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Long noncoding RNA lncARSR 
promotes nonalcoholic fatty liver disease 
and hepatocellular carcinoma by promoting 
YAP1 and activating the IRS2/AKT pathway
Yuan Chi, Zheng Gong, He Xin, Ziwen Wang and Zhaoyu Liu*

Abstract 

Background:  Nonalcoholic fatty liver disease (NAFLD) is the main cause for hepatocellular carcinoma (HCC). This 
study was intended to identify the function of long non-coding RNA (lncRNA) lncARSR in NAFLD and its role in 
human HCC cells (HepG2) proliferation and invasion.

Methods:  LncARSR expression was detected both in high fatty acid-treated HepG2 cells and NAFLD mouse model. 
After gain- and loss-of-function approaches in high fatty acid-treated HepG2 cells and NAFLD mice, lipid accumula-
tion in livers from NAFLD mice and high fatty acid-treated cells was determined by H&E staining, Oil Red-O staining or 
Nile Red staining respectively. Expression of YAP1, adipogenesis- (Fasn, Scd1 and GPA) and IRS2/AKT pathway-related 
genes was measured. Cell proliferation was monitored by MTT and soft-agar colony formation assays, cell cycle was 
analyzed by flow cytometry, and cell invasion was examined by transwell assay. The tumor weight and volume were 
then measured through in vivo xenograft tumor model after silencing lncARSR.

Results:  LncARSR was highly expressed in high fatty diet (HFD)-fed mice and high fatty acid-treated HepG2 cells. 
LncARSR was observed to bind to YAP1, which inhibited phosphorylation nuclear translocation. LncARSR activated 
the IRS2/AKT pathway by reducing YAP1 phosphorylation, and further increased lipid accumulation, cell proliferation, 
invasion and cell cycle. Silencing lncARSR in HFD-fed mice alleviated NAFLD by regulating YAP1/IRS2/AKT axis.

Conclusion:  Silencing lncARSR suppressed the IRS2/AKT pathway, consequently reducing HCC cell proliferation and 
invasion and inhibiting lipid accumulation in NAFLD mice by downregulating YAP1, which suggests a clinical applica-
tion in treating NAFLD.
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Background
Nonalcoholic fatty liver disease (NAFLD) is a chronic 
liver disease commonly seen in over-weight or obese 
people. Almost 90% of obese people have been diagnosed 
with diseases associated with fatty liver [1]. As the obesity 

epidemic grows, the incidence of NAFLD is accordingly 
increasing [2]. Besides, NAFLD has become the leading 
cause for liver cancer [3]. Therefore, efficiently treating 
NAFLD will be beneficial to prevent hepatocellular car-
cinoma (HCC). However, limited investigations on the 
mechanisms underlying the development of NAFLD have 
been reported [4].

Long non-coding RNAs (lncRNAs) may act as poten-
tial markers for prognosis and progression of liver dis-
eases and furthermore as direct targets for therapeutic 
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purposes. Several lncRNAs have been proved to be asso-
ciated with liver diseases [5]. LncRNA activated in renal 
cell cancer (RCC) with Sunitinib Resistance (lncARSR), 
which is located on chromosome 9q82, was found to be 
up-regulated in sunitinib resistance of RCC [6]. Accord-
ing to a prior study [7], lncARSR is also potentially 
involved with hepatic steatosis. However, the role of 
lncARSR in NAFLD is less clear.

Yes-associated protein (YAP) is an effective transcrip-
tional co-activator in the Hippo pathway, which is associ-
ated with the regulation of organ size through mediating 
cell proliferation, cell cycle and apoptosis. A higher level 
of YAP has frequently been detected in various types of 
human cancers [8, 9]. Moreover, the AKT pathway was 
demonstrated to be activated by YAP [10]. Further inves-
tigation highlighted that the Hippo pathway interacts 
with the AKT pathway by influencing insulin receptor 
substrate 2 (IRS2) expression in NAFLD, which affects 
the development of NAFLD and even HCC [11].

In this study, we investigated the effects of lncARSR/
YAP1 on NAFLD, and finally identified that lncARSR 
promoted NAFLD through YAP1 and the IRS2/AKT 
pathway, thus providing a novel insight into NAFLD 
treatment.

