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Dissecting mammalian immunity through mutation

Owen M Siggs

Although mutation and natural selection have given rise to our immune system, a well-placed mutation can also cripple it,

and within an expanding population we are recognizing more and more cases of single-gene mutations that compromise

immunity. These mutations are an ideal tool for understanding human immunology, and there are more ways than ever to

measure their physiological effects. There are also more ways to create mutations in the laboratory, and to use these resources

to systematically define the function of every gene in our genome. This review focuses on the discovery and creation of

mutations in the context of mammalian immunity, with an emphasis on the use of genome-wide chemical and CRISPR/Cas9

mutagenesis to reveal gene function.
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INTRODUCTION

The origins of immunity
Since the emergence of unicellular life, there have been few selective
pressures more abundant than infection. The evolutionary legacy of
infection is a diverse antimicrobial arsenal, known collectively as
immunity, that can be found in all species from the simplest
prokaryotes to the most complex mammals. Bacteria and archaea,
for example, evolved restriction enzymes and CRISPR/Cas (clustered,
regularly interspaced short palindromic repeat/CRISPR-associated)
systems to combat both phage infection and plasmid conjugation.1

Similarly, many antibiotics used in the clinic today are products of
prokaryotic competition.

Antibiotics also evolved in eukaryotic organisms, as did a system
of sequence-specific RNA silencing. Yet, with the many benefits of
eukaryotic multicellularity came vulnerability to new classes of
microbes, and therefore a need for new forms of immunity. Receptors
for microbial products emerged, exemplified by the Toll protein in
Drosophila, that in some species has expanded to families of hundreds
of paralogs.2 Additional microbial molecules were recognized by other
receptor families, including the NOD-like, RIG-I-like and C-type
lectin receptors.3

The crowning achievement of eukaryotic immunity arose in verte-
brates not once but twice,4 with an anticipatory system of somatically
recombined and hypermutated antigen receptors. Not only did this
system have the capacity to detect any pathogen that already existed, it
had the bandwidth to preempt any pathogen that would exist, ever.
Although combinatorial diversity created the hazard of self-reactivity,
the evolutionary advantage afforded by it was simply too great to be
ignored, and mechanisms of self-tolerance emerged as a result.
Combinatorial immunity has been refined even further since, with
unique structural adaptations to reach even more microbial epitopes.5,6

Human immunity and the shadows of selection
Just as microbial infection acts as a selective pressure against the host,
host immunity exerts powerful selective pressure against the microbe.
As quickly as new forms of immunity have emerged, rapid microbial
proliferation ensures that they quickly develop ways to avoid them.
This perpetual struggle between pathogen and host is reflected by our
recent evolutionary history that reveals that immune genes continue
to be the most strongly selected elements in our genome.7,8

More recent signatures of selection can be found in human
populations with endemic infectious diseases. One classic example
is the high prevalence of null mutations in the Duffy antigen gene
(DARC) in West Africa that confer resistance to the malarial parasite
Plasmodium vivax. Other positively selected variants have a less
obvious origin: the CCR5D32 allele bestows resistance to the modern
human pathogen HIV, yet was most likely selected by a more ancient
microbe. Certain variants provide such a crucial advantage that they
eventually reach fixation in a population because of a selective sweep,
and there is evidence that several immune genes fall into this category.
A series of parallel selective sweeps is, after all, what separates one
species from another, and among other things explains why mice do
not become sick after HIV inoculation, or why fruit bats carry Ebola
virus without developing hemorrhagic fever.

