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A B S T R A C T   

This study aimed to evaluate high-yielding, stable sorghum genotypes and determine the ideal 
(representative and discriminating) testing environments for genotypes in the humid lowlands of 
Ethiopia. A total of forty-two sorghum genotypes were used for a field trial conducted in six 
different environments using a randomized complete block design. Yield stability, Additive main 
effect, multiplicative interaction (AMMI), and genotype and genotype by environment interaction 
(GGE) were computed. The AMMI analysis explained 62.85% of the G×E variance. The AMMI1 
biplot revealed that (G4; Mok079 and (G16; Ba066) genotypes had higher grain yields. AMMI2 
biplot suggested that genotypes (G18; Y0470),(G23;100620), (G29; PML981475), and (G11; 
ETSC300373-4) show higher sensitivity to environmental changes because of their strong 
genotype-by-environment interactions. The GGE captured 79.46% of the GGE variance, and the 
GGE biplot identified genotypes (G4; Mok079), (G10; Sl081) and (G16; Ba066) were the most 
stable genotypes whereas(G39; ETSC120051-3) was the least stable genotypes. The GGE biplot 
identified Assosa (AS20) as a suitable environment, whereas PW20 and JM20 were the most 
discriminating and non-representative environments. The GGE biplot was found to identify three 
main mega-environments for sorghum growing in the humid lowlands of Ethiopia., both the 
AMMI and GGE biplots revealed (G4; Mok079) had the highest level of adaptability to all tested 
environments and was approved by the National Variety Release Committee for release in 2022.   

1. Introduction 

Sorghum (Sorghum bicolor (L.) Moench) belongs to the grass family Poaceae (Gramineae). It is a predominantly self-pollinated [1] 
diploid (2n = 2x = 20) species with a genome size of ca 700Mbp [2]. It is the fifth-largest cereal crop in the world, behind maize, rice, 
wheat, and barley, were produced 59.3 million metric tonnes (MMT) in 2020–2021 [3]. Sorghum is the second most extensively grown 
cereal crop in Africa, behind maize, and it produces 29.8 MMT on 29.7 million ha of arable land [3]. In Ethiopia, Five million 
smallholder farmers cultivate sorghum, which is the third-largest producer of sorghum grain in the world behind the United States (8.6 
MMT) and Nigeria (6.7 MMT) [4]. The national sorghum productivity is low, estimated at 2.5 tons ha− 1 as compared to the global 
average yield, which is 3.7 tons ha-1, in terms of both output and harvested area [5]. 

Sorghum is a versatile grain used worldwide for food, feed, fencing, and the sugar and molasses industries [6]. For more than 500 
million people in Africa, Asia, and Latin America, especially those living in semi-arid tropical regions, it is a significant crop for food 
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and nutritional security [7]. It is preferred for the making of a variety of traditional foods, including Injera (a leavened bread), 
porridge, and beverages like Tella and Borde since it is ingrained in Ethiopian traditional culture [8]. However, Ethiopia’s productivity 
of sorghum is low due to several issues, including the scarcity of stable, well-adapted cultivars that are resistant to biotic and abiotic 
pressures [5]. 

In the field of plant breeding, understanding genotype-environment interaction (GEI) is of paramount importance. The success of 
selection in a breeding program depends on how genotypes interact with different conditions [9]. As stated in Ref. [9], 
genotype-environment interaction (GEI) is a phenomenon that occurs when different genotypes react differently to various envi-
ronmental factors. Plant breeders recognize the importance of considering the entire genetic diversity spectrum, rather than solely 
focusing on GEI. To effectively distinguish the GEI component from overall genetic variation, modified models are advantageous [10]. 
The AMMI model and the GGE biplot are examples of such models used for describing, analyzing, understanding, and predicting GEI 
[10]. GEI presents a significant challenge in crop breeding and plays a pivotal role in comprehending the genetic mechanisms involved 
in environmental adaptation [11]. 

Many Ethiopian federal and regional sorghum program breeding initiatives have done studies on sorghum for several agroeco-
logical zones (AEZ) with different elevations, temperatures, and rainfall in Ethiopia, and 48 sorghum cultivars have been accredited 
and registered [12]. However, because of the effects of genotype-environment interaction, selecting superior genotypes based solely on 
yield at a single location in a year may be ineffective because yield is a complex quantitative feature that is severely influenced by 
environmental changes [13]. In addition, the released varieties mainly focus on specific AEZs, thus no variety is suitable for all of 
Ethiopia’s agroecologies. Since different genotypes perform better in a diversified environment over a long period, the importance of 
genotype performance stability in many environment interactions and mega-environment differentiation is evident [14,15]. 

