

GPO triplets of collagen, resides in D1. Each monomer is non-covalently associated through a salt bridge with FcRg. FcRg is a

disulphide-linked dimer, each chain containing an ITAM sequence, which when phosphorylated binds to the tyrosine kinase Syk.

The phosphorylated Syk now initiates signaling. The short intracellular domain of GPVI contains a basic domain that binds to

calmodulin; a proline-rich domain that binds to Src kinases Fyn and Lyn, which participate in phosphorylation of ITAM; and a C-

terminal tail.
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helical peptide containing 10 glycine–proline–hydroxy-
proline (GPO) sequences, is an especially potent plate-
let agonist specific for GPVI. GPVI was suggested to
bind to the GPO sequences in collagen. Smethurst
et al.19 later found that the minimum recognition
motif for GPVI is one GPO.

Using the crystal structure of GPVI and a docking
model with CRP, Horii et al.20 found that GPVI
formed back-to-back dimers, each containing a shallow
groove on the D1 domain that is perpendicular to the
collagen triple helix, which fits precisely into this 5.5-
nm gap.

Loyau et al.21 proposed that at least two GPVI
dimer-FcRg complexes are required to create a working
signaling unit, as the FcRg chain is also essential for the
function of GPVI and each chain contains an ITAM.
Upon GPVI–collagen binding, the Tyr residues of the
ITAM sequence become phosphorylated, initiating
signal transduction. PCLg2 is subsequently activated,
leading to eventual activation of protein kinase C,
resulting in calcium mobilization, degranulation and
GPIIb/IIIa activation and the start of the next step in
the process—platelet aggregation.

GPVI shedding and receptor

downregulation

An important consequence of GPVI downstream
signaling, which serves to limit thrombus growth, is
antibody or metalloproteinase (MMP) induced shed-
ding of a 55 kDa GPVI ectodomain into the blood
stream, leaving a 10 kDa remnant that remains plate-
let-associated.22–24 This plasma soluble form of GPVI
(sGPVI) has been the marker for many quantitative
studies on platelet activation through GPVI. The trans-
membrane metalloproteinases with protease activity,
ADAM10 and ADAM17, have been identified as two
sheddases that cleave the extracellular portion of GPVI
independently of each other under various stimuli
including the binding of GPVI ligands.25 However,
when antibody-mediated GPVI downregulation
occurs, the catalyst for GPVI shedding appears to be
independent of these MMPs, as antibody induced
GPVI shedding occurred in mice depleted of
ADAM10 and ADAM17.25 Thus, it is likely that
more sheddases participate in GPVI shedding and
their role in stroke as a therapeutic target is yet to be
determined.26

GPVI and ischemic stroke

The importance of GPVI in hemostasis was first
reported in a Japanese patient deficient in GPVI who
had mild bleeding tendency and whose platelets failed
to aggregate in response to collagen.27 Since then it has

been found that platelets treated with GPVI-specific
inhibitory antibodies show no interaction with collagen
in vivo;28 In addition, GPVI-deficient individuals exhi-
bit a mild bleeding tendency28 and GPVI-deficient mice
show increased bleeding times.30 These observations
cement GPVI’s role as the main signal generator lead-
ing to platelet activation, rather than functioning pri-
marily as a platelet adhesion receptor,29 but suggest
that more work is needed to clarify the exact bleeding
profile once GPVI is inhibited.

The exact role of GPVI in the different phenotypes
of stroke is yet to be elucidated. We know that it plays a
role in large artery atherosclerotic infarcts, but its role
in lacunar and cardioembloic stroke is unclear. In large
artery disease, elevated GPVI expression was shown to
be associated with increased risk of stroke develop-
ment. Enhanced GPVI expression is also seen after
ischemic stroke and TIA, with these patients having a
poorer clinical outcome at follow-up.30 Elevated sGPVI
levels were found in patients specifically after large
artery infarcts and these levels decrease after 3–6
months, which may highlight a role for sGPVI meas-
urements in this stroke substrate, but the evidence in
cardioembolic and lacunar types were less convincing.31

The pathogenesis of lacunar infarcts is believed to be
due to progressive ischemic leukoaraiosis caused by a
genetic susceptibility to inflammation-mediated cere-
brovascular injury in combination with the classic ath-
erosclerotic risk factors.32 There is evidence that
chronic endothelial dysfunction and activation leading
to a prothrombotic environment may cause progression
of leukoaraiosis. This is evidenced by higher levels of
prothormbotic proteins such as ICAM1, thrombomo-
dulin, fibrinogen, tissue factor in patients with cerebral
leukoaraiosis compared to controls.33–35 Recently,
thrombogenic fibrin was shown to be an activator of
GPVI in mice.36 Therefore, we could postulate that
GPVI is involved in lacunar stroke and small vessel
disease. Nevertheless, further studies are needed look-
ing at GPVI in this subtype of stroke, where currently
aspirin and clopidogrel play an important role in sec-
ondary prevention.