Other variants with much smaller effects have been uncovered by
genome-wide association studies, some of which associate with
susceptibility or resistance to infectious disease.9 Similar methods
have revealed risk variants for autoimmune and inflammatory
diseases,10 the persistence of which may be a testament to their
antimicrobial benefit. A key illustration of this is that loss-of-function
variants of IFIH1 (encoding the microbial RNA sensor MDA5) are
associated with resistance to type I diabetes, whereas the more
common, functional alleles confer susceptibility.11
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Although improved hygiene, vaccination and antibiotic use have
dramatically reduced the burden of infectious disease over the past
200 years, it remains a powerful selective agent with B25% of people
ultimately dying from it,12 many of whom are young. New pathogens
continue to cross from animals into humans, and the pathogens that
were once subdued by antimicrobial drugs are rapidly developing
resistance. At the same time, the human population is undergoing
explosive growth, with new single-nucleotide variants emerging at a
rate of B1.2� 10�8 per generation.13 This is estimated to introduce
some 1011 de novo variants per generation,14 but how do we
determine which of these variants affect immunity?

Contemporary experiments of nature
By recent conservative estimates, each human genome carries B300
variants that affect protein function.15 More than 86% of these are
thought to have arisen within the past 10 000 years and therefore
have low population frequencies (o5%),16 yet because of rapid
population growth, most have remained in a heterozygous state and
hence have not been subjected to purifying selection.

Nevertheless, in some cases these variants can still cause inherited
disease. Some may affect haploinsufficient genes, such as variants in
RPSA that cause autosomal dominant congenital asplenia.17 Other
variants act in a dominant manner, such as PLCG2 mutations in
cold-induced urticaria,18 or PIK3CD variants in a subset of primary
immunodeficient patients.19,20 The remainder are either X-linked
(such as variants of the T-cell magnesium transporter gene
MAGT1),21 or disrupted at both alleles via consanguinity or com-
pound heterozygosity (homozygous IRF8 mutations in mycobacterial
susceptibility being an example of the former22). These experiments
of nature have taught us a great deal about immunity, not only in
humans but also in animals. Some of the biggest conceptual
breakthroughs in the past 20 years of immunology have emerged
from the study of spontaneous mutations, from the understanding of
microbial sensing (Tlr4) and dominant tolerance (Foxp3) in mouse
mutants,23,24 to the discovery of multiple variants causing monogenic
autoimmunity, immunodeficiency or sterile inflammatory disease in
humans.

Making sense of nature’s experiments
Revealing the genetic basis of an inherited immune disorder lays a
foundation for hypothesis and further experimentation. Fortunately,
many human immune cells are accessible enough to test these
hypotheses, and in many cases a patient blood sample is the perfect
starting point. Occasionally, the critical cell type may be unavailable
or inaccessible, for example, in TLR3-associated viral encephalitis,
where the central nervous system is suspected to be central to
pathogenesis. An emerging solution is the use of patient-derived
induced pluripotent cells that can be differentiated into the appro-
priate cell lineage and studied in vitro alongside controls.25 An even
better alternative is to use isogenic human induced pluripotent cells,
where experimental and control cell lines differ by only a single
genetic variant. Sequence-specific genome editing tools have been
invaluable in this context, with the CRISPR/Cas9 platform emerging
as the most versatile.

For many purposes these in vitro platforms will be sufficient, yet for
many physiological phenomena they are not. Model organisms, and
the mouse in particular, provide the most powerful means available to
study mammalian physiology, offering an environmentally and
genetically controlled platform for the study of cellular interactions
within the context of a whole organism. For the 99% of human genes
that have a direct counterpart,7 the mouse has been the dominant

model for understanding their function. The tools available for
engineering the mouse genome are without equal, with transgenesis,
homologous recombination and sequence-specific nucleases used to
create a spectrum of strains that have become a cornerstone of
modern immunology. The speed and ease with which the CRISPR/
Cas9 platform can create germline mutations makes the mouse an
even more accessible platform for examining the effects of human
genetic variation.26

Laboratory mice are nevertheless an imperfect model of human
immune disease,27 as might be expected after 65 million years of
genetic divergence. Although invaluable experimental interpretation
and consistency, the widespread use of inbred strains of mice
(particularly C57BL/6) fails to capture the genetic and phenotypic
diversity of outbred human populations. A more suitable
experimental model of immunological disease is not immediately
obvious, although it may one day involve some combination of
genetically humanized mice with transplanted human cells.

