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Lipid hormone is produced by highly differentiated endocrine cells and directly

secretes into the blood circulation or tissue fluid to act as information

transmission. It influences the physiological functions of the human body by

controlling the metabolic processes of multiple tissue cells. Monitoring the

levels of lipid hormone is of great importance for maintaining human health.

The electrochemical sensor is considered as an ideal tool to detect lipid

hormone owing to its advantages such as quick response, convenience and

low economic costs. In recent 3 years, researchers have developed various

electrochemical sensors for the detection of lipid hormone to improve their

sensitivity or selectivity. The use of nanomaterials (such as carbon

nanomaterials, precious metal and polymer) is a key research object and a

breakthrough for improving the sensing performance of electrochemical

sensors for detection of lipid hormone. This paper reviews and discusses the

basic principle, nanomaterials, actuality and future development trend of

electrochemical sensors for the detection of lipid hormone in the past 3 years.
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1 Introduction

A range of hormones, including steroid and fatty acid derivative hormone, are

classified as lipid hormone because of their lipid chemical makeup. Sex hormone,

adrenocortical hormone and vitamin D (VD) are three primary subtypes of steroid

hormones. The three primary types of fatty acid derivative hormones are prostaglandin,

leukotriene, and iso-prostaglandin. Although the human body contains relatively little of

these compounds, they can have a big physiological impact such as regulating

menstruation (Critchley et al., 2020), preventing anxiety (McHenry et al., 2014) and

regulating blood sugar levels (Vargas et al., 2020). Hormonal imbalances can be harmful

to human health (Adegoke et al., 2021). Levels of all lipid hormones are significant

diagnostic indicators for possible disease status (Pelizzaro et al., 2021). Thus, early

detection by measuring the level of hormone has important significance for the

identification of human diseases and the advancement of medical science.
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Currently, the traditional analysis methods of lipid hormone

are high-performance liquid chromatography (Ozgocer et al.,

2017), liquid chromatography-mass spectrometry (Zhang et al.,

2021), chemical luminescence method (Abdulsattar and

Greenway, 2019) and enzyme-linked immunosorbent assay

(Yin et al., 2019). However, these traditional detection

techniques have the limitations of complex preparation steps,

high analysis costs and time-consuming. Under these

circumstances, electrochemical biosensors offer certain benefits

over conventional analytical techniques, including simplicity,

portability and quick detection. (Felix and Angnes, 2018)

which has been applied in the fields of drug research, clinical

diagnosis, food safety testing, environmental monitoring and

other fields (Aydin et al., 2019). The types of the electrochemical

sensor of lipid hormone that have been reported including

electrochemical immunosensors (Mathew et al., 2020),

electrochemical aptamer sensing (Tang et al., 2022) and

electrochemical molecular imprinted polymer (MIP) sensors

(Rebelo et al., 2020). Many nanomaterials including graphene,

carbon nanotubes, gold nanoparticles (AuNPs) and adapters

were applied in the preparation of the sensor.

This paper mainly reviews the application of electrochemical

biosensors in lipid hormone detection in the past 3 years,

including various kinds of detection principles, the application

of nanomaterials, performance and advantages of these

electrochemical sensors. We also summarize the future

direction of electrochemical biosensors in lipid hormone

detection, containing the challenges of current techniques and

emerging applications.

2 Principle of electrochemical
sensors for detection of lipid
hormone

The biosensor is an instrument that uses immobilized bio-

sensitive materials (antibodies, enzymes, receptors, cells,

microorganisms, nucleic acids, etc.) as biometric elements to

recognize the required target molecule and converts the analyte

concentration into electrical signals for detection (Ronkainen

et al., 2010). In general, an electrochemical biosensor has three

components including biometric elements, sensors and

electronic systems.

Nanomaterials are often applied to modify the electrode to

amplify the detection signal. Commonly used nanomaterials

include carbon nanomaterials (such as carbon nanotubes,

carbon quantum dots and graphene), precious metal

nanomaterials [such as gold (Au) and silver (Ag)], metal

oxides (such as copper oxide and titanium oxide), polymer

nanomaterials (such as MIP and conducting polymers) and

biological nanomaterials (such as adapters) (Raza et al., 2021).

Furthermore, the synergistic effect of multi-component

nanomaterials can provide more obvious additional advantages.