Recently, functional GPVI has been implicated as a
possible receptor for polymerized fibrin, propagating
thrombin generation.37 Further studies may reveal the
role of GPVI in cardioembloic stroke as well as throm-
bus propagation, clot stabilization and infarct growth
after ischemic stroke.38

Increased GPVI dimerization/multimerization could
be one of the earliest measurable steps in platelet acti-
vation after plaque rupture. Studies are underway to
measure GPVI dimer levels after acute stroke in com-
parison to healthy controls, which may be a useful diag-
nostic tool in the future. Since the dimer is the
functional receptor form of GPVI, this may partially
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explain why the studies discussed above measuring
total GPVI (dimers plus monomers) did not find any
correlation between its levels and severity of stroke.30

Targeting GPVI in ischemic stroke:
Beyond antiplatelet therapy

Current antiplatelet therapy acts on this cascade of
platelet activation via different methods and is licenced
for both acute coronary syndrome (ACS) and ischemic
stroke. Aspirin irreversibly inhibits both COX 1 and 2,
thus stopping TxA2 formation after platelet activation.
Clopidogrel and ticagrelor both irreversibly block the
ADP receptor P2Y12.

39 Thus both these classes of anti-
platelet drugs work by inhibiting platelet aggregation.
In comparison with single antiplatelet therapy, dual
antiplatelets do convey a reduction in early stroke
recurrence, combined transient ischemic attack (TIA),
stroke and ACS, and all death40 but dual antiplatelet
therapy is reserved for high-risk individuals after TIA
or stroke due to the risk of hemorrhage.

Studies on whether other platelet glycoprotein
receptors could be targets for antithrombotic therapy
have yielded less promising results. Abciximab, the Fab
fragment of a chimeric mouse/human monoclonal anti-
body, is licenced in ACS for patients awaiting percu-
taneous coronary intervention. It antagonizes GPIIb/
IIIa, which is the final mediator in the pathway to plate-
let aggregation. Unfortunately it has shown no benefit
in functional outcome in acute stroke, coupled with

significant increases in fatal or symptomatic intracra-
nial hemorrhage.41

Due to the fact that GPlba (part of the GPIb-IX-V
complex) plays a crucial role in platelet adhesion to endo-
thelium in high shear conditions, it has become an attract-
ive target for potential pharmaceutical development.
GPlba andGPVI are closely linked on the platelet surface
and are thought to activate similar signaling processes.42

Much of the knowledge on platelet receptors and ische-
mic stroke has come from experimentation on animal
models, particularly rats and mice, by causing transient
middle cerebral artery occlusion (tMCAO). Blockade of
GP1ba using Fab fragments, although reducing infarct
volume after tMCAO, led to prolonged tail bleeding
times compared to those treated with the monoclonal
antibody (mAb) anti-GPVI JAQ1.43

From similar studies in mice, GPVI was shown to
have a huge role in the formation of arterial thrombi.
After tMCAO, GPVI-depleted mice (via JAQ1) dem-
onstrate significantly reduced brain infarct volumes, no
hemorrhagic transformation, normal platelet counts,
and only moderately increased tail bleeding times.28,43

As platelets are anucleate cells and cannot synthesis
protein de novo, injection of rat anti-GPVI antibodies
(JAQ 1, 2, and 3) into mice in other studies offered
long-term depletion of GPVI from murine platelet sur-
faces.28,44 Furthermore, the Fab fragments of antibo-
dies 5C4,45 OM2,46 OM4,47 9O12,48 and mFab-F16 are
also potent inhibitors of GPVI-mediated platelet acti-
vation (Table 1). The evidence for antibody-driven

