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Inducing senescence in cancer cells is an emerging strategy for cancer ther-

apy. The dysregulation and mutation of genes encoding cyclin-dependent

kinases (CDKs) have been implicated in various human cancers. However,

whether CDK can induce cancer cell senescence remains poorly under-

stood. We observed that CDK16 expression was high in multiple cancer

types, including lung cancer, whereas various replicative senescence models

displayed low CDK16 expression. CDK16 knockdown caused senescence-

associated phenotypes in lung cancer cell lines. Interestingly, the CDK16 30

UTR was shortened in cancer and lengthened in senescence models, which

was regulated by alternative polyadenylation (APA). The longer 30UTR

[using the distal polyA (pA) site] generated less protein than the shorter

one (using the proximal pA site). Since microRNAs (miRNAs) usually

bind to the 30UTR of target genes to suppress their expression, we investi-

gated whether miRNAs targeting the region between the shortened and

longer 30UTR are responsible for the reduced expression. We found that

miR-485-5p targeted the 30UTR between the distal and proximal pA site

and caused senescence-associated phenotypes by reducing protein produc-

tion from the longer CDK16 transcript. Of note, CDK16 knockdown led to

a reduced expression of MYC proto-oncogene, bHLH transcription factor

(MYC) and CD274 molecule (PD-L1), which in turn enhanced the tumor-

suppressive effects of senescent cancer cells. The present study discovered

that CDK16, whose expression is under the regulation of APA and miR-

485-5p, is a potential target for prosenescence therapy for lung cancer.

1. Introduction

Lung cancer is the most common cause of cancer

death worldwide [1]. The majority of lung cancer

patients are diagnosed with non-small cell lung cancer

(NSCLC), of which lung adenocarcinoma (LUAD)

and lung squamous cell carcinoma (LUSC) are the

most prevalent subtypes [2]. Therefore, it is of great

clinical significance to explore the anticancer therapy

for NSCLC. Cell cycle disorders, manifested as uncon-

trolled proliferation, are one of the common hallmarks

in human cancers [3,4]. Cell cycle progression is
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regulated by checkpoint controls and sequential activa-

tion of cyclin-dependent kinases (CDKs), which con-

tain 21 serine/threonine protein kinases in mammals

[5–7]. Since CDK dysregulation and mutation have

been implicated in human cancers, CDKs have been

seen as potential therapeutic targets [3,8,9]. For exam-

ple, pharmacologic inhibitors (such as palbociclib and

abemaciclib) of CDKs 4 and 6 (CDK4/6) have shown

significant inhibitory activities against several solid

tumors, inducing G1 cell cycle arrest, causing quies-

cence, apoptosis, or senescence in various cancer cells

[10–12]. Given that CDKs are essential for cancer cell

survival and growth, it is of clinical significance to

explore whether other CDKs play a role in NSCLC

progression and treatment [13].

CDK16 (also known as PCTAIRE1) is a less studied

member of the CDK family, but it is widely expressed

in mammalian tissues [14] and highly expressed in a

variety of cancer types, including prostate, breast, cer-

vical, and lung cancers [15,16]. CDK16 can promote

cancer cell growth by phosphorylating tumor-

suppressor genes p27 and p53 to post-translationally

reduce their expression via the ubiquitin-proteasome

degradation pathway [15–17]. Moreover, CDK16 can

promote tumor progression by regulating the mam-

malian target of rapamycin (mTOR) pathway [18]. In

addition to its oncogenic roles, CDK16 has been impli-

cated in other cellular processes, such as spermatogen-

esis and skeletal myogenesis [19–21]. Although CDK16

is a proto-oncogene with multiple cellular functions, it

remains an open and critical question to determine its

exact role in the progress of lung cancer development.

Cellular senescence is a biological process that leads

to permanent cell cycle arrest [22] and can serve as a

barrier to tumorigenesis [23]. Recently, inducing cancer

cell to senescence has become a new and effective ther-

apeutic strategy for cancer treatment in addition to

apoptosis [24,25]. Considering the involvement of

CDK family members in cell cycle regulation, they are

expected to play a role in cancer cell senescence induc-

tion. Indeed, this is the main mechanism of small

molecule inhibitors of CDK4/6 in cancer treatment

[10,26]. Although previous studies have reported that

CDK16 is highly expressed in tumors and promotes

cancer cell growth, whether it has a function in induc-

ing cancer cell senescence remains unknown.

The mechanism by which CDK family members are

dysregulated during cancer development is still not

fully understood. The study of CDK regulation at

post-transcriptional level is largely lagging behind that

at transcriptional level in diverse cancers. Alternative

polyadenylation (APA) is a previously underestimated

post-transcriptional gene expression regulation but has

recently attracted much attention in the study of

diverse biological processes including cancer [27]. The

majority of human genes have multiple polyadenyla-

tion (pA) sites, which may give rise to RNA isoforms

with different 30 ends [28,29]. APA contributes to

eukaryotic transcriptome diversification by generating

transcript isoforms that differ in either coding

sequence or 30UTR [30,31]. Furthermore, APA-

mediated gene expression regulation is widespread in a

variety of human diseases such as cancer and in multi-

ple biological processes such as cellular senescence [32–
34], suggesting that APA of specific genes may be

involved in inducing cancer cell senescence.

The 30UTR can regulate gene expression by interact-

ing with various trans-acting factors, mainly miRNAs

and RNA-binding proteins (RBPs) [29]. Therefore,

APA-derived mRNA isoforms with different 30UTR

lengths can have different effects on mRNA metabo-

lism, including RNA stability [35], localization, trans-

lation efficiency, and even protein localization [30,36–
38]. As widespread post-transcriptional regulatory ele-

ments, miRNAs are a class of small non-coding RNAs

that negatively regulate target gene expression [39,40].

Most mammalian genes are under the regulation of

various miRNAs [41], and miRNAs have been impli-

cated in various cellular processes and diseases, such

as cell proliferation and cancer [39,42]. Recently, the

role of miRNAs has been disclosed in the progression

of NSCLC. miRNAs have shown their tumor-

suppressive, oncogenic, diagnostic, and prognostic

roles in lung cancer, and they can also be involved in

regulating cancer cell metabolism and resistance or

sensitivity of cancer cell to chemotherapy and radio-

therapy [43,44]. Moreover, some miRNAs can even

serve as biomarkers for NSCLC diagnosis [45], such as

miR-504 [46] and miR-21 [47–49], indicating the

important functions of miRNAs in the development

and progression of NSCLC. However, whether

miRNA coordinating with 30UTR changes caused by

APA of its target gene can play a role in cancer cell

senescence remains unclear.