Materials and methods
Ethical statement
All the animal experiments complied with the standard 
ethical guidelines prescribed in Guide for the Care and 
Use of Laboratory Animals by National Institutes of 
Health. All efforts were made to avoid unnecessary dis-
tress to the animals.

Mouse model
A total of 60 C57BL/6 male mice (aged 6  weeks) were 
purchased from Beijing Huafukang Biotechnology Co., 
Ltd. (Beijing, China). The mice were fed with normal 
diet (carbohydrate accounted for 62.3% of total calories; 
fat 12.5%; protein 24.3%) or high fat diet (HFD) (carbo-
hydrate accounted for 32.6% of total calories; fat 51.0%; 
protein 16.4%) (NAFLD mice). After 4 weeks, mice were 
euthanized by intraperitoneal injection of tripled 3% 
pentobarbital sodium (P3761, Sigma-Aldrich, St. Louis, 
MO, USA). The livers were separated for further analyses.

Cell culture
The human HCC cells (HepG2) (http://www.cellb​ank.
org.cn/) were cultured overnight in four-well chamber 
slides with Dulbecco’s modified eagle medium (DMEM) 
containing 10% fetal bovine serum (FBS). Then, the cells 
were cultured with DMEM supplemented with 1% w/v 
fatty acid-free bovine serum albumin (BSA) and 0.5 mM 
oleate. Meanwhile, HepG2 cells were infected with 

lentivirus of short hairpin (sh)-lncARSR, over-expres-
sion (oe)-lncARSR, sh-YAP1, oe-YAP1 or YAP1S127D (a 
phosphorylated mimic form of YAP1) singly or in com-
bination. After 24  h of infection, lipid accumulation in 
HepG2 cells was determined by Nile Red Staining. The 
level of intracellular triglyceride (TG) was measured fol-
lowing the protocols of detection kits (Applygen, Beijing, 
China).

RNA isolation and quantitation
Total RNA was extracted from cells and tissues with the 
Trizol kit (Thermo Fisher Scientific, Waltham, MA, USA) 
and then reversely transcribed into cDNA using the Pri-
meScript RT Reagent Kit (TaKaRa, Tokyo, Japan). Fluo-
rescence quantitative polymerase chain reaction (qPCR) 
was subsequently carried out referring to the operation 
instruction provided by SYBR® Premix Ex Taq™ II kit 
(Tli RNaseH Plus, TaKaRa) on Thermal Cycler Dice Real 
Time System (TP800, TaKaRa). The primers were syn-
thesized by Guangzhou Ribobio Science & Technology 
Co., Ltd. (Guangzhou, China) (Table 1). Gene expression 
was measured by the 2−ΔΔCt method with glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) as internal 
reference.

Western blot analysis
Sufficiently ground liver tissues or HepG2 cells were 
lysed with radioimmunoprecipitation assay lysis buffer 
(C0481, Sigma-Aldrich), and total proteins were isolated. 
The proteins were then separated by 10% sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis, and trans-
ferred onto a polyvinylidene fluoride membrane, which 

Table 1  Primer sequences for RT-qPCR

RT-qPCR reverse transcription quantitative polymerase chain reaction, 
lncARSR (Humo), lncRNA regulator of AKT signaling associated with HCC and 
RCC (human); lncARSR (Mmu), lncRNA regulator of AKT signaling associated 
with HCC and RCC (house mouse), IRS2 insulin receptor substrate 2, GAPDH 
glyceraldehyde-3-phosphate dehydrogenase