SYSTEMATICALLY CONNECTING GENOTYPE TO IMMUNE

PHENOTYPE

Of the B20 000 protein coding genes and several thousand non-
coding RNA genes in our genome, we know remarkably little about
the normal function of most of them. At the same time, the catalog of
human genetic variation is expanding exponentially, yet our under-
standing of its biological significance is languishing in its wake.
The vast majority of our understanding of mammalian gene function
has come from single-gene mutations in mice, with upwards of
7000 genes having at least one annotated phenotype.28 Mendelian
human diseases follow closely behind, with approximately half as
many individual genes linked to an inherited phenotype.29 Several
efforts are now underway to systematically dissect the biological
function of every human gene, and the relative strengths of each will
be discussed below.

Systematic clinical phenotyping and genome sequencing
The most relevant way to understand the function of a human gene is
to study mutations in humans themselves. Given the germline
mutation rate and a population of 47 billion, it is reasonable to
expect that multiple null alleles of every human gene already exist,
some of which may be in a compound heterozygous or homozygous
state. Our immune systems are also constantly challenged by
infection, by immunization and (in some cases) by immune-
modifying drugs. Together with clinicians, we are constantly
monitoring the function of our immune systems, and those
individuals with the most severe defects are quickly noticed. Many
of these severe immune disorders are caused by mutations in a single
gene, with more than 200 such genes now defined.30 This ability to
connect individual human genes to immune function is immensely
valuable, and the advent of massively parallel sequencing has meant
that dozens more are discovered each year.

Functional variants not associated with clinical disease will be more
difficult to identify. Some individuals may not respond to a given
vaccine, for example, yet remain healthy because of herd immunity.
Similarly, the highest responders will also be healthy, but may harbor
valuable genetic clues for enhancing immunity in those with less
capable immune systems. Identifying these individuals will require
robust and comprehensive methods of immune phenotyping,31 and
many hundreds or thousands of cases and controls to extract reliable
genetic associations.
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Targeted germline mutagenesis and phenotyping
A definitive way of determining mammalian gene function has been
the creation of targeted gene knockouts in mice. Candidate genes are
typically selected with an explicit hypothesis in mind: one that is often
based upon previous in vitro experiments, homology to known
immune genes or by comparative gene expression analysis. The
creation and phenotyping of mutant mice is an efficient way to
understand the function of families of genes, but usually ignores genes
that are not suspected by prior hypothesis, or ignores phenotypes that
are beyond a laboratory’s sphere of expertise.

Previously created by specialist laboratories on a case-by-case basis,
gene-targeted stem cells can now be ordered directly from large public
repositories32 (Figure 1a). These archives include alleles made by both
random gene trap insertions and by targeted homologous recombina-
tion (and, inevitably, by CRISPR/Cas9), and are on track to create
null alleles of every gene in the mouse genome. The bottleneck now
lies in the conversion of these embryonic stem (ES) cell clones into
mutant mice: blastocyst injections and at least two generations of
breeding are required to obtain the desired homozygous mutants.

A comparatively rapid alternative to targeting in mouse embryonic
stem cells is to create mutations directly in zygotes. Sequence-specific
nucleases (including zinc-finger nucleases and transactivator-like
effector nucleases) have been used to generate biallelic null mutations
within a single generation. Yet, neither zinc-finger nucleases nor
transactivator-like effector nucleases are as simple to engineer as the
CRISPR/Cas9 system that was recently adapted from Streptococcus
pyogenes for genome modification in mammals.33,34 Coinjection
of mRNA for the Cas9 endonuclease and a single-guide RNA

(sgRNA, containing 20 bp of complementarity to the target) is
sufficient to obtain high frequencies of biallelic null mutations in
the target of choice, with few off-target effects and few restrictions on
the location of the sgRNA target26 (Figure 1b).