The present study found that CDK16 is a CDK

undergoing APA, with 30UTR shortening in four can-

cer types and lengthening in four cellular senescence

models. CDK16 transcript with longer 30UTR gener-

ated less protein than that with shorter one. CDK16

downregulation induced cellular senescence in two

NSCLC cell lines, A549 and H1299. In addition, miR-

485-5p can specifically bind to the alternative 30UTR

sequence of CDK16’s long transcript, which can

explain the differential protein production between the

two APA isoforms. CDK16 knockdown also leads to a

reduced expression of MYC and membrane
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programmed cell death-ligand 1 (PD-L1), two possible

factors contributing to cancer cell senescence and

immunotherapy effects, respectively [50–52]. In sum-

mary, CDK16, whose expression is regulated by APA

in both cancer and senescence, is a potential novel

therapeutic target for senescence-mediated tumor sup-

pression.

2. Materials and Methods

2.1. Cell culture and RNA interference

Four cell lines [A549, H1299, human embryonic kid-

ney 293T (HEK293T), and human umbilical vein

endothelial cells (HUVEC)] were originally obtained

from the Cell Bank of the Chinese Academy of

Sciences and available in our laboratory. Cells were all

cultured in Dulbecco’s modified Eagle medium

(DMEM; Gibco, Thermo Fisher Scientific, Grand

Island, NY, USA) supplemented with 10% (v/v) FBS

in a humidified incubator (5% CO2) at 37 °C. Con-

struction of a CDK16 stable knockdown (KD) cell line

was achieved by transfecting these cells with lentiviral

short hairpin RNA (shRNA) specifically targeting

CDK16, as well as the empty control vector pLKO.1.

The clone IDs of shRNA were obtained from Sigma-

Aldrich as follows, shCDK16_#1: TRCN0000010251;

shCDK16_#2: TRCN0000197222. Lentiviral vectors

were constructed according to the established protocol

on the Broad Institute RNAi Consortium (https://

portals.broadinstitute.org/gpp/public/).

2.2. RNA extraction and quantitative reverse

transcription PCR

Total RNA was extracted by TRIzol Reagent (Invitro-

gen, Thermo Fisher Scientific, Shanghai, China).

cDNA synthesis was then performed with 500 ng

DNA-free total RNA using random hexamers and a

FastQuant RT kit (Tiangen, Shanghai, China). Tripli-

cate samples were subjected to quantitative reverse

transcription PCR (qRT-PCR) analysis using SYBR

Green (Vazyme, Nanjing, China) to detect the expres-

sion of CDK16 and its two isoforms with different

30UTR length (CDK16-S, CDK16-L). For miRNA

expression quantification, the miRNA 1st Strand

cDNA Synthesis Kit (by stem-loop; Vazyme #MR101)

was used for reverse transcription. Then, miRNA

Universal SYBR� qPCR Master Mix (Vazyme

#MQ101) was used to amplify the expression of miR-

485-5p, miR-331-3p, and miR-3064-5p. The primer

sequences used were listed in Table S1.

Relative mRNA expression was calculated using the

2-ΔΔCt method [53]. GAPDH and U6 were employed as

an endogenous control for CDK16 and miRNAs,

respectively.

2.3. Western blot analysis

Total protein isolation was conducted utilizing T-

PERTM Tissue Protein Extraction Reagent (Thermo

Fisher Scientific, Shanghai, China, Cat #78510). After

centrifugation, the supernatant cell lysate was col-

lected, then mixed with 49 loading buffer, and boiled

for 10 min. Proteins were resolved in an SDS/PAGE

gel (10%) and then transferred to PVDF membranes.

Membranes were subjected to blocking, washing, anti-

body incubation, and detection by enhanced chemilu-

minescence. The antibodies used include CDK16

Rabbit pAb (PCTAIRE1 Polyclonal Antibody;

Proteintech, Wuhan, China, Cat #10102-1-AP, at

1 : 600 dilution), GAPDH Rabbit mAb (Cell Signaling

Technology, Boston, MA, USA, Cat #2118, at

1 : 1000 dilution), and c-Myc Rabbit mAb (Cell Sig-

naling Technology, Cat #18583, at 1 : 1000 dilution).

2.4. miRNA target prediction, plasmid

construction, and miRNA transfection

miRNA target was predicted with TargetScan (http://

www.targetscan.org/) [54] and TarBase [55] Specifically,

we searched for miRNAs targeting CDK16 in TargetS-

can Human 7.2, only allowing to show the conserved

sites for miRNA families conserved only among mam-

mals, and then, three miRNAs (miR-485-5p, miR-331-

3p, and miR-3064-5p) were predicted to have binding

potential to the 30UTR of CDK16. It was also pre-

dicted by TarBase that CDK16 is the target gene of

miR-485-5p. The CDK16-L and CDK16-M plasmids

were constructed by inserting the wild-type and mutant

30UTR sequence into the psiCHECK2 vector. The

mimics and inhibitors of miR-485-5p, miR-331-3p, and

miR-3064-5p and negative control (NC) were designed

and synthesized by GenePharma (Shanghai, China).

For transfection, miRNA mimics or inhibitors were

transfected at 100 nM alone or in combination with the

constructed plasmid (CDK16-L or CDK16-M) using

Lipofectamine 2000 Transfection Reagent (Invitrogen)

according to the manufacturer’s manual.

2.5. Dual-luciferase assay

To test the expression efficiency of the two APA iso-

forms of CDK16, short and long 30UTR sequence were

amplified from human genomic DNA and cloned into
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psiCHECK2 luciferase reporter vector using XhoⅠ and
PmeⅠ restriction enzyme sites located at the 30 end of

the Renilla gene. The primers used to amplify CDK16-S

and CDK16-L were as follows UTR-Forward, 50-
ccgctcgaggccacagaccgaggcccca-30, UTR-S-Reverse, 50-a
gctttgtttaaaccaagtgaaggagtgatgagagc-30, UTR-L-Rever-

se, 50- agctttgtttaaacacagcgattatggtgcattc-30. Then,

A549, H1299, HEK293T, and HUVEC cells plated in

24-well plate were transfected with CDK16-S and

CDK16-L constructs in four replicates and harvested

after 48-h cultivation. After lysing the cells with 100 lL
Passive Lysis Buffer (19), the activities of Firefly luci-

ferase and Renilla luciferase in those cells were then

detected by a microplate reader (TECAN, Shanghai,

China) according to the standard protocol of a Dual-

Luciferase Reporter Assay System (Promega Biotech

Co., Ltd., Beijing, China).