The success of a crop depends on its ability to thrive in a given environment. However, environmental factors such as fungi, viruses, 
nematodes, bacteria, rainfall, temperatures, soil chemistry, soil humidity, and disparities in soil type can cause genotype × envi-
ronment interactions (GEIs) that affect the genetic potential of the crop [16,17]. Therefore, it is important to study the 
genotype-by-environment interaction to improve crop growth and development. Crop improvement scientists are interested in using 
agronomic traits such as yield and yield components to detect lasting results to problems governing plant growth and development 
[18]. Thus, many statistical tools and models have been put in place to analyze GEI effects under mega-environment experiments [19]. 

GGE and additive main effects and multiplicative interaction (AMMI) model biplots associated with their components are the main 
models in GEI analysis. AMMI analysis can also help decipher how different genotypes (crop varieties) perform across different 
environmental conditions (such as varying soil types or climate conditions). This information is crucial for breeding programs to 
develop robust and adaptable varieties [20]. The biplots generated by principal component analysis (PCA) allow us to understand the 
relationship between genotypes, environments, and GEI, which helps in identifying stable and high-yielding genotypes for specific 
environments or across environments [17]. Many researchers [18,20,21] showed the value of the AMMI and GGE methods in their 
study to detect potential yielding genotypes associated with stable performance across various environmental conditions. The GGE 
biplot combines a “which-won-where" pattern, environment ranking, mean vs. stability, discriminativeness and representativeness of 
the environments, genotype rankings, and the use of singular value decomposition (SVD). 

However, the two methods work in concert to help us understand GEI impacts, the best genotypes, and conditions that will produce 
the best genotypes. As a result, it is crucial to comprehend how GE interactions affect genotype adaptability and stability [22]. So far, 
AMMI and GGE models have aided in the organization of the complicated GEI, the identification of potential and stable genotypes in 
multidimensional environments, and the availability of numerous breeding lines through genotype-by-environment interaction in-
vestigations [22]. Thus, the objectives of this study were (1) to Assess the genotype by environment interaction using AMMI and GGE 
biplot analyses in sorghum genotypes grown in humid lowland areas of Ethiopia. (2), to Identify sorghum genotypes that are stable and 
high-yielding across multiple environments, (3) to perform a mega environment analysis to identify sorghum genotypes that perform 
well across multiple environments in humid lowland areas of Ethiopia. 

2. Materials and methods 

The experiment was conducted at four experimental sites: Assosa Agricultural Research Center (AsARC), Pawe Agricultural 
Research Center (PARC), and Jimma Agricultural Research Center (JARC). These locations represent the humid lowland sorghum- 
growing areas of the southwest part of Ethiopia. AsARC (10◦ 03′ N and 34◦ 59′ E) is situated at 1450 m above sea level (asl), has 
Eutric Dystric Nitosols soil type, 1275 mm annual rainfall, and has minimum and maximum air temperatures of 14 ◦C and 39 ◦C, 
respectively. PARC (11◦19′N and 36◦24′E) has an altitude of 1120 m. a.s.l., minimum and maximum air temperatures of 16.3 ◦C and 
32.6 ◦C, and soil is characterized by Vertisol. JARC (10◦57 N/39◦47E) is located at 1753 m a.s.l., has Vertisol, receives 1572 mm of 
annual rainfall, and has minimum and maximum air temperatures of 9 ◦C and 28 ◦C, respectively. The trial was executed during the 
main rainy seasons (July to December) of 2019 and 2020. 