Genes Primer sequences

lncARSR (Humo) F: 5′-TGG​ATG​GGC​AAG​GCA​AGG​TC-3′

R: 5′-AAG​TTG​GGC​ACG​GAA​GCA​GG-3′

lncARSR (Mmu) F: 5′-TTT​GAA​ATG​CTC​TTT​GAG​GGAT-3′

F: 5′-TGC​AGG​TTG​TCT​GAA​GTT​GGA-3′

IRS2 (Humo) F: 5′-CAA​GAG​CCC​TGG​CGA​GTA​CA-3′

R: 5′-CCG​CGG​ATG​CCA​GTA​GTG​-3′

IRS2 (Mmu) F: 5′-ATA​TTG​CTG​AAG​AGC​TTG​GCG-3′

R: 5′-TGT​ATG​CGG​TGC​TCC​GGG​AAG-3′

GAPDH (Humo) F: 5′-GGT​CTC​CTC​TGA​CTT​CAA​CA-3′

R: 5′-GTG​AGG​GTC​TCT​CTC​TTC​CT-3′

GAPDH (Mmu) F: 5′-GTT​GTC​TCC​TGC​GAC​TTC​A-3′

R: 5′-GCC​CCT​CCT​GTT​ATT​ATG​G-3′

http://www.cellbank.org.cn/
http://www.cellbank.org.cn/
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was blocked by 5% skimmed milk for 1 h. The membrane 
was incubated at 4 °C overnight with the diluted pri-
mary antibodies against YAP1 (1:1000, ab205270, rabbit), 
phosphorylated YAP1 (1:10,000, ab76252, rabbit), IRS2 
(1:1000, ab134101, rabbit), AKT (1:10,000, ab179463, 
rabbit), phosphorylated AKT (1:5000, ab81283, rab-
bit), fatty acid synthase (Fasn, ab99359, 1:2000, rab-
bit), stearoyl-coenzyme A desaturase 1 (Scd1, ab19862, 
1:1000, mouse), glycerol-3-phosphate acyltransferase 
(GPAT, ab69990, 1:5000, rabbit) and GAPDH (1:1000, 
ab8245, rabbit). All the above antibodies were purchased 
from Abcam Inc. (Cambridge, UK). Next, the membrane 
was incubated with horseradish peroxidase conjugated 
goat anti-rabbit immunoglobulin G (TransGen Biotech, 
Beijing, China), and developed with enhanced chemi-
luminescence solution (BaomanBio, Shanghai, China). 
The relative expression was described as the ratio of gray 
value of the target band to that of GAPDH band, which 
was analyzed by the image analysis software Image J.

Nile red staining
The lipid accumulation of HepG2 cells was examined by 
staining with the lipophilic dye Nile Red (Sigma-Aldrich). 
In brief, cells were fixed with 4% paraformaldehyde for 
10  min and incubated with Nile Red solution at a final 
concentration of 1 mg/L in phosphate buffer saline (PBS) 
for 20  min at 37  °C. Then the cells were mounted with 
Prolong® Gold antifade reagent containing 4′-6-diamid-
ino-2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, 
USA) and examined by a fluorescent microscope.

Histological analysis
Sections of liver were embedded in Tissue-Tek OCT 
Compound and frozen with carbon dioxide ice. Then, 
sections were stained with Oil-red-O/60% isopropyl 
alcohol solution (Thermo Fisher Scientific). After being 
rinsed with 60% isopropyl alcohol and distilled water, the 
sections were counterstained by hematoxylin for 4  min, 
and then observed under a Zeiss Axioplan 2 upright 
microscope (Carl Zeiss, Jena, Germany).

RNA immunoprecipitation (RIP) and RNA pull‑down
RIP and RNA pull-down were conducted following the 
methods as previously described [12]. EZ-Magna RIP 
RNA-Binding Protein Immunoprecipitation Kit (EMD 
Millipore, Billerica, MA, USA) was used for RIP, and 
Rneasy Mini Kit (Qiagen, Hamburg, Germany) was uti-
lized to purify RNA in RNA pull-down.

RNA‑fluorescence in situ hybridization (FISH)
The expression and distribution of lncARSR and YAP1 in 
HCC cells were determined by FISH. Cells were cultured 
in a 24-well plate with 5 × 103 cells/well, and penetrated 

with PBS containing 0.5% Triton X-100. The cells were 
then blocked with pre-hybridization solution at 37  °C 
and hybridized with lncARSR probe at 37  °C overnight 
in dark. Next, the cells were washed with FISH solution 
at 42  °C and stained with DAPI. The FISH signals were 
detected using the tyramide signal amplification system 
(PerkinElmer Corporation, Norwalk, CT, USA) and ana-
lyzed with a fluorescence microscope (IX70, Olympus 
Medical Systems Co., Tokyo, Japan).