The common detection methods of electrochemical sensors

are cyclic voltammetry (CV), differential pulse voltammetry

(DPV), square wave voltammetry (SWV) and electrochemical

impedance spectrum (EIS). These detection methods all have

their own uses and characteristics: CVmay be used to verify both

the reversibility of a reaction and the existence of intermediates in

redox processes. With DPV and SWV, target analytes can even be

detected at picomolar or femtomolar concentrations (Goud et al.,

2021). EIS may be used to determine if the electrode/electrolyte

interface impedance changes when the target is bound to the

surface-immobilized biorecognition element. It has broad

measured range and high detection stability as its main traits

(Li et al., 2019). With the progress of electrochemical sensors, the

detection method has gradually developed from desktop to

portable and wearable biosensors (Samson and Koh, 2020).

The schematic representation of the electrochemical biosensor

for detection of lipid hormone is shown in Figure 1.

3 Research on the electrochemical
sensor of lipid hormone

Electrochemical sensors for the detection of lipid hormone

have had significant success recently. A summary of

electrochemical sensors for the detection of lipid hormone is

listed in Table 1.

3.1 Electrochemical sensors for the
detection of steroid hormone

Current electrochemical sensing technology to detect steroid

hormone is mainly used for early diagnosis of disease, pregnancy

research, food toxicity and pollution levels (Kelch et al., 2020).

The following is a review of the electrochemical sensors of

progesterone, 17β-estradiol, testosterone, cortisol, and VD.

3.1.1 Electrochemical sensors for the detection
of progesterone

Progesterone is most commonly used as a pregnancy

biomarker (Goh et al., 2016), which also has a central role

in biology and medicine (Kanninen et al., 2019; Polat et al.,

2020). Monitoring progesterone concentrations has been

reported to be important in the autoimmune disease in

women during menstruation (Chang and Wang, 2020), the

dairy industry that can supply trustworthy data on

mammalian reproduction by keeping track of progesterone

levels (Yu and Maeda, 2017) and the environmental health

protection by monitoring the progesterone in the wastewater

(Cui et al., 2021).

Naderi and Jalali modified glassy carbon electrode (GCE) for

progesterone accurately trace analysis in human serum samples

and medicines using multi-wall carbon nanotubes (MWCNTs),
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AuNPs and poly-L-serine (Naderi and Jalali, 2020). DishaKumari

et al. (2021) used magnetic graphene oxide (MGO)

nanocomposite as an electrode material for the loading of bio-

receptors. The increased surface area with strong electric

conductivity improved sensor responsiveness. This design

amplified the electrochemical signal and avoided the

requirement of labeling enzymes and substrates.

Recently, progesterone detection has been accomplished

using a variety of aptamer-based sensor designs. A photo-

electrochemical sensor was created by Li et al. (2020) using

magnetic-optical Fe3O4@SiO2@TiO2-NH2-aptamer-

nanoparticles. The sensor could selectively capture

progesterone in complex biological samples. Samie and

Arvand prepared a label-free electrochemical progesterone

aptamer sensor using graphene quantum dots-NiO-Au

hybrid nanofibers/NH2 functionalized MWCNTs (GQDs-

NiO-AuNFs/f-MWCNTs) and was successfully used to

determine progesterone in human serum samples and

pharmaceutical preparations (Samie and Arvand, 2020).

Moreover, Zhu’s team simultaneously used antibodies and

aptamer together to propose a progesterone sandwich assay,

designing a sandwich-structured cathode photochemical

biosensor (Zhu et al., 2020). The advantages of the sensor

were easier progesterone determination, higher sensitivity

and selectivity.

3.1.2 Electrochemical sensors for the detection
of estradiol

So far, multiple electrochemical sensors of estradiol were

aiming for 17β-estradiol, which is a natural estrogen secreted by

humans and domestic animals with the strongest estrogen

activity. Even trace amounts of exogenous 17β-estradiol
entering the body can cause significant damage to our health

(Pu et al., 2019). So, effective 17β-estradiol monitoring is

important.

In the research field of 17β-estradiol electrochemical

sensor, composite nanomaterials made of carbon

nanomaterials and other nanomaterials have been widely

used. Tanrikut’s team prepared a highly efficient sensor to

detect 17β-estradiol by using the NiFe2O4-mesoporous carbon

(NiFe2O4-MC) nanocomposite which displayed an optimal

electron transfer rate (Tanrikut et al., 2020).