The current study comprised 42 genotypes in total, containing the widely used and released variety Assosa-1 (a standard Check) 
that was adapted to Ethiopia’s humid lowland area. The genotypes used in this study were obtained from both the core collection and 
advanced breeding lines maintained by the Ethiopian Institute of Agricultural Research, based at the Assosa agricultural research 
center. The treatments were laid out in a randomized complete block design (RCBD) with three replications. The genotypes of the seeds 
were planted in 5 m by 7.5 m2 plots using 0.75 m and 0.15 m spacing between rows and plants, respectively. Fertilizer was applied at a 
rate of 50 and 100 kg ha− 1 as Urea and Diammonium Phosphate (DAP), respectively. Data were collected on days to flowering, days to 
maturity, plant height (m), and grain yield (t ha− 1). 
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2.1. Data analysis 

The combined analysis of variance across locations was done using PROC GLM with the MIXED model of the SAS computer program 
(SAS Institute, 2002), where genotypes and locations were fixed while years, all the interactions, including, replications, blocks, and 
errors, were random. For the combined ANOVA, the following model was utilized: 

Yijkm(1) = μ + r1 + (pt)jk + bm(Ptr)jkl + gi + pj + tk + (gp)ij + (gt)ik + (pt)jk + (gpt)ijk + eijkm(1)

where Yijkm is the yield of the ith genotype in the Jth location and the kth year in the Ith block within the lth replication, μ is the grand 
mean, r1(pt)jk 

rl (pt)jk is the effect of the lth replication within locations and years, bm(ptr)jkl 
is the effect of the mth block within the lth 

replication that is also within locations and years, gi, pj, and tk are the main effects of the genotype, locations, and years, (gp)ij, (gt)ik, 
(pt)jk are the first order interactions and (gpt)ijk is the second-order interaction, and finally eijkm(l) is the pooled error term. The terms i 
= 1, 2, 3 … 20; j = 1, 2, 3, 4, 5; k = 1, 2; l = 1, 2, 3 and m = 1, 2, 3, 4, 5. 

As stated by Ref. [23]and more recently by Ref. [24], the necessary F-test was conducted for a mixed model with fixed genotypes, 
fixed locations, and random years. The combined experiments operate under the supposition that the sum of the effects of random 
interactions at each level of a fixed factor is zero. [25], Briefly stated, the mean squares for genotypes, genotypes × locations, ge-
notypes × years, and genotypes × locations × years were compared to the pooled error mean square, while the mean square of 
replications within the locations and years was compared to the mean square of genotypes [23]. Bartlett’s test [26] was used for 
homogeneous variance assumption to detect for assessing the significance of genotype by environment interactions, as it helps to 
identify whether the genetic effects on the phenotype vary across different environmental conditions. 

The AMMI model [27] was employed to analyze the components of variance influencing genotype by environment interactions and 
the consistency of sorghum grain yield across trials. AMMI syndicates multivariate principal component analysis (PCA) with univariate 
analysis of variance (ANOVA). PCA was then used to integrate the trait data using the standardized residuals from the ANOVA model, 
which was utilized to examine the trait data with the main effects of genotype and environment but without the interaction. These 
residuals consist of the experimental error and GEI effect. The following formulas can be used to represent the analytical model for the 
ith genotype in the jth environment [][28–30]. 

Yijr = μ + gi + ej + br(ej) +
∑k

n=1
λkαiκγjk + ρij + εij  

where Yijr is the mucilage or yield of genotype i in environment j for replicate r, μ is the grand mean, gi is the deviation of genotype i 
from the grand mean, ej is the environment main effect as deviation from μ, λk is the singular value for the interaction principal 
component (IPC) axis k, αik and γjk are the genotype and environment IPC scores (i.e. the left and right singular vectors) for axis k, 
br(ej) is the effect of the block r within the environment j, r is the number of blocks, ρij is the residual containing all multiplicative terms 
not included in the model, n is the number of axes or IPC that were retained in the model, and εij is error under independent and 
identically distribution assumptions, 

εij ∼

(

N,
δ2

r

)

AMMI Stability Value (ASV) was calculated using the formula developed by Ref. [31] where SSIPCA1 is sum of squares of inter-
action principal component analysis 1 (IPCA1) and SSIPCA2 is sum of squares of IPCA2. Sum of the absolute value of the IPC (SIPC) was 
calculated by a formula developed by Ref. [32], 

ASV =

[
SSIPCA − 1
SSIPCA − 2

(IPCA − 1score)2
]

+(IPCA2score)2
]

where SSIPCA1 is the sum of squares of interaction principal component analysis 1 (IPCA1) and SSIPCA2 is the sum of squares of 
IPCA2. Sum of the absolute value of the IPC (SIPC) was calculated by a formula developed by Ref. [32]. The biplot graph of the AMMI1 
(IPCA1 scores vs. additive main effects from genotypes and environments) and AMMI2 (IPCA1 vs. IPCA2) were constructed. 