Along with archives of targeted mouse mutants, the establishment
of high-throughput phenotyping pipelines has meant that diverse
phenotypes can be explored systematically in a single facility, rather
than sequentially over many years in several different labs. This has
already led to some unexpected discoveries, with new phenotypes
detected for 56 of the first 250 genes analyzed.28 Many of these genes
had been examined by specialist laboratories in the past, but certain
physiological functions had never been suspected and thus were never
examined (or reported). Although it requires an enormous amount of
coordinated effort and resources, broad phenotyping can nonetheless
expose entirely unexpected gene functions, in addition to eliminating
others. In the domain of immunity, current assays include complete
blood count, lymphocyte flow cytometry and infection with
Salmonella typhimurium.28 More specialized immune pipelines have
also been launched, including more comprehensive flow cytometric
analysis of primary and secondary lymphoid organs, detection of
autoreactive antibodies and the challenge of intestinal integrity
(A Hayday et al., personal communication). Far from exhaustive,
these pipelines are designed to provide a standardized public resource
of broad phenotypic data, with all mutant lines and data made publicly
available for further analysis. The majority of these alleles can also be
converted to a conditional state,32 allowing investigators to study genes
in a cell- and tissue-specific manner: an especially useful feature for the
B30% of genes that are homozygous lethal when mutated.28
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Figure 1 Contemporary methods for mouse germline mutagenesis. (a) Standard design of a lacZ-tagged conditional allele generated by the European

Conditional Mouse Mutatgenesis (EUCOMM) targeting pipeline.32 In its default state, the allele is inactivated by splicing upstream exons to a splice

acceptor in the targeting cassette. Treatment with Flp recombinase can delete the selection cassette to create a loxP-flanked conditional allele. bact::neo,

b-actin promoter-driven neomycin resistance cassette; bgal, b-galactosidase; En2-SA, mouse En2 splice acceptor; FRT, FRT recombination site; IRES,

internal ribosome entry site; loxP, loxP site; pA, SV40 polyadenylation signal. (b) CRISPR/Cas9-mediated generation of targeted mutations. Mammalian

codon-optimized Cas9 mRNA and target-specific single-guide RNA(s) are injected into zygotes, leading to the creation of indels as a consequence of

double-stranded break repair26 (see text for more detail). Multiple alleles and multiple genes may be targeted simultaneously. DNA oligos or vectors with

target homology may also be coinjected, allowing the introduction of point mutations or exogenous DNA by homology-mediated repair.65 (c) Pedigree

structure for the generation of ENU-induced homozygous germline mutations. Male C57BL/6J pedigree founders are treated with ENU, and bred with either

a wild-type female, or with the female offspring of an ENU-mutagenized male (G00). After two successive generations of brother–sister mating, recessive

mutations can be brought to homozygosity, and both recessive and dominant phenotypes may be identified in third-generation (G3) mice. Examples of

visible phenotypes with recessive (prune (Hr), pam gray (Hps3), wavedX (Adam17)) or dominant (Dalmatian (Sox10)) inheritance are shown.
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Random germline mutagenesis
A key limitation of large-scale phenotyping efforts is the depth
of phenomena that can be tested. Immunology is awash with
phenomena: specialized subsets of leukocytes are constantly being
described, and new pathways for microbial recognition continue to
emerge. There are simply too many to monitor in a single pipeline,
and therefore many important phenotypes will inevitably be missed.
Almost a third of null alleles are also embryonic lethal in homozygous
form, yet missense alleles of many of the same genes can be viable
(and sometimes even associated with disease35).