3‑(4, 5‑dimethylthiazol‑2‑yl)‑2, 5‑diphenyltetrazolium 
bromide (MTT) assay
Cell proliferation was examined by a MTT cell prolifera-
tion kit (Cell Biolabs Inc, San Diego, CA, USA) following 
the manufacturer’s instruction.

Soft‑agar colony formation
HepG2 cells (0.5 × 106) were suspended in 8 mL of 0.4% 
top agar (Sigma-Aldrich), cultured in a 6-cm petri dish 
in 2 × DMEM supplemented with 20% FBS and wrapped 
with 3.5  mL of 0.7% bottom agar. After 14  days, the 
number of cell colonies was counted in three randomly 
selected regions from each plate.

Transwell invasion assay
The in  vitro transwell invasion assay was conducted in 
24-well plates using transwell chambers (with 8-μM 
diameter; Corning Incorporated, Corning, NY, USA). 
Transwell chambers pre-coated with Matrigel were pre-
supplemented with 600 μL DMEM containing 20% FBS 
at 37  °C for 1 h. The transwell basolateral chamber was 
also supplemented with DMEM containing 20% FBS. 
After 48 h of transfection, HepG2 cells were resuspended 
with DMEM containing 10% FBS. Cells were cultured in 
the apical chamber at 37  °C with 5% CO2 for 24  h, and 
then the cells in intimal microporous film were scrubbed 
off using a cotton swab. Cells were fixed with 4% para-
formaldehyde and stained with 0.1% crystal violet. The 
stained cells were observed under an inverted micro-
scope and quantified.

Flow cytometry
HepG2 cells 24 h before transfection were seeded into a 
6-well plate. After 48 h transfection, cells were fixed with 
70% ethanol. Then, cells were resuspended in PBS and 
incubated with RNase (100 μg/mL) and propidium iodide 
(60 μg/mL; Sigma-Aldrich). Cells were subsequently 
sorted by the FACSCalibur System (BD Biosciences, San 
Jose, CA, USA) and the cell cycles were analyzed by Cell-
Quest software. Proliferation index (PI) was calculated as 
PI = (S + G2/M)/G1, in which S, G2/M and G1 referred 
to the percentage of cells in S, G2/M and G1 phase, 
respectively.
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Xenograft tumor assay
HepG2 cells were placed into a 6-well plate and trans-
fected with shRNA against NC or shRNA target-
ing lncARSR. After 24  h, 5 × 105 cells resuspended in 
0.1 × PBS were hypodermically injected into the right 
side of the back of athymic nude mice (n = 15). Tumors 
were observed and measured every 3 days, and the tumor 
volume (cm3) was calculated as d2 × D/2, in which d was 
the shortest diameter and D was the longest diameter. 
When the diameter of tumors reached 1.5 cm, the mice 
were euthanized, and tumors were removed and weighed.

Statistical analysis
The data were processed using SPSS 21.0 statistical soft-
ware (IBM Corp., Armonk, New York, USA). Then data 
distribution was tested for normality and homogeneity of 
variance. Data were expressed as mean ± standard devia-
tion. If departure from normality and variance was not 
observed, unpaired t-test was used for analysis between 2 
experimental groups, while one-way analysis of variance 
(ANOVA) was employed for comparison among multi-
ple groups. Repeated measures ANOVA were utilized to 
compare data among multiple groups at different time 
points. Pairwise comparison within group was examined 
by post hoc test. If departures from normality or variance 

were found, rank-sum test was conducted. p < 0.05 was 
considered statistically significant.

