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Abstract

This paper presents a novel population genetic model and a computationally and statistically tractable framework for
analyzing within-host HIV diversity based on serial samples of HIV DNA sequences. This model considers within-host HIV
evolution during the chronic phase of infection and assumes that the HIV population is homogeneous at the beginning,
corresponding to the time of seroconversion, and evolves according to the Wright-Fisher reproduction model with
recombination and variable mutation rate across nucleotide sites. In addition, the population size and generation time vary
over time as piecewise constant functions of time. Under this model I approximate the genealogical and mutational
processes for serial samples of DNA sequences by a continuous coalescent-recombination process and an inhomogeneous
Poisson process, respectively. Based on these derivations, an efficient algorithm is described for generating polymorphisms
in serial samples of DNA sequences under the model including various substitution models. Extensions of the algorithm are
also described for other demographic scenarios that can be more suitable for analyzing the dynamics of genetic diversity of
other pathogens in vitro and in vivo. For the case of the infinite-sites model, I derive analytical formulas for the expected
number of polymorphic sites in sample of DNA sequences, and apply the developed simulation and analytical methods to
explore the fit of the model to HIV genetic diversity based on serial samples of HIV DNA sequences from 9 HIV-infected
individuals. The results particularly show that the estimates of the ratio of recombination rate over mutation rate can vary
over time between very high and low values, which can be considered as a consequence of the impact of selection forces.
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Introduction

Recombination has an important role in shaping the dynamics

of within-host HIV genetic diversity, particularly making the virus

capable of escaping the pressures of antiviral drugs and immune

system [1,2]. Therefore, it is of great interest to model this process

at the within-host HIV population genomic level. In contrast to

the existing methods in the literature, this paper develops a novel

population genetic model including recombination and a compu-

tationally and statistically tractable framework for this model to

explore the dynamics of within-host HIV genetic diversity based

on serial samples of HIV DNA sequences.

Early studies [3–8] analyzed serial samples of HIV DNA

sequences from HIV-1-infected individuals by developing frame-

works based on statistically and computationally tractable models,

which, however, neglect the impact of recombination or show less

mimicking power for the dynamics of within-host HIV genetic

diversity. Such an example is the standard coalescent model [9–

13] that represents a continuous approximation for genealogical

and mutational processes for samples of DNA sequences under the

Wright-Fisher model with constant population size but without

recombination. Another example is the ancestral recombination

graph [14,15] that extends the standard coalescent by including

recombination. Shriner et al [16] used various computational

tools [17–19] based on this model to infer within-host HIV

recombination rate. Although both models are attractive because

of computational and statistical tractability, the expected dynamics

of genetic diversity in serial samples of DNA sequences under these

models are inconsistent with observed dynamics of within-host

HIV genetic diversity.

Under these models the expected numbers of average pairwise

differences in serial samples stay the same [20] and independent

on recombination rate [15]. This is a consequence of a more

general fact that samples of DNA sequences at different time

points under these models are not affected by temporal factor

because the distributions of the polymorphisms in equal-size

temporal samples are the same due to the same genealogical and

mutational processes. In contrast to these expectations, Shankar-

appa et al [21] observed that the divergences and average numbers

of pairwise differences in serial samples of HIV DNA sequences

from 9 HIV-1-infected individuals increased linearly for several

years after seroconversion but declined or stabilized late in the

infection (see Figures 1 and 2 by [21]).

From the same data sets, I also observe linear relationships

between the dynamics of the numbers of polymorphic sites and the

numbers of average of pairwise differences in each individual’s

case (Figure 1). To make the linear relationships more obvious, I

use the following normalization because two data sets are linearly

related if and only if their normalizations are the same. Let

fxig,i~1, . . . ,n, be the values of one of the statistics in serial
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samples. If s(x) is not equal to 0, where s(x)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (xi{�xx)2=n

q
and �xx~

Pn
i~1 xi=n, then the normalized

values are

f(xi{�xx)=s(x)g,i~1, . . . ,n, ð1Þ

otherwise they are set to be 0. Figure 2 shows the dynamics of the

normalized values of the two statistics from the observed samples.

To illustrate non-linear relationship between the expected

dynamics of the two statistics for the observed sample sizes under

the Wright-Fisher model with constant population size, I compute

the expected numbers of polymorphic sites under the finite-sites

Jukes-Cantor model as well as under the infinite-sites model by

using the formulas of Tajima [22] and Watterson [23], respec-

tively. Figure 1 shows the expected numbers of polymorphic sites

for the observed sample sizes under both mutational models. The

normalized values of the expected numbers of polymorphic sites

are in Figure 2, which makes obvious the non-linear relationship

between the expected dynamics of the two statistics due to the

differences in the sample sizes.