Random germline mutagenesis provides a way to circumvent some
of these issues. Radiation, chemicals, retroviruses and transposons
can all create germline mutations at random in vivo, although the
most widely used mouse germline mutagen is the alkylating agent
N-ethyl-N-nitrosourea (ENU). At an optimal dose, ENU creates
single-nucleotide variants in mouse spermatogonial stem cells every
600 000 bp;36 B500 times higher than the de novo missense mutation
rate in humans. Optimally treated male founders transmit
B60 genetic variants that alter the proteins that they encode, and
with an appropriate breeding scheme (Figure 1c) B6 such mutations
can be examined in a homozygous state in every third-generation
(G3) mouse, with an additional 39 that are heterozygous.37 A pipeline
such as this can be established within a year and requires no technical
expertise beyond intraperitoneal injection and mouse husbandry,
and comes at a substantially lower per-gene cost than creating the
equivalent number of targeted mutations. Unlike a well-designed

knockout allele, not all ENU mutations will disrupt protein function,
although current estimates suggest that B15% of them do.38 Some of
these variants create null alleles, others create a partial loss of function
(where full loss of function is often lethal) and some can even lead to
gains of function. Even where a knockout allele has been studied in
depth, the phenotypes resulting from missense alleles can sometimes
also have unexpected effects,39 and therefore reveal even more about
the proteins and pathways they affect.

Phenotyping assays applied to an ENU screen should have high
specificity and sensitivity, as in many cases only a single homozygous
mutant (or a few heterozygous mutants) will be phenotyped (as
opposed to several in the case of targeted mutagenesis pipelines). The
most effective immunological screens to date have focused on cellular
phenotypes measured by flow cytometry40 (Table 1), complete blood
count41 or Toll-like receptor-induced cytokine production,42,43

although others measuring systemic phenotypes such as antigen-
specific antibody production,44 intestinal integrity45 and susceptibility
to infection46,47 have also been successful. A low false positive
frequency is crucial for saving time and resources, and high
sensitivity is important to ensure that genuine phenotypic
mutations are not missed.

Once a phenotype is identified, whole-genome or whole-exome
sequencing can quickly establish a list of potential causative muta-
tions. Sequencing only a single affected mouse will reveal dozens of
variants, and therefore each variant should be genotyped across
multiple affected individuals to test for phenotypic concordance. This
often points to a probable causative variant, although transgenesis or
allelism testing (or some other form of complementation) is necessary
to formally assign cause and effect. The vast majority of causative
variants are those that change protein coding sense (with very few
exceptions48), making exome sequencing a popular platform for ENU
mutation discovery. In comparison, an advantage of genome
sequencing (when performed across multiple samples) is that it can
also define the chromosomal boundaries within which the causative
mutation must lie36—a valuable asset when an obvious candidate is
not found on the first pass.

Haploid cell mutagenesis
Not all immunological phenotypes require whole organisms to study,
and indeed many can be more efficiently studied in individual cells.
Although biallelic mutations have been rather difficult to create in
diploid mammalian cells, random mutagenesis of cancer cell lines has
nonetheless revealed several key components of T-cell receptor,
interferon and nuclear factor-kB signaling pathways.49–51

The development of haploid human cell lines (namely, the KBM-7
chronic myelogenous leukemia line) has allowed the hurdle of
diploidy to be bypassed, and the advent of massively parallel
sequencing means that mutations can be found with increasing ease.
This has led to a resurgence of interest in cellular mutagenesis,52 and
millions of null mutations can now be screened simultaneously within
pools of cells, for example, by selecting for resistance to viruses or
bacterial toxins52–54 or by selecting for the absence of key cell surface
molecules.55,56

Haploid mouse ES cells are potentially even more versatile,57 given
their capacity to differentiate into a wide variety of lineages. Although
not yet as stable as their immortalized counterparts, ES cell haploidy
can be maintained by regular cell sorting for haploid DNA content.
Mutagenizing cells immediately after enrichment ensures that
mutations will persist in either a hemizygous (if haploid) or
homozygous (if diploid) state, and can therefore be used directly
for recessive screens.57,58 By combining this approach with directed