Results
LncARSR expression is increased in both high‑fat‑fed mice 
and HepG2 cells treated with high fatty acid
It was reported that over-expressing lncARSR accelerated 
the accumulation of liver fat in  vivo and in  vitro, while 
silencing lncARSR led to reduction of liver fat, which sug-
gested that lncARSR may participate in regulation of liver 
fat in NAFLD [7]. To further explore the role of lncARSR 
in NAFLD, we generated NAFLD mouse models by feed-
ing C57Bl/6 mice with HFD. First, accumulation of lipid 
in liver of NAFLD mice was detected, which displayed 
that fat accumulation in NAFLD mice was significantly 
higher than that in normal mice (Fig. 1a). Meanwhile, the 
content of TG in liver from NAFLD mice was also obvi-
ously enhanced (Fig. 1b), suggesting the successful estab-
lishment of the NAFLD model. LncARSR expression 
was determined in liver, which exhibited that lncARSR 
expression was upregulated in liver from NAFLD mice 
(Fig. 1c).

Subsequently, HepG2 cells were treated with 0.5  mM 
oleate. It was observed that oleate treatment increased 
the lipid content (Fig.  1d) and TG content (Fig.  1e) in 
HepG2 cells. Next, lncARSR expression was examined, 
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Fig. 1  Highly-expressed lncARSR is found in NAFLD mice and HepG2 cells with oleate. a Fat accumulation in liver from the HFD-fed mice detected 
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by RT-qPCR. d Fat content in HepG2 cells treated with 0.5 nM oleate monitored by Nile Red staining. e TG content in oleate-treated HepG2 cells 
(×400); f lncARSR expression in HepG2 cells treated with oleate determined by RT-qPCR. All the data were measurement data and described 
as mean ± standard deviation. Differences between two groups were analyzed by unpaired t-test. The experiment was conducted three times. 
*p < 0.05 against normal diet-fed mice or control HepG2 cells
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which showed that lncARSR expression was elevated 
in oleate-treated cells (Fig.  1f ). Thus, lncARSR was 
expressed highly in NAFLD mice and oleate-treated 
HepG2 cells.

LncARSR specifically binds to YAP1 and blocks YAP1 
phosphorylation as well as promotes import of YAP1 
into nucleus
To explore the binding of lncARSR and YAP1, we con-
ducted RNA pull down assay, which revealed that the 
full-length lncARSR probe pulled down YAP1 (Fig.  2a). 
In order to further confirm the binding relationship, the 
RIP assay was carried out, which displayed the binding 
between lncARSR and YAP1 (Fig. 2b). Then, the subcel-
lular localization of lncARSR and YAP1 was examined 
by RNA FISH, disclosing that lncARSR was co-localized 
with YAP1 in cytoplasm (Fig. 2c).

Next, the levels of YAP1 and phosphorylated YAP1 
in NAFLD mice were determined. It was unraveled that 
phosphorylation level of YAP1 in liver from NAFLD mice 
was obviously lower than that from normal mice (Fig. 2d). 
Furthermore, the levels of YAP1 and phosphorylated 

YAP1 in nucleus and cytoplasm of HepG2 cells treated 
with oleate were examined, which revealed that phospho-
rylation of YAP1 was overtly decreased in cytoplasm of 
oleate-treated HepG2 cells, while the nuclear transloca-
tion of YAP1 was enhanced in oleate-treated HepG2 cells 
(Fig.  2e, f ). Thus, lncARSR specifically interacted with 
YAP1 and promoted YAP1 nuclear translocation.

LncARSR activates IRS2/AKT pathway by inhibiting YAP1 
phosphorylation
Aiming to further investigate the effect of lncARSR on 
phosphorylation and nuclear translocation of YAP1, 
we over-expressed lncARSR in HepG2 cells. RT-qPCR 
revealed that oe-lncARSR treatment obviously increased 
lncARSR expression, but sh-lncARSR potently reduced 
lncARSR expression (Fig.  3a). Western blot analysis 
displayed that phosphorylated YAP1 expression was 
reduced by over-expressing lncARSR but was enhanced 
by silencing lncARSR (Fig. 3b).

Next, based on RNA-FISH, over-expressing lncARSR 
resulted in decreased distribution of YAP1 in cyto-
plasm but increased distribution of YAP1 in the nucleus 
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(Fig.  3c), which was opposite after silencing lncARSR, 
indicating that lncARSR regulates YAP1 nuclear 
translocation.