Pi is the sum of squares of differences of mean genotype i in each environment from the mean of the best genotype in the corre-
sponding environment [32,33]. 

SIPC=
∑n

I

⃒
⃒IPCAn|

[n

(

X + M +
∑n

j+1

(
Xij − Xi − mj + M

)

2n

2  

X i: is the yield mean of the i th cultivar in the n environments and M i is the mean of the maximum response in the n environments. 
According to Ref. [34], the first part of the Pi expression quantifies the genetic deviation and the second quantifies GEI. The mean rank 
of each genotype in all environments was calculated as the genotype mean rank 
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The combined data from 3 locations and 2 years were subjected to biplot analysis by genotype and genotype x environment [35]. 
The GGE bi-plots were generated with Genstat Version 18 [36]. The GGE biplot reveals the stability of genotypes close to the biplot 
origin, which are thought to be broadly adapted, while genotypes far from the origin are considered specifically adapted. The bi-plots 
visually represent genotypic performance in multiple environments based on principal components and compare environments to a 
hypothetical ideal environment, as well as the genotypes to an ideal environment. 

The GGE biplot allows for a visual exploration of relationships between test environments, genotypes, and genotype-environment 
interactions. Therefore, the first two main components (PC1 and PC2) were used to graph the G×E and identify the rank of test ge-
notypes and environments [37]. The GGE biplot analysis was based on the simplified model with two principal components generated 
by the model [38]. 

Yij=μ+ βj + λ1εj1ηj1 + λ2εi2ηj2 + εij  

where, Yij= is the trait mean for genotype i in environment j, μ is the grand mean, βj is the main effect of environment j, μ + βj being the 
mean yield across all genotypes in environment j, λ1, and λ2 are the singular values (SV) for the first and second principal components 
(PC1 and PC2), respectively, εj1 and εi2 are eigenvectors of genotype i for PC1 and PC2, respectively, ηj1 and ηj2 are eigenvectors of 
environment j for PC1 and PC2, respectively, εij is the residual associated with genotype i in environment j. In GGE biplot analysis, 
scores of PC1 were plotted against PC2 [35]. 

Stability analyses were calculated utilizing the [34] formula for computing the cultivar superiority of genotypes. Using a genotype’s 
variance across environments, static stability was assessed (S2xi). The environmental variance will be lower for a desired genotype 
since it won’t respond to shifting environmental variables [39]. When the G×E effects for each genotype are squared and added across 
the test environments, the result is an indicator of stability known as ecovalence (Wi) [40]. The mean and variance of the ranks of each 
genotype across the environments, as well as the absolute differences of pairs of ranks, were based on [41]. 

3. Results and discussion 

3.1. Analysis of variance 

Table 1 shows the results of the variance analysis for the pooled data from various locations and years. The combined ANOVA in the 
present study showed highly significant (P < 0.001) differences among sorghum genotypes, test environments, and G×E effects. 
Furthermore, environmental variation had a significantly larger contribution to the overall variability than genotype and G×E effects, 
which were determined by the highest sum of squares for grain yield. Consistent with the present finding [42,43], observed significant 
differences in the effects of G, L, and G×L on grain yield. In addition, significant differences for L (P < 0.001), Y (P < 0.001), L×Y (P <
0.01), G (P < 0.01), and G×L (P < 0.001) were also reported by Ref. [25]. 

3.2. Genotype means performance 

The combined analysis of variance (Table 2) of three locations with two years of data shows that the year, locations and G×E 
indicated highly significant (p ≤ 0.001) G, E, and G×E effects on grain yield. The presence of significant G×E in this experiment 
requires further analysis to determine the size of G×E and to separate it into multiplicative component terms, a mega-environmental 
classification, and an estimate of the yield stability of the genotypes. Genotypes 4 (Mok079) and G 16 (Ba066) were the first and second 
highest-yielding genotypes 4.793 and 4.646 t ha− 1 respectively, whereas ETSC120051-3 (G39; 1.077 t ha− 1) was the lowest. 

In terms of days to maturity, genotypes ETSC 300373-4 (191.611) and G16 (191.056) were the highest, while ETSL101699 (G32; 
161.389) and G25 (161.611) were the genotypes that were fewest days to maturity. The two high-yielding genotypes, G4 and G16, had 
long maturity dates, 188.667, 191.056, and taller plant heights 301.19, and 315.11 respectively. According to Ref. [44], the growth of 
a plant is directly related to its height, influencing the formation of nodes and the subsequent development of leaves. When a plant 
receives sufficient light, it tends to produce more leaves, thereby enhancing its photosynthetic potential and ultimately boosting 

Table 1 
Combine analysis of variance of 42 sorghum genotypes tested at three locations for two years.  