2.6. RNA stability assay

A549, H1299, HEK293T, and HUVEC cells were

treated with 5 ng�mL�1 of Actinomycin D (Act D;

Sigma-Aldrich, Inc., St. Louis, MO, USA, A4262) for

successive 0, 2, 4, 6, 8 h and harvested at each time

point, and then, RNA was extracted and reverse tran-

scribed into cDNA. The expression levels of transcripts

with short and long 30UTRs (CDK16-S and CDK16-

L) were measured using qRT-PCR with sequence-

specific primers at each time point.

2.7. Cell counting kit-8 assay

A total of 100 lL cells were seeded in a 96-well plate

with at least 2000 cells per well. Then, 10 lL cell

counting kit-8 (CCK-8) solution was added to each

well, incubated for 2 h, and the absorbance at 450 nm

was measured with a microplate reader (TECAN)

every 24 h. The cell growth curve was drawn based on

the absorbance value detected at each time point.

2.8. SA-b-Gal staining

Cells were seeded in 24-well plate to grow to about

60% cell confluence 1 day in advance. Then, the stan-

dard procedure of senescence-associated b-
galactosidase (SA-b-Gal) staining kit (Sigma-Aldrich,

Inc., Cat#: CS0030) was performed. After removing

the culture medium, cells were washed twice with PBS

(19), then fixed for 7 min in fixation solution (19),

followed by three-time washes with PBS, and then

incubated overnight at 37 °C in fresh-prepared stain-

ing buffer. The images were captured under a micro-

scope (Leica, Wetzlar, Germany).

2.9. Flow cytometric analysis of cell cycle and

apoptosis

For cell cycle assay, cells (A549, H1299, HEK293T,

HUVEC) treated with shRNAs (shCDK16_#1,

shCDK16_#2) and miR-485-5p mimic were collected

separately, washed and resuspended in PBS (19) con-

taining 0.03% Triton X-100 and 50 lg�mL�1 propid-

ium iodide (PI). After staining in the dark for 10 min,

cell cycle assay was performed using a BD Flow

Cytometer. Cells transfected with 100 nM miR-485-5p

mimic or NC were synchronized by 2.5 lM colchicine

(MCE, Monmouth Junction, NJ, USA, Cat. No. HY-

16569) before cell cycle measurement. Cell apoptosis

was assessed by a FITC-Annexin V Apoptosis Detec-

tion Kit (BD BioSciences, San Jose, CA, USA, cat

no.556547). Briefly, cells were collected, washed, and

stained with FITC-conjugated Annexin V and PI in

the dark for 10 min, and then assayed by flow cytome-

try (FACS Calibur, BD BioSciences). The results of

cell cycle and apoptosis assays were analyzed using

MODFIT Lt 5.0 (Verify Software House, Topsham, ME,

USA) and CELLQUEST PRO software (BD BioSciences),

respectively. Each sample was tested for three times.

2.10. Membranous PD-L1 detection

The protein expression of PD-L1 in lung cancer cells

(A549 and H1299) was determined by flow cytometry.

CDK16-KD cells were harvested, washed, resuspended

in FACS Buffer (1% BSA in PBS), and then incubated in

PBS containing 10% normal goat serum to block non-

specific protein–protein interactions. Cells were stained

with 5 lg�mL�1 PE-labeled anti-PD-L1 antibody

(Abcam, Cambridge, UK, Cat # ab209962, at 1 : 100

dilution) for 30 min in the dark on ice. Then, the expres-

sion of PD-L1 on cell surface was detected by flow

cytometry and analyzed by CELLQUEST PRO software.

2.11. RNA sequencing library construction

Total RNA was extracted from CDK16-KD A549 and

H1299 cells. After capturing poly(A) mRNA from 1 lg
purified total RNA, mRNA sequencing (or RNA-Seq)

libraries were constructed according to standard protocol of

the KAPA Stranded mRNA-Seq Kit and sequenced using

IlluminaHiSeq platform (Illumina, SanDiego, CA,USA).

2.12. RNA-seq data analysis

The raw paired-end reads obtained from RNA

sequencing (RNA-seq) experiments were filtered to

remove low-quality reads using Trim Galore and then
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aligned to human reference genome sequence (UCSC

hg19 assembly) using STAR with default settings [56].

To select genes with accurate expression value, we

chose genes whose FPKM > 1 in at least one sample

for subsequent analysis. Differential gene expression

analysis was performed using EdgeR, and a statistical

cutoff of FDR < 0.05 and fold change > 2 was

applied to define differentially expressed genes (DEGs)

[57]. Gene set enrichment analysis (GSEA) was per-

formed by clusterProfiler [58], and hallmark gene sets

(H collection) in the Molecular Signatures Database

(MSigDB) were used for the GSEA [59].

2.13. Gene expression, APA, and survival

analysis

The mRNA expression of CDK16 in multiple cancer

types was analyzed using the The Cancer Genome

Atlas (TCGA) datasets from Gene Expression Profil-

ing Interactive Analysis (GEPIA) website and quanti-

fied as log2(TPM + 1) [60], and the CDK16

expression based on public RNA-seq datasets of

human senescent cells and matched young cells, includ-

ing BJ, WI-38, human foreskin fibroblasts (HFF), and

MRC_5 [61], was indicated by Reads Per Kilobase per

Million mapped reads (RPKM). For APA analysis,

Dynamic analysis of APA from RNA-seq (DaPars)

[62] was used to identify the significantly changed

APA events between two conditions (Tumor vs Nor-

mal; Senescence vs Young), and the resulted Percent-

age of Distal poly(A) site Usage Index (PDUI) value

was used to indicate the percentage of transcripts using

the distal poly(A) site. The APA usage change for a

give gene between two conditions was quantified as a

change in PDUI (DPDUI), which reflects the relative

lengthening (positive index) or shortening (negative

index) of 30UTRs. We also used another algorithm to

analyze the APA events of CDK16, that is, the RUD

method. Specifically, two pA sites with the highest

PSE (percentage of samples with expression) in the

PolyA_DB database (version 3.2) [63] were extracted

as the proximal and distal pA sites of CDK16 and

used for RUD calculation, during which process, the

constitutive 30UTR (cUTR) was defined as the region

between stop codon to proximal pA site, and the alter-

native 30UTR (aUTR) was defined as the region from

proximal pA site to distal PA site. For survival analy-

sis, we conducted the overall survival analysis based

on CDK16 expression on GEPIA platform. We used

the Quartile group method and define patients with

the top 25% CDK16 expression level as high-

expression group and the lowest 25% as the low-

expression group. Then, Kaplan–Meier survival plot

stratified by CDK16 expression was plotted, with dif-

ference significance (P-value) calculated using the log-

rank test.