YAP1, as the hub component of Hippo pathway, regu-
lates the progression of liver cancer [13]. On the other 
hand, activation of the Hippo pathway prevented fatty 
liver and liver cancer by inhibiting IRS2/AKT pathway 
[11]. To further explore the involvement of IRS2/AKT 
in NAFLD, we measured IRS2 and AKT level in NAFLD 
mice and HepG2 cells treated with oleate using RT-qPCR 
and western blot analysis. In comparisons with normal 
mice, IRS2 expression was elevated both at mRNA and 
protein levels and the phosphorylation level of AKT was 
also upregulated in NAFLD mice (Fig. 3d). Consistently, 
IRS2 expression and phosphorylation level of AKT were 
also increased in oleate-treated HepG2 cells (Fig. 3e).

Furthermore, HepG2 cells were infected with 
oe-NC, sh-NC, oe-lncARSR, oe-lncARSR + sh-
YAP1, sh-lncARSR, sh-lncARSR + oe-YAP1 or sh-
lncARSR + YAP1S127D. Then the expression of IRS2 
and AKT and the phosphorylation of AKT and YAP1 
were determined. It was illustrated that IRS expres-
sion and phosphorylation level of AKT were elevated 
but phosphorylation level of YAP1 was diminished in 
HepG2 cells over-expressing lncARSR, while infection 
with oe-lncARSR + sh-YAP1 decreased IRS expression 
and phosphorylation level of AKT and YAP1. In addition, 
silencing lncARSR reduced IRS expression and phos-
phorylation level of AKT but increased phosphorylation 
level of YAP1 in HepG2 cells, which was further pro-
moted by additional infection with YAP1S127D. How-
ever, IRS expression and phosphorylation level of AKT 
and YAP1 were enhanced in HepG2 cells infected with 
sh-lncARSR + oe-YAP1 (Fig.  3f ). Hence, lncARSR pro-
moted nuclear translocation of YAP1 to activate IRS2/
AKT pathway.

LncARSR increases lipid accumulation, cell proliferation 
and invasion of oleate‑treated HepG2 cells
To further explore the function of lncARSR in HepG2 
cells, lncARSR was over-expressed or silenced in oleate-
treated HepG2 cells. Western blot analysis showed that 
infection with oe-lncARSR decreased YAP1, increased 
IRS2 expression and phosphorylation level of AKT, and 
did not affected AKT expression in oleate-treated cells, 
which was opposite in oleate-treated cells infected with 
sh-lncARSR (Fig. 4a).

Lipid accumulation under different conditions was 
determined by Nile Red staining. Over-expressing 
lncARSR overtly increased while silencing lncARSR sig-
nificantly reduced lipid accumulation and TG contents in 
oleate-treated cells (Fig. 4b).

Western blot analysis results (Fig.  4d) showed that 
expression of adipogenesis related proteins (Fasn, Scd1 
and GPA) and peroxysome proliferator activated recep-
tor (PPARγ) was in line with TG expression in the cells 
(Fig. 4c) examined by Nile Red staining.

Results of the MTT assay and soft-agar colony forma-
tion assay suggested that infection with oe-lncARSR 
distinctly increased while infection with sh-lncARSR 
visibly decreased proliferation of oleate-treated HepG2 
cells (Fig. 4e, f ). Flow cytometry documented that over-
expressing lncARSR enhanced, while silencing lncARSR 
reduced, the number of oleate-treated HepG2 cells 
arrested in S phase (Fig. 4g).

Transwell assay revealed that there were more invasive 
cells after over-expressing lncARSR, but fewer invasive 
cells after silencing lncARSR in oleate-treated HepG2 
cells (Fig. 4h). Therefore, lncARSR promoted lipid accu-
mulation, cell proliferation, invasion and cycle in oleate-
treated HepG2 cells.

LncARSR silencing can inhibit lipid accumulation 
in HFD‑fed mice
Furthermore, mice were fed with HFD and injected with 
lentivirus of sh-lncARSR. RT-qPCR, demonstrated that 
sh-lncARSR lentivirus declined lncARSR expression in 
NAFLD mice (Fig.  5a). Meanwhile, H&E staining and 
Oil Red-O staining depicted that lipid accumulation in 
NAFLD mice with sh-lncARSR lentivirus was decreased 
(Fig.  5b). Moreover, silencing lncARSR drastically 
reduced the TG content in livers of NAFLD mice 
(Fig. 5c).