Table 1. Antibodies that inhibit GPVI-mediated activation

Type Effects

JAQ 128 Rat anti-mouse GPVI Abolished platelet response to collagen or CRP

Significantly reduced infarct size in tMCAO mice

Thrombocytopaenia and moderate bleeding-time prolongation

9O12 (Fab)48 Mouse mAb against human GPVI Protects against arterial thrombus propagation and collagen-induced

aggregation in vitro and ex vivo

Mild bleeding-time prolongation

5C4 (Fab)45 Rat mAb against human GPVI Almost complete inhibition of platelet aggregation in vivo

OM2 (Fab)46 Mouse mAb against human GPVI Inhibits collagen-induced platelet aggregation

Mild bleeding-time prolongation

OM4 (Fab)47 Mouse mAb against human GPVI Inhibits collagen-induced platelet aggregation in vitro and ex vivo

Reduces in vivo thrombosis in rat carotid artery model

No bleeding-time prolongation

10B1258 Human scFv against human GPVI Inhibits CRP- and collagen-induced platelet aggregation in vitro

m-Fab-F16 Human Fab against human GPVI GPVI dimer specific

Inhibits aggregation and platelet adhesion on collagen
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GPVI blockade as a target for stroke therapy is increas-
ing, with further efforts being made to attempt clearer
translation into clinical medicine. Recently, Kraft et al.49

successfully showed that GPVI inhibition using JAQ 1 in
adult mice with diabetes and hypertension resulted in
smaller cerebral infarcts, better functional outcome,
and reduced intracerebral hemorrhage rates compared
to mice treated with anti-GPIIb/IIIa.49

Patients with autoantibodies to GPVI-FcRg chain,
causing its clearance from the platelet surface are seen
to have inefficiently formed thrombi on collagen-coated
surfaces.50 However, their clinical presentation of mild
thrombocytopenia, ecchymosis, epistaxis, and pro-
longed bleeding times highlights the difficulty in trans-
lating experimental findings into clinical practice.

Buildingon thework initiallydoneonanimalmodels,45

Revacept (PR-15, GPVI-Fc), a recombinant, soluble
fusion protein between the human extracellular col-
lagen-binding domain of GPVI and the C-terminal of
human Fc, has been developed to competitively inhibit
GPVI binding sites on exposed collagen. It was tested in
a phase I trial, after intravenous administration to 30
healthymales, in 201151 and showed clear dose-dependent
inhibition of collagen responsiveness and platelet aggre-
gation. This was done without any significant effect on
hemostasis and no significant thrombocytopenia.

Revacept appears to avoid bleeding tendencies by
blocking both the GPVI and VWF-mediated platelet
activation processes specifically at the site of collagen
exposure, thereby avoiding prolongation of bleeding
times as described with antibodies to GPVI.28,43

However, this has only been confirmed on trials in
mice after left MCA lesions.52 Revacept also seems to
exert an anti-atherosclerotic effect via vessel endothelial
remodelling and a role as a primary preventative medi-
cation in the absence of plaque rupture may emerge.53

It is currently undergoing phase II trials on patients
with symptomatic carotid artery stenosis.54

Losartan, the angiotensin II receptor blocker has
previously shown anti-atherosclerotic effects by block-
ing inflammogenic mediators and also anti-aggregatory
effects independent of its effects on hypertension.55

EXP3179, its active metabolite, selectively inhibits
GPVI function and therefore platelet adhesion and
aggregation both in vitro and in vivo.56 This occurs
when losartan binds to the IgG-like domain of
GPVI57 and this interaction, coupled with the fact
that losartan has no effect on bleeding profiles, may
be the basis of a therapeutic target in the future.

Conclusion

The platelet–collagen interaction, and subsequent
platelet activation and thrombus formation, can lead
to devastating neurological damage via ischemic

stroke. There is a growing body of evidence pointing
towards the importance of platelet glycoprotein recep-
tors in stroke due to their requisite role in initiating
downstream signaling mechanisms leading to platelet
activation and pathological thrombus generation.
Current understanding of thrombus formation suggests
that GPVI is one such crucial receptor and inhibition of
its collagen-induced signaling would be a specific
pharmacological target for ischemic stroke. However,
most of the research has been carried out in murine
experimental models and may not necessarily translate
to bleeding-free therapy in humans. The current clinical
trials that are underway on Revacept are promising and
could lead the way to a better understanding of GPVI
antagonism in humans. Smaller studies are being car-
ried out looking at novel small molecule inhibitors of
GPVI and if a successful entity is discovered, the next
decade should see the development of efficacious and
highly specific therapies in ischemic stroke that a have
large safety margin.
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