While the standard coalescent as well as the ancestral

recombination graph might not be directly applicable for

analyzing the dynamics of HIV genetic diversity within a host,

the concepts and features of these models had and have great

impact on extending coalescent theory for other evolutionary

settings. Both models were derived as continuous limits of discreet

genealogical and mutational processes under the Wright-Fisher

models with constant population size and with and without

recombination by applying the time scaling concept that is

measuring time proportional to a very large population size. This

concept was also applied for other forward in time Wright-Fisher

models with variable population size, selection, or migration but

without recombination (see e.g. [15,24,25]) to derive continuous

coalescent models. An attractive feature of continuous approxi-

mations is that the models are computationally and statistically

tractable for analyzing samples of DNA sequences by efficiently

generating samples of DNA sequences and combining or

contrasting the generated data sets with observed data.

Later studies [26–30] combined the variable-population-size

coalescent model [31] with phylogenetic methods to derive

frameworks for analyzing serial samples of DNA sequences.

However, these methods ignore recombination, and that can be a

significant limitation, particularly, for analyzing serial samples of

HIV DNA sequences because HIV genome is strongly affected by

recombination [32]. Furthermore, Schierup and Hein [33]

showed that the standard phylogenetic methods ignoring recom-

bination can result in misleading inference. Other tools for

analyzing serial samples under the variable population size model

were also developed by Anderson et al [34] and Jakobsson [35] by

using the discrete approximation method of Excoffier et al [36]. In

this method the genealogy of sequences are constructed by tracing

their lineages generation-by-generation back in time, and this gives

an advantage of easily adapting this approach for other

evolutionary scenarios including recombination. However, this

method is computationally less efficient in comparison to the

continuous approximation based methods in which the genealo-

gies of sequences are constructed by tracing consecutive coalescent

and recombination events back in time.

To overcome the limitations of the previous models and

methods mentioned above, I first describe a forward in time

population genetic model to represent HIV evolution in HIV-

infected individuals in the chronic phase of infection. The

population in the model is considered to be homogeneous at the

beginning, representing the time of HIV seroconversion, and to

evolve according to the Wright-Fisher reproduction model with

recombination by allowing the population size and generation

time to vary over time. To make this model computationally and

statistically tractable for analyzing serial samples of DNA

sequences, I apply the time scaling approach at multiple time

intervals (instead of a single time interval as in previous methods)

to describe a continuous coalescent-recombination process for

tracing the lineages of the samples back in time and superimposing

mutational events on the lineages according to an inhomogeneous

Poisson process. Based on these processes I describe computa-

tionally efficient algorithm for generating polymorphisms in serial

samples of DNA sequences drawn randomly under this population

genetic model. Further extensions of the algorithm are also

described for population genetic models that can be more suitable

for analyzing the dynamics of genetic diversity of other pathogen

populations in vivo and in vitro.

Within this framework I consider two substitution models: a

finite-sites model with variable mutation rate across nucleotide

sites and the infinite-sites model. For the infinite-sites case, I derive

analytical formulas for the expected number of polymorphic sites

in samples of DNA sequences. For this quantity, Tajima [37] also

derived an analytical expression by using a different approach.

Thus, the developed simulation and analytical methods I apply to

serial samples of HIV DNA sequences from 9 HIV-infected

individuals [21] to explore the fit (the mimicking power) of the

model to the data sets and to identify and quantify the signatures

of recombination and selection on the dynamics of within-host

HIV genetic diversity. Within this analysis I particularly explore

the contrasting estimates for within-host HIV recombination rate

by previous studies [16,38,39].

Methods

The population genetic model
To model within-host HIV evolution, I take into account the

following observations: (1) HIV population within HIV-infected

individuals usually collapses at seroconversion (the onset of the

antiviral immune response) after several weeks of infection and

recovers quickly as a homogeneous population [40–42]. (2) The

viral load and CD4+ cell counts within HIV-infected individuals

change over time, and I take this as an intuitive base for

considering variability for within-host HIV generation time and

population size. Thus, I consider a population model that is

homogeneous at the beginning (representing the time of serocon-

version) and evolves according to the neutral Wright-Fisher

reproduction model with recombination, in which the population

size and generation time vary over time but stay constant between

consecutive sampling time points.

In this model DNA sequences are represented as a combination

of L consecutive loci, each of which consists l nucleotides.

Recombination events along the lineages per sequence per

generation occur with rate r and recombinations (crossovers)

between two sequences are allowed only at the breakpoints

between the consecutive loci. Mutation events per sequence per

generation occur with rate m, and the substitutions at the

nucleotide sites occur according to a finite-sites model. Although

various finite-sites substitution models [43–48] can be incorporat-

ed within this model, I only consider the infinite-sites model and a

finite-sites Jukes-Cantor model with variable mutation rate across

nucleotide sites. Note that the infinite-sites model is a limiting case

of the finite-sites model by considering the locus length l to be very

large.