Supchocksoonthorn et al. designed a 17β-estradiol sensor

employing carbon dots/polyaniline (CDs/PANI) composite

(Supchocksoonthorn et al., 2021). 17β-estradiol and CDs/

PANI are connected by hydrogen bonds and stacking to

govern adsorption. Chang et al. demonstrated a split

aptamer-based electrochemical estradiol aptamer sensor,

with the first piece functionalized with adamantane and the

second piece that had gold nanoparticles label (Chang et al.,

2021). The disposable laser-scribed graphene electrode strip

FIGURE 1
Schematic representation of the electrochemical biosensor for detection of lipid hormone.
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with exceptional sensitivity was successfully created from the

sensing platform. In order to find 17β-estradiol in the eel Lee

et al. (2020) serum, developed a screen-printed carbon

electrode (SPCE) with 17β-estradiol-imprinted poly

(aniline-co-metanilic acid) (EIPs) and tungsten disulfide

(WS2). Da Silva and Pereira modified the electrode with

MIP and carbon black (CB) to improve the sensitivity of

the electrode by more than 173% compared with GCE (da

Silva and Pereira, 2022). This electrochemical sensor could be

easily fabricated and detect 17β-estradiol rapidly with a limit

of detection (LOD) of 30 nM.

In addition to MIP electrochemical sensors based on

carbon nanomaterials, Regasa and Nyokong created an

electrochemical sensor based on MIP supported by AgNPs

capped with 2-mercaptobenzoxazole (Regasa and Nyokong,

2022). The sensor was used to measure 17β-estradiol in actual

TABLE 1 A summary of electrochemical sensors for the detection of lipid hormone.

Lipid
hormone

Nanomaterials Electrochemical
Method

Sample Linear range
(nM)

Detection
limit
(nM)

Reference

progesterone poly-L-serine/AuNPs/MWCNTs CV, EIS human serum 1–2000 200 Naderi and Jalali, (2020)

progesterone MGO DPV, CV tap water 1 × 10−4–1000 1.5 × 10−4 DishaKumari et al. (2021)

progesterone Fe3O4@SiO2@
TiO2–NH2–aptamer–cDNA

EIS milk 0.001–6 3 × 10−4 Li et al. (2020)

progesterone BSA/aptamer/GQDs-NiO-
AuNFs/f-MWCNTs

DPV human serum,
pharmaceutical
products

10–100 1.8 × 103 Samie and Arvand, (2020)

progesterone aptamer-Au-CuO-Cu2O/
progesterone/Ab/CDs-GO

photoelectrochemical human serum 0.5–180 0.17 Zhu et al. (2020)

17β-estradiol NiFe2O4-MC CV, DPV, SWV drug tablets 20–566 6.88 Tanrikut et al. (2020)

17β-estradiol CDs-PANI CV human serum, water 1-1 × 105 43 Supchocksoonthorn et al.
(2021)

17β-estradiol poly(β-CD)/AF1-ADA/ON1/
AF2-Au

DPV, EIS milk 0.001–10 7 × 10−7 Chang et al. (2021)

17β-estradiol EIPs/WS2 CV eel serum 0.37–3,671.34 2.08 × 10−7 Lee et al. (2020)

17β-estradiol MIP/CB DPV river water 100–2.3 × 104 30 da Silva and Pereira, (2022)

17β-estradiol MIP CV, SWV real water 0.01–100 0.06 Regasa and Nyokong, (2022)

testosterone TIECP CV human urine 0.35–346.72 ~pM Liu et al. (2020)

testosterone Ab/pBDBT amperometric synthetic urine and
serum

34.67–1733.58 58.08 Bulut et al. (2020)

cortisol ALP/1-NPP CV human serum 0–1091.46 63.03 Vargas et al. (2020)

cortisol AuNPs/MWCNTs CV, DPV human sweat 2.73 × 10−6-273 8.19 × 10−7 Liu et al. (2021)

cortisol DTSP/AuNPs/graphene CV artificial sweat 0.03–212.87 0.03 Naik et al. (2021)

cortisol MIP CV artificial sweat 10–1000 0.2 Tang et al. (2021)

cortisol poly(GMA-co-EGDMA)/
CNC/CNT

CV, EIS human sweat 27.29–180.09 5.46 ± 1.09 Mugo and Alberkant, (2020)

cortisol MWCNTs/CMK-3/AgNPs CV, DPV human saliva 2.7 ×
10−4–2.7 × 10−2

2.5 × 10−4 Huang et al. (2021)

cortisol MIP-aptamer/N-CQDs-FG CV, DPV, EIS human saliva 0.001-10 3.3 × 10−4 Yu et al. (2022)

VD graphene/Nafion CV, SWV, EIS food 113.64–5681.82 35.79 Thangphatthanarungruang
et al. (2020)