2.14. Statistical analysis

All results were represented as the mean � SEM (stan-

dard error of mean) of at least three independent experi-

ments. All figures and statistics were generated by

GRAPHPAD PRISM (GraphPad Software, Inc., San Diego,

CA, USA). Unpaired t-test was used for comparison

between groups.P value < 0.05 was considered to be sta-

tistically significant. *, **, and *** represent P < 0.05,

representsP < 0.01 andP < 0.001, respectively.

3. Results

3.1. CDK16 has opposite trend in expression and

30UTR length changes in cancer and aging

processes

Since CDK16 is the only CDK member with APA in

the 30UTR based on DaPars method [62], we are curi-

ous whether the poly(A) site usage changes in tumors

comparing to normal tissues. The change in PDUI

(percentage of distal polyA site usage index; DPDUI)

calculated by DaPars [62] was used for evaluating pA

site usage change in multiple cancer types, including

uterine corpus endometrial carcinoma (UCEC), blad-

der urothelial carcinoma (BLCA), LUAD, and LUSC,

along with corresponding matched normal tissues.

Interestingly, CDK16 was highly expressed (Fig.1A–D)

and preferred proximal poly(A) site (indicated by neg-

ative DPDUI values; Fig. 1E) in these four cancer

types, indicating the potential association between

upregulated gene expression and shortened 30UTR of

CDK16 in tumors, which is in line with previous obser-

vations of global 30UTR shortening and related

expression changes in multiple cancers [35]. Notewor-

thy, the same conclusion can also be drawn by using

the RUD (relative usage of distal pA site) method [64]

(Fig. S1A). Moreover, the preference of proximal

CDK16 pA site in lung cancer (LUAD and LUSC)

was further verified using corresponding RNA-seq

tracks achieved in TCGA database (Fig. S2A). Con-

sidering the potential anti-tumor effects of cancer cell

senescence, we also surveyed the CDK16 mRNA level

in multiple senescence cells and found that CDK16

showed decreased expression in four senescent cell

types, including human primary fibroblasts (BJ),

human embryonic lung fibroblasts (WI38), HFF, and

human embryonic lung fibroblasts (MRC_5; Fig.1F–
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I), based on their public RNA-sequencing (RNA-seq)

datasets [61]. We then analyzed the APA usage

changes in these senescence models using DPDUI by

DaPars and found that the distal poly(A) site was pre-

ferred (indicated by positive DPDUI values) in all

senescence cells (Fig. 1J), suggesting that CDK16 has a

longer 30UTR in aging cells than in young cells. How-

ever, there was no significant difference between the

RUD values of young and senescent cells (Fig. S1B).

In summary, CDK16 mRNA levels and APA-caused

30UTR length changes had opposite trends in cancer

and cellular aging processes.

3.2. CDK16 downregulation induces senescence

in two lung cancer cell lines

As demonstrated above, CDK16 is highly expressed in

lung cancer (LUAD and LUSC) and lowly expressed in

senescent human embryonic lung cells (WI38 and

MRC_5). Intriguingly, LUAD patients with high

CDK16 expression have a lower survival rate compared

with those with low CDK16 expression (Fig. S2B),

which suggests that CDK16 probably plays a role in

lung cancer progress. To examine the possible roles of

CDK16 in lung cancer cells, we KD CDK16 in two

LUAD -related cell lines, A549 and H1299. Efficient

CDK16 KD in A549 cells using two shRNA

(shCDK16_#1, shCDK16_#2) was confirmed (Fig. 2A,

B). CDK16-KD cells showed decreased cell proliferation

rate compared with control (A549_Ctrl) cells, as

detected by CCK-8 assay (Fig. 2C). In addition, the

percentage of G1-phase cells were significantly increased

in CDK16-KD A549 cells compared with control cells

(Fig. 2D). Importantly, CDK16-KD A549 cells also

showed a higher occurrence percentage of positive SA-

b-gal staining, which has been regarded as a classical

Fig. 1. The expression pattern and 30UTR length changes of CDK16 in cancer and senescence. (A) Higher CDK16 expression in UCEC

tumors compared with matched normal tissues based on TCGA RNA-seq datasets archived in GEPIA database [60]. The red and grey boxes

represent the CDK16 expression levels in TCGA tumors (T) and matched TCGA normal tissues (N), respectively. The expression level was

displayed as log2(TPM + 1) denoted in Y-axis. The number (num) of samples was marked below the graph, num(T) = 173, num(N) = 13.

* represents P < 0.05 based on one-way ANOVA. (B) Higher CDK16 expression in BLCA tumors compared with matched normal tissues.

num(T) = 404, num(N) = 19. (C) Higher CDK16 expression in LUAD compared with matched normal tissues. num(T) = 483, num(N) = 59.

(D) Higher CDK16 expression in LUSC compared with matched normal tissues. num(T) = 486, num(N) = 50. The horizontal lines within

each box represent the median values, the box spans the first quartile to the third quartile (interquartile range, IQR), and the whiskers

represent 1.5 9 IQR. (E) APA-mediated 30UTR shortening of CDK16 in four cancer types compared to matched normal tissues based on

DaPars analysis on public RNA-seq data [62]. Y-axis stands for the APA usage changes denoted by DPDUI. DPDUI value was calculated by

subtracting the PDUI value in normal tissues from the PDUI value in each cancer type. (F) Reduced CDK16 expression in senescent human

fibroblasts BJ (Population Doubling 72, PD72) compared to corresponding young cells (PD34) based on public RNA-seq datasets [61]. The

expression level was indicated by RPKM. (G) Reduced CDK16 expression in senescent (PD57) compared with young (PD35) human

embryonic lung fibroblasts WI38. (H) Reduced expression of CDK16 in HFF at PD74 than that at PD16. (I) Decreased CDK16 expression in

PD72 of human lung fibroblasts MRC_5 than in PD32. For panel F–I, unpaired t-test was performed based on three biological replicates. *,

**, *** represent P < 0.05, P < 0.01, P < 0.001, respectively. Error bars indicated mean � SEM. (J) APA-mediated 30UTR lengthening of

CDK16 in the four human senescent cells compared to young cells based on public RNA-seq data mentioned above. The positive DPDUI

value quantified by DaPars represents 30UTR lengthening in senescent cells compared to relatively young cells.
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senescence marker [65] (Fig. 2E). These results indicated

that CDK16 inhibition gave rise to a series of

senescence-associated phenotypes in A549 cells.