A Framework with Recombination for HIV Evolution
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Figure 1. The observed and expected numbers of polymorphic sites and average pairwise differences in serial samples. The
horizontal axis of each panel indicates sampling time since seroconversion. (A) The observed numbers of polymorphic sites, ŜSni

(i), and average
numbers of pairwise differences, p̂pni

(i), in serial samples are plotted with respect to the sampling times; the data points determined by the two
statistics are connected by blue and red lines, respectively. (B) and (C) show the expected numbers of polymorphic sites in serial samples under the
Wright-Fisher model with constant population size combined with the finite-sites Jukes-Cantor model, as well as with the infinite-sites model,
respectively. Under these substitution models, the expected values of this statistic for sample size ni at time Ti are denoted by EJCSni

(i) and EI Sni
(i),

respectively. The expected average numbers of pairwise differences for the serial samples in each individual’s case are not shown since they are the
same for the samples.
doi:10.1371/journal.pone.0087655.g001
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Figure 2. Normalized observed and expected values of the two summary statistics. (A) The dynamics of the observed values of the two
statistics in serial samples (Figure 1) are normalized based on transformation (1) and denoted by NŜSni

(i) and Np̂pni
(i), respectively. (B) and (C) show

the normalized values of the expected numbers (Figure 1) of polymorphic sites in serial samples under the finite-site Jukes-Cantor model and the
infinite-sites model denoted by NEJCSni

(i) and NEI Sni
(i), respectively. The normalized values of the expected average numbers of pairwise

differences in serial samples are equal to 0 and are not plotted.
doi:10.1371/journal.pone.0087655.g002
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I design the finite-sites model in a such way that it represents the

heterogeneity of substitution rate across nucleotide sites and infer

some of the parameters in this model based on serial samples of

HIV-1 DNA sequences from envelop gene region [21]. In this

model the sequences are combinations of two regions Lh and Ll

with high and low mutation rates, respectively. To have this

contrast, I assume that region Lh has less nucleotides than region

Ll and mutations occur uniformly within the regions with the

same rate m per generation per region. In this scenario nucleotide

changes at mutation events occur according to the Jukes-Cantor

model [43].

The population model for m serial samples is parameterized as

follows. Let T0~0 be the time of seroconversion, and the sampling

time points since seroconversion are labeled as T1,T2, . . . ,Tm, in

chronological order, measured in years, days, or hours. Let Ni and

gi be respectively the population size and generation time for time

interval (Ti{1,Ti): The collection of these parameters are

represented as N~(N1, . . . ,Nm) and g~(g1, . . . ,gm): The sample

size at time Ti is denoted by ni:

Results

Variation in a sample of DNA sequences under the above

population model can be described by combining the genealogical

history of the sequences with mutations on the lineages of the

sequences. The genealogical history traces the ancestral lineages of

the sequences back in time before time T0~0: I approximate this

process by a continuous coalescent-recombination process de-

scribed as follows. I consider Ni,i~1, . . . ,m, to be large and

measure time in time interval (Ti{1,Ti) by Nigi time units and

approximate the genealogical history of the sample in this interval

by the ancestral recombination graph [14,15] with scaled

recombination rate Ri~2Nir: This ancestral graph is the same

as the one derived under the Wright-Fisher model with constant

population size Ni, generation time gi, and recombination rate r
per sequence per generation. Note that instead of using a single

time scaling as in previous studies, I scale time in multiple time

intervals, which gives an advantage to derive a continuous

coalescent-recombination process for the above described popu-

lation genetic model.

For each interval (Ti{1,Ti), the tracing procedure maps to a

continuous-time Markov chain for which time varies between 0

and ti, ti~(Ti{Ti{1)=(Nigi): The chain is described by the

transition time t (0vtvti) and the number of lineages at time t,
denoted by k: Initially, the values of t and k are set respectively

equal to 0 and ki, where ki is the total number of sequences in two

sets: one set includes the sampled ni sequences at time point Ti, the

other set represents the sequences at time Ti that are linked to the

lineages traced between time points Tiz1 and Ti: A possibility of

overlap between the two sets are ignored since Ni is considered to

be large.

For this Markov chain the transition from the state (t,k) is

described as follows: First, a random number x is generated from

an exponential distribution with parameter (kRizk(k{1))=2: If

xzt is greater than ti, the k lineages are traced ‘‘straight’’ before

time point ti; the value of t is updated by the value of ti, and the

procedure for this time interval stops. Otherwise, the value of t is

updated by the value of xzt and the lineages are traced before

time t. The set of k sequences linked to the lineages at time t are

modified by a coalescent event with probability

(k{1)=(Rizk{1) or a recombination event with probability

Ri=(Rizk{1): In the case of coalescent event, two lineages are

randomly chosen out of the k lineages and merged into a single

lineage. The set of the sequences at this time point is updated by

replacing the two sequences of the merging lineages with a single

sequence and decreasing the value of k by 1. Otherwise (in the

case of recombination) creating two new sequences by randomly

choosing one of the k sequences and one of the L{1 breakpoints

and copying left and right segments of that sequence with respect

to that breakpoint into two sequences. The chosen sequence is

discarded from the set of k sequences. If any of the two new

sequences does not share an ancestral segment with the sequences

sampled at time Ti, . . . ,Tm, that sequence is also discarded and the

other one added to the set of k sequences. Otherwise, the two new

sequences are added to the set of the k sequences. In the latter case

the value of k is increased by 1. Recursively repeating the steps

and updating values of t and k, the procedure continuously traces

the lineages before time ti.