Table 1 Examples of immunological gene function revealed by flow

cytometric screening of mouse pedigrees with ENU-induced germline

mutations

Gene Affected lineage Human Mendelian disease variants? Reference

Atp11c B 67,68

Card11 T, B Yes 69

Cd83 T, DC 70

Coro1a T Yes 71

Fnip1 B 72

Gfi1 Neu Yes 73

Gon4l B 74

Hnrnpll T 75

Ikzf1 T, B 76

Il7 T, B 77,78

Itgb2 NK Yes 79

Itpkb T 80

Lig4 T, B Yes 81

Lyn B 82

Myb LT-HSC 83

Ncaph2 T 84

Nckap1l T, B 85

Nfkb2 B 86

Ptprc T Yes 87

Rltpr T 88

Sppl2a B, DC 89,90

Tap1 T Yes 91

Tap2 T Yes 91

Tbx21 NK 92

Themis T 93,94

Zap70 T Yes 39,95

Zbtb1 T, B, NK 96

Zbtb7b T, NKT 97

Abbreviations: B, B cell; DC, dendritic cell; ENU, N-ethyl-N-nitrosourea; LT-HSC, long-term
hematopoietic stem cell; Neu, neutrophil; NK, natural killer cell; T, T cell.
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differentiation of ES cells into other lineages, the spectrum of available
phenotypes expands even further. Human haploid ES cells could also
serve as a valuable in vitro platform, and although they are yet to be
reported, recent success with macaque embryos suggest that human
haploid ES cell lines may not be far away.59

CRISPR/Cas9 cellular mutagenesis
Perhaps the most versatile mutagenesis platform of all has emerged
with the development of mammalian CRISPR/Cas9 mutagenesis.

Recently adapted from the bacterium S. pyogenes, the CRISPR/Cas9
system requires coordinated expression of two components: a
mammalian codon-optimized Cas9 endonuclease, and a chimeric
sgRNA consisting of CRISPR RNA (crRNA) and trans-acting crRNA
elements.60 Each crRNA contains a 20-bp guide sequence that directs
the sgRNA/Cas9 complex to its complementary DNA target, and
repair of the ensuing double-stranded break ultimately results in small
deletion (or insertion) mutations at the target site. The sgRNA/Cas9
complex will continue to cut its target until disrupted by an
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Figure 2 Genome-wide CRISPR/Cas9 mutagenesis. (a) Design of hCas9 expression vector and sgRNA lentiviral vector for genome-wide CRISPR/Cas9

mutagenesis screens (adapted from Koike-Yusa et al.61). CMV, CMV promoter; EF1a, elongation factor-1a promoter; PB, piggyBac repeats; PGK, mouse

Pgk1 promoter; Puro-2A-hCas9, puromycin resistance cassette and humanized Cas9 cDNA separated by the T2A self-cleaving peptide; Puro-2A-BFP,

puromycin resistance cassette and blue fluorescent protein cDNA separated by the T2A self-cleaving peptide; RU5, 50 long terminal repeat; sgRNA, single-

guide RNA; T, U6 terminator; tracrRNA, trans-activated crRNA; U6, U6 RNA polymerase III promoter; DU3RU5, RU5 long terminal repeat lacking U3

region. (b) Target enrichment screens, which enrich for cells with the mutation of interest, can be performed with a wide variety of selective agents. Similar
screens have successfully been performed in haploid cell lines using transposon-mediated mutagenesis.52,55–57,66 In the context of genome-wide CRISPR/

Cas mutagenesis, an approach validated by Koike-Yusa et al.61 begins with the transduction of hCas9-expressing cells with a lentiviral genome-wide library

of sgRNAs. Transduced cells can be selected by sorting for BFPþ cells, in which sgRNA/Cas9-mediated double-stranded breaks lead to the introduction of

indel mutations. These transduced cells can then be subjected to an array of selective pressures, including drug- or pathogen-induced cell death,

fluorescence or magnetic cell sorting, or the induction of a stimulus-responsive selection marker. sgRNA sequences can then be sequenced in the remaining

cells, and used to identify target genes that are critical for the phenomenon of interest. (c) Target depletion screens, also known as ‘dropout’ screens, use

subtractive methods to identify genes critical for a given phenomenon. Cells are first transduced with a drug-inducible hCas9 construct (along with the TetR

transcriptional repressor, in the case of a tetracycline-inducible system), then stable lines are transduced with a genome-wide library of sgRNAs. The pool of