Of note, A549 cells have wild-type p53, while H1299

cells are p53-deficient. The present study therefore

explored whether CDK16-KD-induced cancer cell

senescence is p53-dependent or not. Consistent with

the results in A549 cells, CDK16-KD H1299 cells

showed a series of senescence-associated phenotypes,

including decreased cell proliferation rate, cell cycle

arrest in G1 phase, and more SA-b-gal-positive stain-

ing cells compared with control cells (H1299_Ctrl;

Fig. 2F–J). These above results indicated that

senescence-associated phenotypes in CDK16-KD lung

cancer cells were independent of p53, at least in H1299

cells. In addition, CDK16-KD using two shRNAs was

also performed in other two cell types (HEK293T and

HUVEC). Similarly, CDK16-KD resulted in

senescence-associated phenotypes (Fig. S3A–F,I–N) as

observed in lung cancer cells. Moreover, CDK16-KD

also caused apoptotic phenotypes in normal HEK293T

and HUVEC (Fig. S3G,H,O,P). Therefore, CDK16

inhibition can induce senescence in both cancer and

normal cells, suggesting a universal role of CDK16 in

cellular senescence.

3.3. CDK16-L transcript has lower protein

production than CDK16-S transcript

Since the longer 30UTR is associated with low CDK16

expression and CDK16 downregulation can induce

senescence-associated phenotypes, it was thus hypothe-

sized that APA-mediated 30UTR lengthening in

CDK16 contributes to its decreased expression.

According to the polyA database in the UCSC Gen-

ome Browser [66], CDK16 has two pA sites in the

30UTR, resulting in two transcripts with different

30UTR lengths (short: CDK16-S, long: CDK16-L;

Fig. S4A,B; Fig. 3A). To test the effects of these APA

isoforms on gene expression, these two 30UTRs of dif-

ferent lengths were respectively cloned into a dual-

luciferase reporter vector, wherein, the Renilla

Fig. 2. CDK16 downregulation induces senescence in NSCLC cell lines A549 and H1299. (A, B) The validation of CDK16 KD in A549 with

two shRNAs (shCDK16_#1, shCDK16_#2) assayed by qRT-PCR (A) and western blot (B). GAPDH serves as the internal control. (C) Cell

proliferation rate of CDK16-KD A549 cells evaluated by CCK-8 assay. (D) Cell cycle analysis on CDK16-KD A549 cells, cell cycle arrested at

G1 phase in CDK16-KD cells was measured by flow cytometry, shown as cell proportion at each phase (Left) and the statistical results

(Right). (E) SA-b-Gal staining of CDK16-KD and control A549 cells (Left) and the statistical results of the staining positive cells (Right). Scale

bars = 200 lm. *** represents P < 0.001 based on t-test with three independent countings. (F, G) Validation of CDK16 KD in H1299 cells

by qRT-PCR (F) and western blot (G). GAPDH serves as the internal control. (H) Cell proliferation rate evaluated by CCK-8 assay in CDK16-

KD H1299 cells. (I) Cell cycle analysis on CDK16-KD H1299 cells detected by flow cytometry. The proportion of cells in each phase was

shown by the distribution (Left) and the quantitative statistics (Right). (J) SA-b-Gal staining in CDK16-KD and control H1299 cells (Left) and

the quantitative statistics of staining positive cells (Right). Scale bars = 200 lm. For each panel, *, ** and *** stand for P < 0.05, P < 0.01,

and P < 0.001, respectively, based on t-test with three biological replicates. Error bars indicated mean � SEM.
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luciferase fluorescence intensity was normalized to that

of Firefly luciferase. The results showed that the repor-

ter gene with CDK16-L produced less luciferase activ-

ity than that with CDK16-S in both lung cancer cell

lines (A549 and H1299) and normal cells (HEK293T

and HUVEC; Fig. 3B). And mRNA stability testing

of these two APA isoforms indicated that CDK16-L is

more susceptible to degradation than CDK16-S in all

of the tested cells (Fig. 3C–F), consistent with the

argument that different 30UTR lengths can affect

mRNA degradation in various ways [67,68]. To further

validate the effects of different 30UTR lengths on the

protein production, we constructed two plasmids, con-

taining the long and short 30UTR fused with GFP tag,

respectively (Fig. S5A). The results of Western blot

showed that GFP protein expression in fusion with

CDK16-L was significantly decreased compared to

that with CDK16-S in both lung cancer cell lines

(A549 and H1299) and normal cells (HEK293T and

HUVEC; Fig. S5B–E). Therefore, APA-mediated

30UTR length changes explain, at least in part, the

opposite gene expression of CDK16 in cancer and

senescence models.

3.4. miR-485-5p is responsible for inhibitory

effect in alternative CDK16 30UTR

To determine which regulatory elements in the alterna-

tive 30UTR caused the expression differences between

these two CDK16 isoforms, four truncated reporter

plasmids containing different alternative 30UTR length

[CDK16-T1, CDK16-T2, CDK16-T3, and CDK16-T4,

in a 200 nucleotide (nt) length gradient] were con-

structed (Fig. S6A). By comparing relative luciferase

activities of these constructs to CDK16-S, CDK16-T1

showed the most dramatic signal drop in all four

tested cell lines (A549, H1299, HEK293T, and

HUVEC; Fig. S6B–E), indicating that the sequence

between CDK16-T1 and CDK16-S likely harbors the

main inhibitory elements.

Since miRNAs usually bind to the 30UTR of target

genes to suppress their expression [69–71], we

Fig. 3. CDK16-L has an inhibitory effect on gene expression compared with CDK16-S. (A) Schematic diagram of mRNA isoforms with

different 30UTR length. CDK16-S and CDK16-L represent transcript of CDK16 with short (226 nt) and long 30UTR (1227 nt), respectively. The

pA (polyA) sites were also shown in the 30UTR. (B) Dual-luciferase reporter assay to test the influence of 30UTRs (CDK16-S and CDK16-L)

on the luciferase activity in A549, H1299, HEK293T, and HUVEC. Relative luminescence of Renilla luciferase was normalized using the

reference Firefly luciferase activity. *** represents P < 0.001 in t-test with four biological replicates. Error bars indicated mean � SEM. (C–

F) The degradation rate of transcripts with different 30UTR lengths measured by qRT-PCR after blocking transcription by Actinomycin D.