The following algorithm uses the tracing procedure recursively

to describe a bottom up process for generating genealogical history

of serial samples and a top down process for adding mutation

events on the genealogy. The algorithm can be used to generate

variation in serial samples under the population model described

above.

Algorithm 1

1. Set the values of i, k, and t equal to m, nm, 0, respectively.

2. Apply the above procedure for tracing the lineages of the k
sequences in the time interval (0,ti):

3. Update the values of i, k, and t by the values of i{1, kzni, 0,

respectively.

4. As the value of i is greater than 0, go to Step 2. Otherwise the

genealogical history of the samples is generated. Update the

value of i by 1

5. Add mutation events independently on different branches of

the genealogical history for time interval (Ti{1,Ti) according

to a Poisson process with rate equal to hi=2,hi~2Nim. At each

mutation event, introduce mutational changes in the sequences

according to the finite-sites model.

6. Increase the value of i by 1. Stop if the value of i is greater than

m, otherwise go to Step 5.

For the case of a non-recombining locus (r~0), the algorithm

can be extended to include deterministic fluctuations in population

size. Let N(T) be a function determining the population size at

Table 1. The sizes of the groups of classified nucleotide sites
based on the alignments of DNA sequences in serial samples
for each individual’s case.

individual group 2a group 3b

Pt1 240 70

Pt2 307 155

Pt3 181 59

Pt5 275 104

Pt6 215 49

Pt7 204 88

Pt8 287 88

Pt9 257 102

Pt11 209 46

aGroup 2 includes polymorphic sites at which only two nucleotides are present.
bGroup 3 includes polymorphic sites at which more than two nucleotides are
present.
doi:10.1371/journal.pone.0087655.t001
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Figure 3. The fit of the model to the data in the finite-sites model case. In this case the population genetic model is fitted to the data by
matching the observed values of the numbers of polymorphic sites, ŜSni

(i), and divergences, d̂dni
(i), in the serial samples to their expected values,

denoted by Sni
(i) and dni

(i), respectively. (A) shows the observed and fitted (expected) values of the numbers of polymorphic sites in serial
samples. The observed and expected data points are connected by red and blue lines, respectively. (B) shows the observed and fitted (expected)
values of the divergences in serial samples. Based on this fitting the vectors fNigigm

i~1 and fm=gigm
i~1 are estimated, and for the fitted model the

predicted (expected) values of the average numbers of pairwise differences in serial samples are computed. (C) shows the observed and predicted
values of this statistic in the serial samples, and the statistics are denoted by p̂pni

(i) and pni
(i), respectively.

doi:10.1371/journal.pone.0087655.g003
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Figure 4. Observed and expected average numbers of pairwise differences between sequences at different sampling time points.
Average number of pairwise difference between sequences in samples taken at times Ti and Tj are denoted by dni ,nj

(i,j): The observed and expected

values of this statistic under the infinite-sites model and the finite-sites model are denoted by d̂dni ,nj
(i,j), dni ,nj

(i,j), and dni ,nj
(i,j), respectively. (A)

shows the observed values of d̂dni ,nj
(i,j) in the serial samples for each individual’s case. (B) and (C) show the predicted (expected) values of dni ,nj

(i,j) in
the serial samples for each individual’s case computed receptively under the fitted models for the cases of the infinite-sites and finite-sites models.
doi:10.1371/journal.pone.0087655.g004
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Figure 5. The fit of the model to the data in the infinite-sites model case. In this case the population genetic model is fitted to the data by
matching the observed values of the numbers of polymorphic sites, ŜSni

(i), and divergences, d̂dni
(i), in the serial samples to their expected values,

denoted by Sni
(i) and dni

(i), respectively. (A) shows the observed and fitted (expected) values of the numbers of polymorphic sites in serial
samples. The observed and expected data points are connected by red and blue lines, respectively. (B) shows the observed and fitted (expected)
values of the divergences in serial samples. Based on this fitting the vectors fNigigm

i~1 and fm=gigm
i~1 are estimated, and for the fitted model the

predicted (expected) values of the average numbers of pairwise differences in serial samples are computed. (C) shows the observed and predicted
values of this statistic in the serial samples and are denoted by p̂pni

(i) and pni
(i), respectively.

doi:10.1371/journal.pone.0087655.g005
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time T , T0vTvTm: Assuming that it is a continuous function in

each of the intervals (Ti{1,Ti),i~1, . . . ,m, and its limit at Ti from

left is denoted by Ni, which is N(Ti{): limT?Ti ,TvTi
N(T):

Based on this notations and the transformation functions Li(t)~Ð t

0
Ni=N(Ti{giNiu)du, 0vu,tvti, defined by [49], I derive the

following algorithm by modifying Algorithm 1.