Source of Variation Degree of freedom Mean square 

DTF DTM PTH YLD 

Genotype(G) 41 7114.6** 1946.06** 82766.36** 11.70** 
Replication(R) 2 24.9 290.2 2868.07 0.24 
Location(L) 2 30822.22** 130855.98** 2868.07** 145.13** 
Year(Y) 1 12385.71** 120259.55** 1419755.98** 10.20** 
G×L 8 798.51** 398.3** 72083.86** 2.67** 
GxY 41 390.67** 349.3** 7664.32** 1.2** 
GxYxL 82 187.61** 238.14** 3725.91* 1.00** 
Residual 492 63.79 71.06 2543.42 0.24 

Note: ** Significant at 0.01, and * 0.05 probability level. 
DTF = Days to flower; DTM = Days to maturity PTH=Plant height, YLD=Yield. 
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productivity. The sorghum genotype ETSL101699 (G32) exhibited the earliest maturity date (161.389) and also demonstrated the 
lowest grain yield. 

When the grand mean values of the six environments were compared, AS20 had the highest sorghum grain yield (3.382 t ha− 1), 
JM20 came in second (3.355 t ha− 1), and PW20 had the lowest (1.618 t ha− 1). As a result, AS20 and PW20 were considered the 
environments with the highest and lowest yields, respectively. The highest grain yields were obtained by the two genotypes G10 
(SI081) (5.61 t ha− 1) and G15 (Boj007) (4.053 t ha− 1) (Table 3). 

3.3. Stability analyses 

Six environments (location and year combinations) were used to calculate the estimates of six stability coefficients for the 42 
sorghum genotypes in Table 4. Based on cultivar superiority stability statistics, G4 (0.082) and G16 (0.086), which had comparably 
lesser values, were the most stable genotypes, while G39 (7.473) and 32 (6.43) were the least stable. 

Based on static stability, G24 (0.041) and G40 (0.07) were assigned smaller static stability coefficient estimates, indicating they are 
more stable types. G11 and G29, which showed significantly larger values (3.199 and 2.938), were the least stable nonetheless. 
Although static stability is typically linked with a relatively low yield level [39], G41 maintained a greater grain yield. 

The genotypes G4 and G10 sorghum genotypes with low ecovalence ratings had also better grain production. The result coincided 
with identifying two sorghum genotypes with low ecovalence values and higher grain yield [5,45]. 

Table 2 
Mean grain yield and other agronomic traits of sorghum genotypes tested at three Locations for two years.  