Relative mRNA level of CDK16-S and CDK16-L at each different time point was compared to 0 h in A549 (C), H1299 (D), HEK293T (E), and

HUVEC (F). For panel C–F, *, **, and *** stand for P < 0.05, P < 0.01, and P < 0.001, respectively, based on t-test with three biological

replicates. Error bars indicated mean � SEM.
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wondered whether miRNAs targeting this region (be-

tween CDK16-S and CDK16-T1) are responsible for

the reduced CDK16 expression. Three miRNAs (miR-

3064-5p, miR-485-5p, and miR-331-3p) were predicted

to specifically target this region by TargetScan [54,72]

(Fig. S7A). We first examined whether these miRNAs

expressed in the above four cell lines, the results

showed that all of them had detectable expression in

the tested cells (Fig. S7B). To validate which miRNA

represses CDK16 expression, Mimics of these three

miRNAs and NC were separately cotransfected with

luciferase reporter plasmid containing CDK16-L into

HEK293T cells. The result showed that overexpression

of miR-3064-5p and miR-485-5p reduced the relative

luciferase activities of CDK16-L construct (Fig. S7C).

To further confirm the inhibitory effect of these two

miRNAs, corresponding anti-miRNA oligonucleotides

were cotransfected with CDK16-L, and the result

showed that the relative luciferase activity was

increased only when miR-485-5p was inhibited

(Fig. S7D,E). These above results suggest that miR-

485-5p is the main contributor to decreased expression

of CDK16-L comparing to CDK16-S.

Of note, miR-485-5p binding to the 30UTR of

CDK16 can also be predicted by Tarbase (Fig. S7F),

which contains the experimentally supported miRNA-

mRNA interaction information [55], suggesting that

CDK16 is probably a target gene of miR-485-5p. To

further verify the effect of miR-485-5p on the expres-

sion of CDK16 longer isoform, the dual-luciferase

reporter assay was performed after cotransfecting

CDK16-L with either a miR-485-5p mimic or a NC

into the above four cell lines (A549, H1299,

HEK293T, and HUVEC). The results showed that

miR-485-5p overexpression significantly reduced the

relative luciferase activity of CDK16-L isoform in both

lung cancer and normal cells (Fig. 4A). Furthermore,

miR-485-5p overexpression could reduce the CDK16

protein expression, as detected by Western blot

(Fig. 4B–E). According to TargetScan, the 7 nt seed

sequence of miR-485-5p is completely complementary

to the target sequence in the alternative 30UTR of

CDK16 (Fig. 4F). Therefore, it was hypothesized that

these 7-nt sequence is critical for the miRNA-mediated

decreased expression. To confirm this hypothesis, we

mutated the potential miR-485-5p binding sequence on

CDK16-L (termed as CDK16-M; Fig. 4G) to see if it

affects miR-485-5p binding. By cotransfecting the

miR-485-5p mimic or NC with CDK16-M or CDK16-

L into the four cell lines used above (A549, H1299,

HEK293T, and HUVEC), we found that CDK16-M

usually had a higher relative luciferase activity than

CDK16-L (Fig. 4H–K). Importantly, CDK16-M was

able to fully or partially rescue the reduced CDK16-L

luciferase activity in the above four cell types

(Fig. 4L–O). These results above strongly support that

miR-485-5p is a key regulator repressing the expres-

sion of longer transcript of CDK16 using the distal pA

site and can also explain the potential mechanism of

APA regulating CDK16 expression at the post-

transcriptional level.

3.5. miR-485-5p mimic promoted senescence-

associated phenotypes in two lung cancer cells

Since decreased CDK16 expression associated with its

distal poly(A) site usage can lead to cellular senescence

in lung cancer cells, and miR-485-5p can suppress the

expression of longer transcript of CDK16, it was spec-

ulated that miR-485-5p has the potential to promote

senescence in the case of the considerable distal pA site

usage. To test this, the miR-485-5p mimic and NC

were transfected into two lung cancer cell lines (A549

and H1299; Fig. 5A,H). miR-485-5p overexpression

resulted in senescence-associated phenotypes, including

reduced cell proliferation rate (Fig. 5B,I), increased

percentage of positive SA-b-gal-staining cells (Fig. 5C,

J), and cells arrested at G1 cell cycle phase (Fig. 5D,E,

K,L) in both A549 and H1299 cells, similar to the phe-

nomena observed in CDK16-KD cells. These results

above indicate that miR-485-5p can induce senescence-

associated phenotypes in lung cancer cells.

CDK16 depletion in lung cancer has been reported

to promote apoptosis, another tumor-suppressive

mechanism in addition to cellular senescence [16], so

we wondered whether miR-485-5p can also induce

apoptosis in lung cancer cells. Not surprisingly, more

apoptotic cells were observed in A549 and H1299 cells

transfected with miR-485-5p mimic (Fig. 5F,G,M,N),

suggesting that the inhibitory effect of miR-485-5p on

lung cancer cell proliferation may be mediated by both

senescence and apoptosis. Of note, miR-485-5p mimic

in HEK293T and HUVEC promoted apoptosis and

inhibited proliferation as well (Fig. S8A–D).

3.6. CDK16 KD leads to reduced expression of

MYC and PD-L1

We next explored the downstream targets involved in

lung cancer cell senescence induced by CDK16-KD.

For this purpose, transcriptome-wide comparison

between CDK16-KD and control lung cancer cells

(A549 and H1299) was performed using RNA-seq.

Although A549 and H1299 cell lines showed distinct

pattern of DEGs caused by CDK16-KD, GSEA

showed that downregulated DEGs in these two cell
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lines shared similar pathway terms, such as apoptosis,

p53 pathway, and MYC target genes (Fig. 6A–C;
Fig. S9A–C), suggesting that common factors may

underlie the CDK16-KD-induced senescence between

A549 and H1299. To examine this, we compared

respectively the DEGs in CDK16-KD A549 and

H1299 cells with aging-related genes recorded in the

GenAge and CellAge databases in the Human Ageing

Genomic Resources [73–75] and found a total of 26

and 22 known aging-related genes, respectively

(Fig. 6D,E; Figs S9D and S10A). Among them, the

proto-oncogene MYC (also known as c-MYC) attracts

our attention, since MYC activation contributes to the

occurrence of diverse cancers, and MYC inhibition

induces senescence in a variety of cancer cells [50,76].