25(OH)D3 BSA/Ab-25(OH)D3/EDC-NHS/
GCN-β-CD@AuNPs

CV, DPV, EIS serum 0.25–1247.97 0.03 Anusha et al. (2022)

25(OH)D3 Ab/Cys/Au/MoS2 CV, DPV, EIS human serum 0.0025–249.59 9 × 10−4 Kaur et al. (2021)

VD3 GQD-Au/aptamer-VD3 EIS human serum 1–500 0.7 Wadhwa et al. (2020)

25(OH)D3 CHA/DNA tetrahedron CV, SWV, EIS human serum 0.1–1000 0.026 Shuo et al. (2021)

VD3 Co-Ag/PANI-PPY/IL CV, SWV, EIS human serum and
urine

12.5–22,500 7.3 Anusha et al. (2021)

PGE2 anti-PGE2/DSP EIS human urine 0.28–11.35 Ganguly et al. (2021)

1-NPP, 1-Naphthyl phosphate; DTSP, dithiobis (succinimidyl propionate); GA, glutaraldehyde; CNC, carbon nanotube; CNT, cellulose nanocrystal; CMK-3, ordered mesoporous carbon

CMK-3; Cys, Cysteamine; DSP, thiol cross-linker.
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water samples without the need of sample preconcentration

processes, resulting in satisfactory selectivity, sensitivity,

reusability and storage stability performances.

3.1.3 Electrochemical sensors for the detection
of testosterone

Testosterone is the most essential steroid released by

testicular stromal cells (Gugoasa and Stefan-van Staden, 2018)

whose levels are related to many male hormone disorders and

cardiovascular diseases.

To create a testosterone-imprinted electronically

conductive polymer (TIECP) on the sensing electrodes, Liu

et al. optimized the synthetic self-assembly of poly (aniline-

co-metanilic acid) and testosterone using an electrochemical

method (Liu et al., 2020). This technique

optimized the conductivity of nanomaterials. Moreover,

Bulut’s team synthesized a new phenylenediamine-

benzodithiophene polymer (pBDBT) used to manufacture

biosensors for testosterone detection (Bulut et al., 2020). A

platform for real-time field detection was provided by

glutaraldehyde-fixed testosterone antibodies on the

polymer-coated SPCE surface. It can be used for

testosterone analysis in illicit drugs.

3.1.4 Electrochemical sensor for the detection of
cortisol

Cortisol is an important glucocorticoid found in a variety

of biological fluids. Abnormally elevated cortisol levels can

cause hypertension, damage to muscle tissue and immune

system.

Now, more and more studies of electrochemical sensors for

cortisol are being developed. For example, Vargas et al. (2020)

developed a dual-electrochemical immunosensor based on gold

microchip for the simultaneous detection of insulin and cortisol,

which relied on competitive immunoassays with alkaline

phosphatase (ALP) labeling . In addition, Liu et al. (2021)

designed the electrochemical immunosensor for flexible

AuNPs/MWCNTs/polydimethylsiloxane thin films and Naik

et al. (2021) designed the “smart bandage” microfluidic

platform sensor for graphene/silver solution. These three

sensors are all used to detect cortisol and have the potential

for instant applications.

In the study of cortisol molecularly imprinted

polymers sensors, Tang et al. (2021). used a high

permeability sweat-absorbing porous hydrogel to prepare a

non-invasive, touch-based MIP electrochemical sensor

Besides, poly glycidylmethacrylate-co ethylene glycol

dimethacrylate (GMA-co-EGDMA) were used for the

research of flexible MIP biosensor (Mugo and Alberkant,

2020). These two sensors have the advantages of being

stretchable, small-portable and without sampling, and can

serve as human wearable devices and instant application

devices.

In addition to using a single biometric element to develop

sensors, Huang et al. (2021) presented a highly sensitive and

selective electrochemical sensor with an aptamer-antibody

sandwich mode A specific combination of antibodies and

aptamers was utilized to identify the target cortisol.

Whereafter, Yu et al. (2022) suggested a novel

electrochemical aptamer sensor using functionalized

graphene (FG) and nitrogen-deqcarbon quantum dots

(N-CQDs) integrating MIP techniques for trace analysis of

cortisol in saliva samples.