Identification Code DTF DTM PHT YLD 

NJ003 G1 129.444 hi 189.333 abcd 279.06 klm 4.051 b 

ETSC 300376-1 G2 136.611 bcdef 186.778 abcde 321.94 efghi 1.981 b 

Mok087 G3 129.056 hi 190.611 ab 301.19 hij 3.331 cd 

Mok079 G4 132.611 fgh 188.667 abcd 348.92 abcd 4.648a 

Bmb097 G5 130.5 ghi 178.722 fg 313.39 ghij 3.195 de 

ETSC 300373-4 G6 138.056 bcde 191.611a 310.94 ghij 2.220 opqr 

Bmb102 G7 132.833 efgh 189.5 abcd 361.72 ab 2.901efgh 

Ba119 G8 132.556 fgh 187.833 abcde 365.11a 3.567c 

Man069 G9 132.889 efgh 186.111 abcde 355.17 abc 2.471 jklmo 

Sl081 G10 132.944 defgh 188.889 abcd 320.42 efghi 4.557a 

ETSC 300382-1 G11 145.444a 184.444 de 307.5 hij 2.704 hijkl 

Bam075 G12 135.444 cdefg 187.222 abcde 336.42 cdef 2.767 ghijk 

Mok085 G13 138.333 bc 187.778 abcde 297.81jk 3.049 defg 

Bmb095 G14 130.389ghi 185.056 cde 332.17 defg 2.785 ghij 

Boj007 G15 141.5 ab 187.833 abcde 341.14 bcde 3.577c 

Ba066 G16 131.556 fghi 191.056a 315.11 fghij 4.6461a 

Bs082 G17 138.167 bcd 184.778 de 294.75 jkl 2.4828 jklmno 

Y047 G18 129.944 hi 185.333 bcde 349.56 abcd 2.46 jklmo 

Qon070 G19 131.556 fghi 190.5 abc 314.19 ghij 2.8106 fghi 

Qon072 G20 139 bc 175.111 gh 340.53 bcde 2.8517 fghi 

ETSL 100124 G21 93.944 m 169.722 hijk 244.17◦ 2.125 pqrs 

ETSL 100346 G22 85.167n 166.111 iklmn 219.17p 2.2806 mopqr 

ETSL 100620 G23 93.278 m 171.833 hi 246.67 no 2.9206 efgh 

ETSL 100644 G24 91.611 m 166.556klmn 200.06 pqr 2.687 efgh 

ETSL 100861 G25 91.722 m 161.611 mn 177.22 st 1.7833 tu 

ETSL 101515 G26 103.333 l 168.611kl 261.17 mno 3.1278 def 

PML981442 G27 92.667 m 169.944 hijk 187.28 rst 2.0372 rst 

PML981446 G28 83.333n 166.556 iklmn 154.17u 2.9778 efgh 

PML981475 G29 92.667 m 168.333 ijkl 180.43 rst 2.0728 qrst 

PML981488 G30 90.5 m 162.833mn 187.27 rst 1.6094 uv 

BTx378 G31 95 m 167.556 ijkl 273.72 lm 2.55 ijklm 

ETSL101699 G32 85.111n 161.389n 122.22v 1.3744 vw 

13MW6029 G33 123.556 jk 170.667 hij 189.83 qrs 2.0333 rst 

13MW6042 G34 106 l 169.722 hijk 185.16 rst 2.0517 qrst 

ETSC10022-44-2 G35 136.611 bcdef 182.833 ef 299.44 jkl 2.4189 lmop 

07MW6002 G36 105.889l 166.944 ijklm 178.39 rst 2.0306 rst 

ETSC10022-40 G37 118.611k 184.556 ed 279.03 klm 2.3572 lmop 

ETSC10020-22-1 G38 102.778l 168.667 jkl 210.39 pq 2.541 ijklm 

ETSC120051-3 G39 126.778ij 188.667 abcd 271.22 m 1.0767w 

ETSC12004-11 G40 107.833l 169.056 jkl 266.67 nm 2.23 opqr 

Assosa-1(Check) G41 139.444bc 190.389 abc 198.78 pqrs 2.87 fgh 

Bonsa G42 105.333l 164.778lmnk 166.17tu 1.8778stu 

Mean  118.095 178.440 266.800 2.668 
CV (%)  6.763 4.724 12.587 18.265 

Note: DTF = Days to Flowering; DTM = Days to Maturity; PTH = Plant Height; YLD = Yield. 
Means with the same letter in the column are not significantly different at 0.05 probability level. 
CV (%) = coefficient of variation. 
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By mean rank stability coefficients, Mok079 (2.50) and Sl081 (2.67) were rated as the least stable genotypes, respectively; they 
were also more stable. However, the least stable with the highest mean rank stability score was scored by the genotypes G32 (39.5) and 
G39 (40.5). The genotypes ETSL 100620 (1.267) and G4 (1.533) were found to be the most stable using mean absolute differences of 
pairs of ranks (MADPR), while ETSL 100620 (20) and G29 (17.933) were found to be the least stable. According to variances of ranks, 
G4 (1.1) and G10 (1.9) were the two most stable genotypes, while G23 (270.67) and G29 (253.1) were the two least stable. G4 was 
ranked first by cultivar superiority and mean rank stability coefficients; G14 was ranked first by Wricke’s ecovalence of ranks and 
ranked sixth by two MADPRs and Variances of ranks of the stability coefficients. In contrast, the most unstable genotypes among the 
used stability coefficients were recorded on PML981475 (G29), ETSL 100620 (G23), and ETSC 300382-1 (G11). 

3.4. AMMI model 

The results of the AMMI analysis of variance were significantly affected by the genotypes (G), and environments (E), and their 
interactions (G×E) of variance were significant (P < 0.01) Table 5. Several authors have also reported significant G×E interactions and 
conducted stability analyses of wheat [46], Plantago species [47], and groundnut [48]. 