BFPþ cells is then split into two, with hCas9 expression induced in one but not the other. hCas9 expression leads to the creation of sgRNA-directed

indels, a subset of which will be detrimental to the survival of the cell (or its proliferation or differentiation). Following selection for the phenotype

of interest (for example, survival), sgRNA sequences are amplified from the remaining induced and noninduced populations and sequenced. Those

sgRNAs that are present in the noninduced population, but absent from the induced population, must therefore be suspected to target a critical gene.

These screens are conceptually similar to pooled short hairpin RNA (shRNA) screens, in which barcoded inducible shRNAs are transduced into target cells

before selection.64
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indel, and therefore diploidy and polyploidy present no particular
hurdle.

sgRNA/Cas9 target sites can be selected across the genome: the only
requirement is that they precede an NGG trinucleotide sequence (also
known as the protospacer adjacent motif). Different Cas proteins have
different protospacer adjacent motif requirements, although Cas9 is
currently the dominant nuclease used in mammalian cells and can
potentially target B40% of all human exons.34 However, not all
crRNAs are equally effective (nor are they all specific), and hence
individual genes should ideally be targeted independently with
multiple sgRNAs. As the sgRNA guide sequence itself is only 20 bp,
genome-wide libraries can be readily synthesized and cloned into
transducible vectors. Lentiviral vectors are especially appealing for this
purpose, given their ability to transduce a wide array of cell types
from many different species (Figure 2a).

As with all cellular screens, CRISPR/Cas9 screens can be performed
clonally with individual vectors, yet the most efficient screens are
those that can be done with a pooled vector library on large
populations of cells.61–63 An inherent benefit of pooled sgRNA
screens is that each sgRNA sequence doubles as a molecular
barcode, such that the depletion or enrichment of individual
sgRNAs can easily be linked back to the gene it targets by deep
sequencing. This makes it possible to perform saturation mutagenesis
screens for essentially any cell-intrinsic phenotype, so long as a reliable
means of phenotypic selection is available (Figures 2b and c).
A similar approach is commonly used with lentiviral short hairpin
RNA libraries,64 and the same screening principle can potentially be
applied to any transducible cell from any organism: a published
genome sequence being the only prerequisite for library design.

There are dozens of immunological phenomena that might be
subjected to a genome-wide cellular screen. For instance, how does a
pathogen infect its target cell, and how does that cell react? How does
a hematopoietic stem cell give rise to a diverse range of lineages, and
what allows a malignant lymphocyte to escape these boundaries of
proliferation? These questions and many others may all be addressed
with cellular CRISPR/Cas9 mutagenesis.

CONCLUSION

Mutation has made our immune system what it is today, but a single
mutation can also reveal its most obscure secrets. Billions of new
genetic variants are entering the human gene pool in every genera-
tion, and those that compromise immunity will inevitably end up
in the clinic. In many cases, finding the causative mutation is now
easier than ever before, and there are new tools to measure the
immunological effects of genetic variation in healthy individuals. It is
also easier to create mutations in an experimental setting, be they in a
mouse or a human cell, and public resources of mutant cells and
organisms are more accessible than ever. Applying these resources to
systematically understand immunity requires coordinated effort, but
genome-wide mutagenesis platforms are becoming accessible even to
the modestly funded laboratory.

The field of immunology is already faced with an abundance of
questions, and single-gene mutations in humans, animals or cells have
been some of the very best tools to answer them. But new questions
are emerging at every turn: only 20 years ago were we oblivious to the
molecular basis of microbial recognition, regulatory T cells and innate
lymphoid cells. The acquired immunodeficiency and severe acute
respiratory syndromes (and the pathogens that cause them) are also
relatively new. For all of these phenomena, and indeed for those that
might emerge next, there is much to be gained from the continued
application of mutation.
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