Interestingly, MYC showed reduced expression in

CDK16-KD A549 and H1299 cells as assessed by

RNA-seq (Fig. 6E, Figs S9D and S10B,C) and further

validated by qRT-PCR and Western blot (Fig. 6F,G,

Fig. S9E,F). These data suggested that MYC may be a

possible factor mediating CDK16-KD-induced senes-

cence. Consistent with the fact that MYC serves as a

widespread transcription factor that can regulate

tumor-specific gene expression [77], we also found the

decreased expression of its target gene PD-L1 in both

CDK16-KD lung cancer cells (Fig. 6F, Fig. S9E). It

has been reported that MYC repression downregulates

PD-L1 expression and activates the antitumor immune

response [78]. In our study, PD-L1 protein expression

was also detected on the surface of CDK16-KD A549

Fig. 4. miR-485-5p is responsible for the reduced protein production of CDK16-L. (A) Dual-luciferase reporter assay to test the effect of

miR-485-5p on the luciferase activity derived from CDK16-L. After cotransfecting CDK16-L with either miR-485-5p mimic or NC into A549,

H1299, HEK293T, and HUVEC cells, Renilla luciferase activity relative to Firefly luciferase activity was measured. Error bars indicated

mean � SEM. *, ** represent P < 0.05 and P < 0.01, respectively, based on t-test with four biological replicates. (B–E) Western blot assay

to validate the decreased CDK16 protein expression in miR-485-5p-overexpressing A549 (B), H1299 (C), HEK293T (D), and HUVEC cells (E).

GAPDH serves as a loading control. (F) Prediction of CDK16 as a target gene of miR-485-5p using TargetScan [54]. The binding site was

located in the alternative 30UTR of CDK16. (G) Mutation of miR-485-5p binding site. Based on the seed sequence of miR-485-5p, a fully

noncomplementary mutant vector (CDK16-M) was constructed and verified by Sanger sequencing. (H–K) Dual-luciferase reporter assay to

evaluate the relative luciferase activity of CDK16-M. CDK16-L or CDK16-M was cotransfected with either miR-485-5p mimic or the NC into

A549 (H), H1299 (I), HEK293T (J), and HUVEC cells (K), respectively. Error bars indicated mean � SEM. *, **, *** represent P < 0.05,

P < 0.01, and P < 0.001, respectively, based on t-test with four biological replicates. (L–O) Dual-luciferase reporter assay to evaluate the

relative luciferase activity of CDK16-S, CDK16-L, and CDK16-M in A549 (L), H1299 (M), HEK293T (N), and HUVEC (O). *, **, *** represent

P < 0.05, P < 0.01, and P < 0.001, respectively, based on t-test with four biological replicates. Error bars indicated mean � SEM.
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and H1299 cells, and CDK16 deficiency caused a

decreased PD-L1 expression on the membrane of A549

and H1299 cells (Fig. 6H; Fig. S9G), suggesting that

cellular senescence caused by CDK16-KD might

enhance the immune response by inhibiting the MYC/

PD-L1 signaling axis. In summary, CDK16 KD leads

to a reduced expression of MYC and PD-L1, both

benefiting antitumor effects.

4. Discussion

Understanding CDK regulation has important

biomedical implications, a well-known example of this

gene family is that pharmacologic CDK4/6 inhibitors

have shown their ability to fight against several solid

tumors by inducing cancer cell apoptosis or senescence

[10–12,26]. The present study revealed that CDK16 has

Fig. 5. miR-485-5p has a positive effect on senescence and apoptosis in both A549 and H1299. (A) qRT-PCR to test the expression of miR-

485-5p in A549 cells transfected with miR-485-5p mimic and the NC. U6 serves as the internal control. (B) CCK-8 assay in miR-485-5p-

overexpressing (OE) A549 cells. (C) SA-b-Gal staining in miR-485-5p- OE A549 cells. Images were captured at 1009 magnification under a

microscope (Left) and the percentage of staining positive cells was quantified (Right). Scale bars = 100 lm. *** represents P < 0.001 based

on t-test with three independent countings. (D, E) Cell cycle analysis showing flow cytometric distribution (D) and quantitative statistics (E)

for cells of each cell phase. Cells were synchronized by 2.5 lM colchicine before transfection and cell cycle measurement. (F, G) Apoptosis

analysis with double-staining Annexin V and PI in miR-485-5p-OE A549 cells by flow cytometer (F). Annexin V-positive cells were considered

as apoptotic cells (G). (H) qRT-PCR to validate the increased expression of miR-485-5p after transfecting its mimic into H1299 cells. U6

serves as the internal control. (I) CCK-8 assay in miR-485-5p-OE H1299 cells. (J) SA-b-Gal staining in miR-485-5p-OE H1299 cells. Images

were captured at 1009 magnification under a microscope (Left) and the percentage of positive staining cells was quantified (Right). Scale

bars = 100 lm. ** represents P < 0.01 based on t-test with three independent countings. (K, L) Cell cycle analysis shown by flow

cytometric distribution (K) and quantitative statistics (L) for cells of each phase. Cells were synchronized by 2.5 lM colchicine before

transfection and cell cycle measurement. (M, N) Apoptosis analysis by double-staining Annexin V and PI in miR-485-5p-OE H1299 cells by

flow cytometer (M). The proportion of apoptotic cells is indicated by the percentage Annexin V-positive cells (N). For each panel, *, **, ***

represent P < 0.05, P < 0.01, and P < 0.001, respectively, based on t-test with three biological replicates. Error bars indicated

mean � SEM.
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a new function of inducing senescence in lung cancer

cells. CDK16 is also the only CDK member with APA

regulation. APA-mediated 30UTR length changes

showed opposite trends between cancer (shortening)

and senescence (lengthening), accompanying the up-

and down-regulation of CDK16 gene expression,

respectively. The less protein production from longer

CDK16 transcript using the distal pA site compared

with the shorter one using the proximal pA site can be

explained, at least in part, by the specific binding of

miR-485-5p to the alternative 30UTR. Moreover,

CDK16 inhibition downregulated MYC and PD-L1 in

NSCLC cells, suggesting that the enhanced antitumor

immune response may be a downstream effect of

inducing cancer cell senescence to exercise its tumor-

suppressive function. The present study demonstrated

that APA-mediated 30UTR length regulation exists in

CDK16, a member of the well-known CDK family,

and plays a role in lung cancer cell senescence.