Consistently, we also found out that silencing lncARSR 
in NAFLD mice obviously reduced mRNA level of IRS2 
(Fig. 5d) and overtly increased phosphorylation of YAP1 
(Fig.  5e). Next, expression of adipogenesis related pro-
teins (Fasn, Scd1 and GPA) was assessed, which docu-
mented that in liver of NAFLD mice, Fasn, Scd1 and GPA 
expression was reduced after silencing lncARSR (Fig. 5f ). 
On the other hand, to observe lncARSR effect on tumor 
growth, HFD-fed nude mice were injected hypodermi-
cally with HepG2 cells transfected with sh-lncARSR. 
Transfection with sh-lncARSR markedly reduced the vol-
ume of tumors in mice (Fig.  5g). In summary, lncARSR 
silencing alleviated NAFLD in mice.

Discussion
NAFLD, which is characterized by lipid accumulation 
of the liver, is prevalent in around 25% of adults, espe-
cially in diabetic patients [14]. Normally, NAFLD is fre-
quently related to obesity and HFD, and originates from 
the abnormal accumulation of TG in livers, which may 
finally develop to liver cancer or cirrhosis [15]. How-
ever, the pathogenesis of NAFLD still needs to be further 
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explored. In a previous study, over-expressing lncARSR 
was reported to accelerate the accumulation of liver fat 
in vivo and in vitro, which suggested that lncARSR may 
participate in NAFLD and may function as a novel thera-
peutic target for NAFLD [7]. Based on these facts, this 
study was designed to explore the effects of lncARSR on 
NAFLD. The collected evidences derived from this study 

demonstrated that lncARSR silencing could alleviate 
NAFLD by inactivating IRS2/AKT pathway via YAP1.

Initially, increased lncARSR expression was found in 
oleate-treated HepG2 cells and HFD-fed mice, suggest-
ing that lncARSR may be associated with the progression 
of NAFLD. LncARSR, as one of the up-regulated lncR-
NAs in NAFLD, was proved to promote liver cancer stem 
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Fig. 4  LncARSR increases cell proliferation, invasion, and cycle as well as lipid accumulation in oleate-treated HepG2 cells. Oleate-treated HepG2 
cells were infected with lentivirus of sh-lncARSR, sh-NC, oe-lncARSR or oe-NC. a Expression of YAP1, IRS2, AKT and phosphorylation of AKT proteins 
in HepG2 cells. b Lipid accumulation in HepG2 cells (×400). c TG content in HepG2 cells. d Expression of adipogenesis related proteins (Fasn, Scd1 
and GPA) and PPARγ in HepG2 cells. e Cell proliferation determined by MTT assay. f Cell proliferation monitored by soft-agar colony formation. g Cell 
cycle examined by flow cytometry. h Cell invasion inspected by transwell assay (× 200). *p < 0.05 against oleate-treated HepG2 cells treated with 
sh-NC; #p < 0.05 against oleate-treated HepG2 cells treated with oe-NC. Measurement data were expressed as mean ± standard deviation from at 
least three independent repeated experiments. Unpaired t-test and one-way ANOVA were used for comparisons between or among two groups or 
multiple groups
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cell expansion and HCC differentiation [16]. Similarly, 
lncARSR was upregulated in HCC cells and promoted 
doxorubicin resistance of HCC cells by activation of the 
PI3K/AKT pathway [17]. The present study also found 
that lncARSR could specifically bind to YAP1 and pro-
mote YAP1 nuclear translocation through inhibiting its 
phosphorylation. The transcriptional activator YAP acts 
as a key regulator in the Hippo pathway [18]. In liver dis-
ease, YAP has also been reported to be increased with 
the increased degree of liver impairment [19]. Moreover, 
another study has reported that LATS2 modulated phos-
phorylation of YAP1 and regulated YAP1 in NAFLD [20]. 
Consistently, Qu et al. have also confirmed that lncARSR 
interacted with YAP and promoted YAP import into 
nucleus [12].