The result from the AMMI model showed that 80.25% of the total sum of squares was attributable to the environment component, 
indicating the significant effect of environmental variables on changes in grain yield. Also, environmental components gave the largest 
contribution to the total variation of grain yields. Similar results from other studies indicate the large proportion of environmental 
conditions in the total variation of GEI with root, concerning sugar and white sugar yield [49]. Partition of GEI mean squares revealed 

Table 3 
Mean grain yield (t ha− 1) of 42 sorghum genotypes across six environments (location and year combinations).  

Genotype Environments Mean 

Identification Code PW19 JM19 AS19 PW20 JM20 AS20 

NJ003 G1 3.650 4.720 3.900 3.433 3.907 4.697 4.051 
ETSC 300376-1 G2 1.480 2.070 2.020 0.497 2.397 3.417 1.980 
Mok087 G3 2.820 3.330 2.630 2.223 5.023 3.963 3.332 
Mok079 G4 4.440 4.840 4.690 3.197 5.517 5.207 4.648 
Bmb097 G5 3.120 3.870 2.570 2.26 3.817 3.537 3.196 
ETSC 300373-4 G6 1.513 2.650 2.560 1.047 2.153 3.4 2.221 
Bmb102 G7 1.970 3.140 2.710 1.417 4.303 3.86 2.900 
Ba119 G8 4.460 2.160 4.660 2.4 3.767 3.96 3.568 
Man069 G9 1.400 2.340 2.490 0.907 4.707 2.983 2.471 
Sl081 G10 3.630 4.120 4.740 3.76 5.487 5.61 4.558 
ETSC 300382-1 G11 0.970 2.200 3.190 0.68 5.39 3.793 2.704 
Bam075 G12 2.510 2.070 3.210 0.853 4.303 3.657 2.767 
Mok085 G13 2.160 2.200 2.680 2.013 4.98 4.263 3.049 
Bmb095 G14 2.130 2.830 2.920 1.357 3.857 3.62 2.786 
Boj007 G15 1.900 2.510 3.680 4.053 5.12 4.2 3.577 
Ba066 G16 4.720 4.910 4.470 3.173 5.403 5.2 4.646 
Bs082 G17 2.297 2.110 2.550 1.257 2.41 4.273 2.483 
Y047 G18 1.810 1.540 2.510 0.36 4.943 3.597 2.460 
Qon070 G19 2.200 3.670 3.290 0.623 4.483 2.597 2.811 
Qon072 G20 1.720 3.000 2.610 0.997 4.837 3.947 2.852 
ETSL 100124 G21 1.517 2.210 2.720 1.56 2.113 2.63 2.125 
ETSL 100346 G22 1.967 2.183 2.730 1.973 2.113 2.717 2.281 
ETSL 100620 G23 3.617 1.563 3.453 3.9 1.457 3.533 2.921 
ETSL 100644 G24 2.373 2.860 2.760 2.517 2.727 2.883 2.687 
ETSL 100861 G25 1.960 1.003 2.157 2.483 0.967 2.13 1.783 
ETSL 101515 G26 1.843 2.977 4.200 2.597 2.943 4.207 3.128 
PML981442 G27 1.643 3.073 1.883 0.673 3.023 1.927 2.037 
PML981446 G28 1.730 3.580 3.580 1.713 3.57 3.693 2.978 
PML981475 G29 0.213 4.070 2.010 0.203 4.003 1.937 2.073 
PML981488 G30 0.533 2.523 1.837 0.533 2.457 1.773 1.609 
BTx378 G31 1.650 2.017 3.983 1.683 1.923 4.043 2.550 
ETSL101699 G32 0.367 1.930 1.883 0.383 1.833 1.85 1.374 
13MW6029 G33 1.663 2.987 2.120 0.4 2.947 2.083 2.033 
13MW6042 G34 0.700 3.587 1.813 0.707 3.587 1.917 2.052 
ETSC10022-44-2 G35 1.073 2.107 4.050 1.083 2.04 4.16 2.419 
07MW6002 G36 1.083 2.407 2.703 0.877 2.347 2.767 2.031 
ETSC10022-40 G37 1.503 1.963 4.030 0.573 2.01 4.063 2.357 
ETSC10020-22-1 G38 2.077 2.530 3.067 2.117 2.397 3.057 2.541 
ETSC120051-3 G39 0.570 1.390 1.383 0.453 1.383 1.28 1.077 
ETSC12004-11 G40 1.887 2.313 2.423 1.913 2.343 2.5 2.230 
Assosa-1 G41 1.360 2.070 3.390 1.67 3.753 4.977 2.870 
Bonsa G42 1.200 2.257 2.070 1.437 2.173 2.13 1.878 
Mean  1.986 2.711 2.960 1.618 3.355 3.382 2.669 