Algorithm 2

1. Set the values of i, k, and t to be equal to m, nm, 0, respectively.

2. Apply the above procedure for tracing the lineages of the k

sequences for time interval (Ti{1,Ti) by generating the Markov

chain for time interval (0,t̂ti), where t̂ti:Li(ti):

3. Update the values of i, k, and t by the values of i{1, kzni, 0,

respectively.

4. If the value of i is greater than 0 go to Step 2. Otherwise update

the value of i by 1.

5. Transform the branch lengths of the generated genealogical

history for time interval (0,t̂ti) by applying the inverse of the

function Li(:) to the coalescence waiting times in that part of

the genealogy. (For example, if the part of the generated

genealogical history for time interval (0,t̂ti) starts with k

lineages and jj is the waiting time for the number of the

lineages to decline to j first time, then the corresponding

coalescence time jv
j in the variable population size case is

determined by the equation jv
j :L{1

i (jj), where L{1
i (:) is the

inverse of Li(:):

6. Add mutation events independently on different branches of

the part of the transformed genealogy according to a Poisson

process with rate equal to hi=2,hi~2Nim. At each mutation

event, introduce mutational changes in the sequences accord-

ing to the finite-sites model.

7. Increase the value of i by 1. Stop the process if i is greater than

m, otherwise go Step 5.

In the case of a non-recombining locus the process described in

Algorithm 1 for constructing the genealogical history of n

sequences sampled at time Tm can be simplified: instead of

considering m tracing procedures for time intervals

(0,ti),i~1, . . . ,m, the genealogy of the sample can be constructed

by a single tracing procedure for time interval (0,t), where t is

equal to
Pm

i~1 ti, ti~(Ti{Ti{1)=(Nigi): This simplification is a

result of the fact that the waiting times to the coalescent events in

the tracing process are exponential random variables and satisfy

the memoryless property.

One implication of this result is that it allows to derive an

analytical formula for the expected number of polymorphic sites in

a sample of DNA sequences drawn randomly from the piecewise

constant population size model combined with the infinite-sites

model. Another analytical expression for the same quantity was

also derived by Tajima [37] using recursion formulas for expected

numbers of polymorphic sites.

Lemma 1 Let Sn(Ti) be the number of polymorphic sites in a sample of

n DNA sequences drawn from the above population model at time Ti. The

mean of Sn(Ti) can be computed by using the formula

Sn(Ti)~
Xi

j~1

Xn

d~2

hj

2
wd (tj) n,d,

Xi

k~jz1

tk

 !
, ð2Þ

where tj:(Tj{Tj{1)=(Njgj),j~1, . . . ,m. The functional wx(z) is the

expected total branch length of the genealogy constructed by tracing x sequences

according to the above procedure starting at 0 and ending at the latest time point

before z and the most recent common ancestor; x,y,zð Þ is the probability that

x sequences traced according to the described procedure have y ancestors at time

z: Analytical expressions for wx(t) and x,y,zð Þ were derived by [37,50–

52] and [49], respectively.

The proof of the lemma is in Appendix S1.

Note that Tajima [37] derived the formula for Sn(Ti)
including the non-homogeneous population case at time T0: To

include that case in the formula (2), the expressionPn
d~2 ed n,d,

Pi
j~1 tj

� �
should be added to the right of

equation (2). The quantity ed represents the expected number of

polymorphic sites in a sample of d sequences drawn from the

population at time T0. Particularly, if the population before time

T0 is modeled according to the Wright-Fisher model with constant

population size, N0, then ed is equal to h0

Pd{1
i~1 1=i, according to

Watterson’s formula [23], in which h0~2N0m:
The formula (2) also holds for the case of rw0 because the

genealogies at the non-recombining parts of the sequences are

identically distributed. Note that this formula also allows to

compute the expected average number of pairwise differences in

samples because that quantity is equal to the expected number of

polymorphic sites in randomly chosen two sequences. Note that

this formula can also be applied for computing the expected

average number of pairwise differences between two sequences

sampled at two different time points. Let si and sj be DNA

sequences drawn from the above population model at times Ti and

Tj , jvi, respectively; and d(si,sj) is the number of sites at which

the sequences si and sj differ. The expected value of d(si,sj) can be

computed by using the formula

d(si,sj)~ S2(Ti)z
Xi

k~jz1

m(Tk{Tk{1)=gk: ð3Þ

Table 2. The overall-fit scores of the population genetic
models to the data sets from each individual.

individual score 1a score 2b score 3c

Pt1 119 184 17063

Pt2 89 246 15603

Pt3 70 102 1529

Pt5 90 143 40184

Pt6 53 83 1850

Pt7 37 83 4417

Pt8 81 127 6221

Pt9 145 383 154575

Pt11 23 20 28160

aIn the fitting process the observed numbers of polymorphic sites and
divergences in the serial samples are matched to their expected values under
the population genetic model in the finite-sites model setting.
bThe fitting process is the same as in case of score 1 except that the infinite-
sites model is considered.
cThe overall-fit scores are computed in the content of the four statistics from a
model that is estimated by matching the observed numbers of polymorphic
sites and average numbers of pairwise differences in the serial samples to their
expected values under the model in the infinite-sites setting.
doi:10.1371/journal.pone.0087655.t002
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Figure 6. The dynamics of pD
0
0 and pD