Furthermore, another important finding in this study 
was that lncARSR activated the IRS2/AKT pathway to 

elevate lipid accumulation in vivo and in vitro, accom-
panied by increased expression of Fasn, Scd1 and GPA, 
and accelerate NAFLD progression through inhibi-
tion of YAP1 phosphorylation. A previous study [21] 
revealed that the IRS2/PI3K/AKT pathway was acti-
vated in the liver of NAFLD models. LncARSR regulat-
ing AKT-related pathway was also exhibited in another 
study [17], in which lncARSR activates the PI3K/AKT 
pathway by promoting PTEN expression. Furthermore, 
Jeong et al. reported that Hippo-YAP/TAZ connecting 
with activation of IRS2/AKT plays a role in the devel-
opment of NAFLD [22]. The previous study showed 
NAFLD was characterized by dysregulation of lipid 
metabolism in the liver, and less-differentiated HepG2 
cells could suppress lipid accumulation [23]. Like-
wise, another study also explained that in the setting of 
NAFLD, lipid accumulation gives rise to liver damage 

Fig. 5  Silencing lncARSR alleviates lipid accumulation in HFD-fed mice and inhibits tumor formation in nude mice. HFD-fed mice were injected 
with lentivirus of sh-lncARSR or sh-NC. a LncARSR expression in mice detected by RT-qPCR. b Lipid accumulation in mice determined by H&E 
staining and Oil Red-O staining (×200). c TG content in mice. d IRS2 expression in mice detected by RT-qPCR. e Expression YAP1, IRS2 and AKT and 
phosphorylation of YAP1 and AKT levels detected by western blot analysis. f Expression of adipogenesis related proteins (Fasn, Scd1 and GPA) in 
mice detected by western blot analysis. HFD-fed mice were injected with HepG2 cells stably transfected with sh-lncARSR or sh-NC. g Tumor size 
and volume examined in xenograft tumor model. n = 15 *p < 0.05 against NAFLD mice injected with sh-NC lentivirus or sh-NC-transfected HepG2 
cells. Differences between two groups were analyzed by unpaired t-test. Results were expressed as mean ± standard deviation
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and disease fibrosis [24]. Fasn and Scd1 play critical 
roles in hepatic fatty acid synthesis [25]. The treatment 
with GPA was identified to be associated with hepatic 
steatosis and lipid accumulation [26]. Reduction of 
Fasn and Scd1 expression was observed after allevia-
tion of oleate-induced NAFLD [27]. Moreover, a study 
showed that depletion of lncARSR suppressed hepatic 
lipid accumulation in  vivo and in  vitro by decreasing 
Fasn and Scd1 expression via inactivation of the PI3K/
AKT/mTOR pathway [7], which was in line with our 
results. Additionally, it is documented that the patho-
genesis of NAFLD correlates to metabolic disorders 
such as lipid accumulation and insulin resistance [28]. 
Meanwhile, another study also showed promotion of 
insulin resistance and repression of hepatocellular 
glucose uptake in HepG2 cells treated with 0.5  mM 
oleate [29]. More importantly, the IRS2/AKT pathway 
was critical for liver insulin signaling to regulate insu-
lin resistance in muscle and liver of diabetic rats [30]. 
However, although IRS2/AKT may also play a role in 
insulin resistance, it is not enough to resist the role of 
IRS2/AKT activation in promoting NAFLD and HCC. 
Therefore, the effect of lncARSR/YAP1/IRS2/AKT axis 
on NAFLD by regulating insulin resistance needs fur-
ther elaboration.

Conclusions
Overall, we conclude that lncARSR/YAP1 potentiates 
IRS2/AKT activity to promote NAFLD. Our results con-
stitute significant new information to better understand 
the potential therapeutic effects of lncARSR via targeting 
YAP1 in NAFLD. The results also hold the great promise 
for illuminating the pathogenesis of NAFLD. However, 
further experiments in the future are needed by focusing 
the results to NAFLD or HCC alone, and expanding the 
results and discussion to elucidate the lncARSR function 
with more biological insights.
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