Although senescent cells do not proliferate, they

remain metabolically active and can produce secreted

proteins with tumor-suppressing or tumor-promoting

Fig. 6. CDK16 KD leads to reduced MYC and membranous PD-L1 expression in lung cancer cells. (A) Heatmap showing the DEGs between

CDK16-KD and control (Ctrl) A549 cells, each sample has two technical replicates. (B) Volcano map showing up- and down-regulated genes

in CDK16-KD A549 cells. (C) GSEA using H collection (Hallmark gene sets) to display the enrichment of down-regulated genes above

targeted by MYC. (D) Venn diagram showing the relationship between DEGs in CDK16-KD A549 (or H1299) cells and the human

senescence-associated genes archived in the GenAge database (https://genomics.senescence.info/genes/) [73]. (E) Differential expression

analysis of 26 overlapping genes. Up-regulated (UP) and down-regulated (DOWN) genes were marked respectively according to their fold

change (FC) in A549 cells. (F) qRT-PCR to detect the reduced expression of MYC and PD-L1 in CDK16-KD A549 cells. GAPDH was used as

the internal control. *, *** represent P < 0.05 and P < 0.001 based on t-test with three independent replicates. Error bars indicated

mean � SEM. (G) Western blot to test the decreased MYC protein expression upon CDK16-KD in A549 cells. GAPDH serves as the internal

control. (H) Flow cytometry showing the membranous expression of PD-L1 on the cell surface of CDK16-KD A549 cells based on three inde-

pendent replicates. The arrow denotes a decrease in membranous PD-L1 expression.
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activities [79]. Of note, inducing cancer cell to senes-

cence is becoming a tumor-suppressing strategy in

addition to apoptosis [80]. For example, the cancer

preventing ability of p53, a protein capable of initiat-

ing apoptosis or senescence, predominantly depends

on senescence induction [81], implying that triggering

cancer cell to senescence plays important roles in

tumor suppression. CDK16 has been reported to play

an oncogenic role in NSCLC by inhibiting apoptosis

in a p27-dependent manner [16]. It also inhibits the

production of reactive oxygen species (ROS) and

DNA damage response in lung cancer by phosphory-

lating p53 [17]. Recently, CDK16/Cyclin Y complex

has been found necessary for MAPK-dependent autop-

hagy activation [82–84]. Although the above evidence

builds the link between CDK16 and apoptosis,

whether CDK16 plays a role in senescence remains elu-

sive. The present study demonstrated for the first time

that CDK16 downregulation can induce senescence in

both NSCLC and normal cells, suggesting its regula-

tory role in both physiological and pathological situa-

tions.

Alternative polyadenylation and miRNA-mediated

gene silencing can coordinate to participate in post-

transcriptional regulation of gene expression [85]. For

example, progressive 30UTR lengthening caused by

APA during embryonic development can significantly

enhance the effects of miRNA targeting, since miRNA

target sites located in alternative 30UTRs are more

suitable for miRNA binding than those in constructive

30UTRs [86]. In contrast, the widespread shortening of

30UTR in cancer cells protects most proto-oncogenes

from miRNA-mediated inhibition, thereby contribut-

ing to the oncogene activity maintenance [35]. Our pre-

vious study found that more genes preferred the

longer 30UTR than the shorter one in replicative cellu-

lar senescence, and some RBP (TRA2B) bound to the

alternative 30UTR of the target gene (RRAS2) to regu-

late its gene expression and ultimately leading to

senescence-associated phenotypes [33]. However,

whether APA-mediated 30UTR length changes can

combine with miRNA recognition to regulate cancer

cell senescence is unclear. The present study discovered

the first example of miR-485-5p binding to the alterna-

tive CDK16 30UTR and in turn reducing the protein

production of corresponding isoform. CDK16-KD and

miR-485-5p overexpression can both lead to

senescence-associated phenotypes in cancer cells. Note-

worthy, miR-485-5p has been considered to be a

tumor-suppressive miRNA in multiple cancer types,

and its decreased levels have been found in many can-

cer tissues and cancer cell lines [87]. In addition, miR-

485-5p can inhibit the growth and invasion of

NSCLC, and its low expression is significantly associ-

ated with poor prognosis [88], suggesting that miR-

485-5p can be used as a target for cancer therapy in

NSCLC. Since one miRNA can target multiple genes,

and one gene can be regulated by different miRNAs, it

is necessary to figure out the complete miRNA–target
interaction network for exploring the potential new

therapeutic targets. The present study found that miR-

485-5p can target a new gene CDK16, whose reduced

expression promoted senescence-associated phenotypes.

Taken together, a possible deduction can be reached

that CDK16 30UTR shortening allows lung cancer cells

to escape senescence fate by avoiding miR-485-5p tar-

geting on its alternative 30UTR. This novel molecular

finding indicates a potential new target for cancer

treatment, though deserves further investigation.

The role of cellular senescence in cancer prevention

has been widely investigated [23,89]. The present study

found that CDK16-KD can induce cancer cells to senes-

cence. However, the detailed mechanism of how this

process exerts its tumor-suppressive function still

remains not fully understood. Considering that one

hallmark of cancer cells is the ability to evade immune

surveillance [90] and that one contribution of senescent

cells is to interact with immune cells to promote the

immunoclearance effect of tumor cells [91], it is valuable

to explore whether anti-tumor immune response

increases upon CDK16 KD. Noteworthy, CDK16-KD

led to reduced expression of MYC and membranous

PD-L1. MYC seems to be one of the most important

carcinogenic factor in human tumorigenesis [92], and it

can act as a transcription factor to promote a wide

range of gene expression and play a key role in a vari-

ety of tumor processes, including immune escape, inva-

sion, and proliferation [77,90,93,94]. MYC inactivation

can also trigger senescence in various cancer types and

promote cancer elimination [50,95,96]. Consistently, in

the present study, CDK16-KD led to decreased MYC

expression and senescence of cancer cells. In addition,

MYC can directly bind to the promoter of PD-L1 gene,

and MYC inactivation leads to reduced PD-L1 mRNA

and protein abundance in tumor cells, which in turn

enhances the cellular anti-tumor immune response [78].

The treatment with PD-L1 antibody has achieved great

success in preclinical models and clinical NSCLC ther-

apy, with a satisfied safety profile and controllable side

effects [97–99]. This cooperation between MYC inacti-

vation and immune checkpoint blockade can effectively

reverse immune escape and treat lung cancer

[78,100,101]. Therefore, CDK16-KD-induced downregu-

lation of membranous PD-L1 may prevent cancer cells

from evading immune recognition and thus benefit

patient survival. Our findings suggest that
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understanding the mechanisms of cancer cell senescence

and the way by which senescent cancer cells can be rec-

ognized by immune system is crucial for prosenescence

cancer therapy. Therefore, CDK16, whose downregula-

tion results in cancer cell senescence can serve as a

potential novel target for cancer treatment.

5. Conclusions

In conclusion, the present study found an opposite

trend of the expression and APA usage in CDK16

between lung cancer and senescent cells. The APA-

mediated 30UTR shortening of CDK16 in lung cancer

cells enable escaping from miR-485-5p binding and

consequent transcript degradation. This study demon-

strated for the first time that both CDK16 inhibition

and miR-485-5p overexpression can induce senescence

in lung cancer cells, indicating their potential anti-

cancer capacities. Besides, this study also indicated

that surveillance and elimination of senescent cancer

cells by immune system might be an alternative strat-

egy for effective cancer therapy.
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