0
1 for the serial samples in each individual’s case. For the serial samples from each of the

individuals, the observed values of pD
0
0 and pD

0
1 as well as their expected values are plotted with respect to the sampling times. The observed data

points are connected by red lines. For each of the values of r=m equal to 0, 1, 10, 50, 100, and 200, the expected values of these two statistics are
computed by using Monte Carlo approach and Algorithm 1 based on the estimated values of the vectors fNigigm

i~1 and fm=gigm
i~1 for the finite-sites

case.
doi:10.1371/journal.pone.0087655.g006
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Application of the framework
I apply the models and methods described in the previous

section for exploring within-host HIV evolution based on

serial samples of HIV DNA sequences from 9 HIV-1-infected

individuals studied by [21]. As in that study, I also use the same

identifiers for the 9 individuals: Pt1, Pt2, Pt3, Pt5, Pt6, Pt7, Pt8,

Pt9, Pt11. The serial samples were based on blood specimens

provided by the individuals at their semiannual visits since

seroconversion. The sequences are from C2-V5 region of the

HIV-1 envelop gene and are 764 bases long including nucleotides

and insertion/deletions based on the alignments of all the

sequences.

First, I fit the population genetic model to data sets under the

finite-sites model, in which the values of Lh and Ll are estimated

from the alignments of all the sequences in the serial samples for

each individual’s case by classifying the nucleotide sites into three

groups. Group 1 includes nucleotide sites that are conserved;

group 2 represents sites at which only two nucleotides are present;

the rest of the sites are in group 3: sites at which more than 2

nucleotides are present. Table 1 shows the sizes of the groups 2

and 3 that determine the values of Ll and Lh, respectively.

I implemented Algorithm 1 for this mutation model into a

computer program (in C programming language) for generating

the polymorphisms in serial samples and applying the Monte

Carlo approach to estimate the expected values of summary

statistics for the observed sample sizes. To fit the model to the data

sets for each individual’s case, I consider two summary statistics:

the numbers of polymorphic sites and divergences in the serial

samples. Divergence in a sample of sequences is defined as the

average of the numbers of differences between the founder

sequence and the sequences in the sample. The founder sequence

is the sequence of the homogeneous population at the beginning;

and for the observed samples, the founder sequence is inferred

from the alignment of the sequences in the first sample taken (at

time T1) after seroconversion. The most frequent nucleotide at

each nucleotide site in the alignment of the sequences in that

sample is defined as the nucleotide of the founder sequence. To

estimate the parameters fNigm
i~1 and fgigm

i~1, I recursively match

the observed values of the two statistics to their closest expected

values. Thus, I first estimate the values of N1g1 and m=g1 and then

recursively estimate the other elements of the vectors fNigigm
i~1

and fm=gigm
i~1: The parameter vectors fNigm

i~1 and fgigm
i~1 are

estimated up to a constant factor m: Figure 3 shows the fitted

dynamics of the expected values of the two statistics to their

observed values in the serial samples.

To assess the overfitting of the estimated model to the data, I

consider two additional statistics: the average numbers of pairwise

differences between and within the serial samples. Figures 3 and 4

show the observed and expected dynamics of the two statistics, in

which the expected (predicted) values of the two statistics are

estimated under the fitted model. The statistics are used as

controls, and the overall fit of the estimated model in each

individual’s case is quantified by the overall-fit score defined as

follows. The observed and expected dynamics of the four statistics

(computed under the fitted model) in the serial samples are

represented as vectors of numbers and the overall-fit score is

defined as the sum of the Euclidean distances between the

observed and expected vectors. Thus, the overall-fit scores carry

the tread-off between fit and prediction for the estimated models in

the content of the four statistics.

I also fit the model to the data sets under the infinite-sites model

and compare the mimicking powers of the two models with respect

to the data sets by using graphical assessment as well as using the

overall-fit scores. The estimation procedure is the same as in the

previous case except that the analytical formulas (2) and (3) are

used for computing the expected values of the four statistics. In this

case the estimated expected values of the four statistics do not

show strong qualitative discrepancy with their observed values

Figure 7. The 95% probability intervals for pD
0
0 and pD

0
1 in the case of individual Pt1. The observed values of the statistics pD

0
0 and pD

0
1

at sampling time points are connected by red lines. For each of the values of r=m and at each sampling time point the 95% probability interval is
inferred by estimating 2.5% and 97.5% quantiles of the statistics under the estimated model in the finite-sites case. The vertical intervals at the
sampling time points represent the 95% probability intervals in green, black, and orange when r=m is 0, 1, or 200, respectively. In each case the same
colors are respectively used to connect the expected values of the statistics.
doi:10.1371/journal.pone.0087655.g007
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except in the case of individual Pt9 (see Figure 5 and 4). Table 2

shows the overall-fit scores of the two models for each individual’s

case. Thus, the estimated finite-sites model shows better qualitative

and quantitative mimicking power in each individual’s case.