3.1.5 Electrochemical sensors for the detection
of VD

VD is not only a lipid-soluble vitamin but also an

immunomodulatory hormone that has two present forms of

VD2 and VD3 (Charoenngam and Holick, 2020). As the best

marker for themonitoring of VD levels, 25-hydroxy VD (25(OH)

D) is frequently employed in clinical diagnosis (Binkley et al.,

2010; Farrell and Herrmann, 2013).

In the field of VD electrochemical sensors based on carbon

nanomaterials, Thangphatthanarungruang prepared a

graphene nanocomposite sensor for simultaneously

measuring vitamins (A, D, E and K) that are lipid-soluble in

various matrix samples (infant milk, yogurt and parsley)

(Thangphatthanarungruang et al., 2020). Anusha designed a

label-free impedance sensor using ethyl-3-(3-dimethyl

aminopropyl) carbodiimide-N-hydroxysuccinimide/graphitic

carbon nitride-β-cyclodextrin (EDC-NHS/GCN-β-CD)
@AuNPs composite to assay serum samples for the presence

of 25(OH)D3 (Anusha et al., 2022). It is less destructive to its

biomolecular activity, thus improving the sensitivity of

detection. Kaur et al. (2021) designed a voltammetric

immunosensor based on molybdenum sulfur MoS2/AuNPs/

tin fluoride oxide with 25(OH)D3 as the target molecule The

result showed that the MoS2-modified AuNPs model

demonstrated excellent detection conductivity, sensitivity and

stability.

Some electrochemical sensors using VD3 aptamer were also

reported. Wadhwa’s team prepared a portable electrochemical

aptamer sensor to identify VD3 employing graphene quantum

dot-gold hybrid nanoparticles (GQD-Au) with a LOD of

0.70 nM (Wadhwa et al., 2020). Subsequently, Shuo et al.

(2021) proposed a novel electrochemical aptamer sensor for

sensitively detecting 25(OH)D3 by fixing DNA tetrahedra on

Au surfaces and a technique for catalytic hairpin assembly

(CHA) amplification.

In addition, Anusha’s group synthesized a new composite

material based on polyaniline-polypyrrole (PANI-PPY)

copolymer doped with silver-cobalt (Co-Ag) and ionic liquid

(IL) (Anusha et al., 2021). The composite material was first used

to modify the GCE. Later, a manual paper sensor was created

using the suggested material. And using two different tests to

detect VD3 in serum and urine samples.
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3.2 Electrochemical sensors for the
detection of fatty acid derivative hormone

The fatty acid derivative hormone is a metabolite produced

by lipids through oxidative and enzymatic metabolic pathways

including iso-prostaglandin and prostaglandin. Prostaglandin

regulates pathological processes in female reproductive

function (Niringiyumukiza et al., 2018), inflammation, and

tissue repair (Rael, 2016). The lipid peroxidation biomarker 8-

iso-prostaglandin F2α and carotid subclinical atherosclerosis

showed a significant positive connection (Alharby et al., 2019).

In previous reports, electrochemical sensors of prostaglandin

E1 (Zheng et al., 2016) and 8-iso-prostaglandin F2α (Sanchez-

Tirado et al., 2017) have been successively reported. With the

deepening understanding of the fatty acid derivative hormone

and the development of electrochemical sensors, Ganguly et al.

(2021) developed a three-electrode planar gold microelectrode

system with flow-based nanopore membranes for

electrochemical immunosensors for detecting prostaglandin E2

(PGE2). This sensor can be used in both clinical and home

settings for a more immediate, fast and accurate diagnosis of

urinary tract infection.

4 Conclusion and future perspectives

This paper mainly describes the recent research progress of

electrochemical biosensors in the field of lipid hormone detection

in the past 3 years. This could help the future development of

such sensors in medicine and science. Furthermore, combined

with the important role and significance of lipid hormones such

as progesterone, estradiol, testosterone, cortisol, VD,

prostaglandin in regulating human life activities and disease

control, and the easy application of electrochemical sensors,

the development of lipid hormone electrochemical sensors has

attracted more and more attention in recent years.

Overall, so far, there are more comprehensive and mature

studies of steroid electrochemical sensors than those of fatty acid

derivative. Current electrochemical biosensors for fatty acid

derivative hormone use only antibodies as recognition

elements. In the future, electrochemical sensors will have

considerable potential for development and applications in the

detection of lipid hormone. A key opportunity for the

development of electrochemical sensor and biosensor

platforms is the introduction of innovative functional

nanomaterials and analytical technologies. Such as new

electrode materials with more selectivity and sensitivity, more

portable wearable sensors and instant application sensors still

need to be continuously explored by researchers.
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