The contrast between the mimicking powers of the two

mutation models in the content of the four statistics is more

obvious when I fit the population genetic model to the data sets

under the infinite-sites model by matching the observed values of

the numbers of polymorphic sites and average numbers of pairwise

differences in the serial samples to their expected values, and I use

the other two statistics as controls. The overall-fit scores in this

case are also in Table 2. Note that in this case the expected

(predicted) values of divergence over time increase much faster

and have bigger values than the observed values (details not

shown) which are less than 100, but the sequences are about 764

bases long. Intuitively, such discrepancy can be controlled by

considering a finite-sites model in which sequence length is much

smaller than 764 bases, and this intuition was one of the reasons

for considering the finite-sites model descried in this paper.

The signature of recombination on the dynamics of
within-host HIV genetic diversity

I use the estimated models for the case of the finite-sites model

(described in the previous section) to explore the signature of

recombination on the dynamics of HIV genetic diversity. For this

purpose I choose two statistics based on the linkage disequilibrium

measure D
0

[53,54] since the expected values of the four statistics

described in the previous section are independent on the

recombination rate. The two statistics are denoted by pD
0

0 and

pD
0

1 and described as follows. To determine the values of these

statistics for a sample of DNA sequences, I first compute D
0

for all

pairs of polymorphic sites in the sample by using the formula 14 by

[54], which extends the definition of D
0

for polymorphic sites with

multiple alleles. The statistics pD
0

0 and pD
0

1 represent the

proportion of the computed D
0

that are equal to 0 and 1,

respectively. Intuitively, one can expect pD
0

1 and 1{pD
0

0 to

decrease as r increases since recombination breaks down linkage

disequilibrium between nucleotide sites. For the case of two

biallelic linked polymorphic sites created by two mutations, D
0

is 0

when the sites are in equilibrium (r~?) and it is 1 or greater than

0 for completely linked sites (r~0).

Using the computer program based on Algorithm 1 and Monte

Carlo approach, I estimated the expected values of pD
0

0 and pD
0

1

in the serial samples under the estimated models for each

individual’s case and for each of the values of r=m to be equal to

0, 1, 10, 50, 100, 200. The locus length l in the simulations is 10

and the numbers of the loci in the regions Lh and Ll are

respectively equal to tLh=ls and tLl=ls; txs is the greatest integer

number that is less than x: To avoid numerical problems, the

values of the two statistics in the simulations are determined by the

conditions D
0
v0:0000001 and D

0
w0:9999999 instead of D

0
~0

and D
0
~1, respectively. The expected and observed dynamics of

the two statistics in the serial samples for each individual’s case are

in Figure 6. The results show the following interesting common

trends for the dynamics of the two statistics: (1) For most of the

individual cases, the observed dynamics of the two statistics

fluctuate between the expected dynamics of the two statistics for

r=m equal to 0 and 1. (2) Some of the observed values of the two

statistics are not expected for any of the considered values of r=m,
which is particularly obvious for the cases of the individuals Pt1

and Pt6.

In the case of patient Pt1, I explore further and consider three

hypotheses for r=m : it is equal to 0, 1, or 200. I consider each of

the hypotheses as a null hypothesis, and test them for data sets at

the sampling time points by estimating 2.5% and 97.5% quantiles

of each of the statistics pD
0

0 and pD
0

1 based on the estimated

model. Figure 7 shows that each of the hypotheses is rejected at a

5% significance level for some of the data sets at the sampling time

points. These trends in the dynamics of the two statistics can be

taken as a consequence of selection pressure on the HIV-1 envelop

gene region.

Discussion

Some modeling issues
The purpose of this study was to develop a computationally and

statistically tractable framework, including recombination, for

analyzing the dynamics of HIV genetic diversity in HIV-infected

individuals. To derive this framework, I first designed a population

genetic model that carries some of the features of within-host HIV

evolution. Particularly, the model includes recombination, vari-

ability in population size and generation time, and heterogeneity

of mutation rate across nucleotide sites. In addition, I considered

the population size and generation time to vary over time as

piecewise constant functions of time; these choices were made in

order to derive the framework including recombination and

without overwhelming the model with parameters that would be

difficult to estimate.

In spite of these choices, the model and framework can be

extended for other evolutionary settings. Particularly, the model

can be extended to include various distributions for the break-

points along HIV genome, as well as for mutation rates across

nucleotide sites. As another extension of the framework, I

described Algorithm 2 that is applicable for serial samples of

non-recombining sequences in a more general demographic

scenario by allowing the population size to be a piecewise

continuous function of time. Such a demographic scenario may be

more suitable for exploring evolutionary dynamics of other

pathogens at genomic level in vitro and in vivo. Particularly

in vitro experiments in which a bacterial population goes through

recurrent bottlenecks by growing or declining exponentially over

time. However, in this setting the number of the parameters can

increase and can be challenging to estimate them. For example, if

the population size N(T) declines or grows exponentially on

intervals (Ti{1,Ti), i~1, . . . ,m, as a function of time T , the left

and right limits N(Ti{) and N(Tiz) of N(T) at Ti determine

this function. Thus, they become parameters of the model, and the

total number of parameters can increase at most by m, in

comparison to the piecewise constant population size case.

Exception is the case when N(T) stays constant on interval

(T0,T1) and changes continuously on (T1,Tm) (that is

N(Ti{)~N(Tiz)).

Another extension of the model is to replace the assumption of

homogeneous population at time T0 by considering the population

to evolve according to the equilibrium Wright-Fisher model before

time T0: For this case Algorithm 1 should be modified by allowing

the lineages of the samples to be traced back in time before the

most recent common ancestor. In this setting the genealogical

process for a sample of non-recombining DNA sequences is the

same as the genealogical process in the standard coalescent

because the waiting times between consecutive coalescent events

are exponential random variables which have the memoryless

property. However, mutation events on the lineages of a such

genealogy are added according to an inhomogeneous Poisson

process with rate equal to hi=2~Nim for time interval (ti{1,ti),
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i~0, . . . ,m, where t{1~{?, t0~0, and ti~
Pi

k~1 t: This

presentation is consistent with the statement provided by [31], and

shows the robustness of the genealogical process in the standard

coalescent, which was also observed in other evolutionary settings

[15,24,25].

Note that the developed framework can be applied to generate

HIV transmission chains and HIV epidemics at the genomic level.

To be able to accomplish such a task, it is important to have a

better understanding of the space of the values of the

vectorsfNigig and fm=gig: The moment matching approach used

in this paper has limited power to assess uncertainties in the

estimates of these vectors, this challenge can be overcome with

more computational cost by incorporating a rejection method [55]

within the developed framework. Such a method might also

overcome the fitting limitations of the moment matching method

as I observed that the expected dynamics of divergence from the

founder sequence show non-decreasing behavior over time but the

observed dynamics of this statistic show some fluctuations (see

Figures 3 and 5).

The signatures of recombination and selection on the
dynamics of within-host HIV genetic diversity

The application of the framework to the serial samples of HIV

DNA sequences from nine HIV infected individuals allowed to

explore the fit of the model to the data sets and the impact of the

recombination on the dynamics of within-host HIV genetic

diversity. Particularly, these results show large variability for

inferring the r=m ratio (recombination rate over mutation rate) at

different sampling time points (Figures 6). These results are

consistent with other studies (see [56] and references therein) that

also observed very wide range for estimates of recombination rate

in various viruses. Therefore, it is not clear if a particular estimated

value of r=m can be taken as a representative value. For example,

in the case of individual Pt1 the ratio r=m at different sampling

time points can be inferred to be 0, 1, or 200, and in the meantime

Figure 7 shows that for each of these values there is a time point at

which the estimated 95% probability intervals of the statistics pD
0

0

and pD
0

1 exclude the observed values of these statistics.

The wide spectrum of the inferred values of r=m also explains

the contrasting estimates of the ratio by other studies. Resent

studies [38,39] used serial samples of HIV DNA sequences and

inferred within-host HIV recombination rate to be smaller than

the mutation rate. In contrast, Shriner et al [16] inferred within-

host HIV recombination rate to be 5.5 fold greater than point

mutation rate; they derived the results based on a sample of HIV

DNA sequences taken at 2.96 years after seroconversion from

individual Pt6 and used estimation tools based on the Wright-

Fisher model with constant population size. Thus, the results of

this paper suggest that caution should be taken when using a single

value estimate of the ratio r=m as a representative for quantifying

within-host HIV evolution. Note that the same can be applied

when using HIV mutation rate per nucleotide per generation

because of the variability in mutation rate among nucleotide sites.

Since selection forces have impact on shaping within-host HIV

genetic diversity [57,58], the variability in the estimates of r=m and

the extreme observed values of the statistics pD
0

0 and pD
0

1 that

deviate significantly from their expected values and 95%

probability intervals (Figures 6 and 7) can be considered as the

signatures of selection forces. However, note that selection and

recombination are interconnected processes in shaping within-host

HIV genetic diversity, and the presented framework has less power

to separate the signatures of the two processes. In the developed

population genetic model selection is only included implicitly by

considering variable mutation rate across nucleotide sites. To have

better understanding the relationship between the two evolution-

ary processes and their impact on shaping within-host HIV genetic

diversity, further modifications are needed in the model.

Supporting Information

Appendix S1 The proof of Lemma 1. This section shows the

derivation of the formula (2) by using the developed representation

for polymorphisms in samples of DNA sequences under the

piecewise constant population size model and the memoryless

property of coalescence waiting times in the standard coalescent.

(PDF)
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