Note: AS19 = Assosa 2019, AS20 = Assosa 2020, JM19 = Jimma 2019, JM20 = Jimma 2020, PW19 = Pawe2019 = PW2020 = Pawe 2020. 
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Table 4 
Stability coefficients for grain yield of 42 lowland sorghum genotypes tested on six environments (three locations and two years).  

Genotype Cultivar superiority  Static stability  Wricke’s ecovalence  Mean ranks  MADPR  Variances of ranks  

Code Mean Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank 

1 4.051 b 0.475 4 0.29 8 1.549 18 6.67 4 5.067 7 21.07 7 
2 1.981 b 4.43 35 0.94 22 0.882 10 31.75 39 6.033 11 24.38 10 
3 3.331 cd 1.405 6 1.049 25 2.038 22 12.33 6 7.467 15 45.07 16 
4 4.648a 0.082 1 0.651 13 0.527 3 2.5 1 1.533 2 1.9 2 
5 3.195 de 1.563 8 0.446 10 1.764 20 15 9 10.4 26 71.6 24 
6 2.220 opqr 3.782 29 0.715 15 0.953 11 26.5 29 5.933 10 25.1 11 
7 2.901efgh 2.192 12 1.21 27 1.094 13 16.58 12 5.567 8 21.44 8 
8 3.567c 1.346 5 1.106 26 5.579 38 12.83 7 12.6 31 108.97 31 
9 2.471 jklmo 3.346 24 1.774 34 2.96 27 25.17 26 9 18 65.37 23 
10 4.557a 0.158 3 0.738 16 0.541 5 2.67 2 2 4 2.67 3 
11 2.704 hijkl 3.209 22 3.199 42 6.53 39 22.25 22 14.9 34 147.97 34 
12 2.767 ghijk 2.568 16 1.512 31 2.249 26 19.92 18 12.1 28 99.84 28 
13 3.049 defg 2.034 10 1.585 32 3.075 29 15.42 10 10.3 25 73.84 25 
14 2.785 ghij 2.361 13 0.867 20 0.331 1 18 14 3.867 6 10 6 
15 3.577c 1.415 7 1.391 30 5.33 36 10.83 5 9.533 20 60.97 19 
16 4.6461a 0.086 2 0.631 12 1.048 12 3 3 2.267 5 3.6 5 
17 2.4828 jklmno 3.147 21 0.979 24 2.237 25 21.33 21 12.133 29 106.67 30 
18 2.46 jklmo 3.568 25 2.628 40 5.496 37 27 31 15.333 36.5 159.2 36 
19 2.8106 fghi 2.659 18 1.794 35 3.832 31 18.33 15 13.333 32 134.67 33 
20 2.8517 fghi 2.48 14 1.988 39 2.976 28 19 16 9.2 19 58 18 
21 2.125 pqrs 4.026 31 0.261 7 0.866 9 26.75 30 6.967 14 31.77 13 
22 2.2806 mopqr 3.611 26 0.125 3 1.538 17 24.25 25 9.7 22 63.38 21 
23 2.9206 efgh 2.908 19 1.218 28 12.673 42 20.33 19.5 20 42 270.67 42 
24 2.687 efgh 2.601 17 0.041 1 1.661 19 17.67 13 9.867 23 63.47 22 
25 1.7833 tu 5.403 39 0.411 9 6.88 40 29.75 37 15.9 40 180.38 39 
26 3.1278 def 1.918 9 0.86 19 2.172 24 13.33 8 9.6 21 62.67 20 
27 2.0372 rst 4.351 33 0.819 18 2.135 23 28.33 33 12.267 30 103.47 29 
28 2.9778 efgh 2.083 11 0.949 23 0.784 7 16.5 11 6.733 13 30.3 12 
29 2.0728 qrst 4.923 38 2.938 41 8.271 41 29.5 35.5 17.933 41 253.1 41 
30 1.6094 uv 5.677 40 0.789 17 1.246 16 33.83 40 10.067 24 76.97 26 
31 2.55 ijklm 3.279 23 1.305 29 4.05 32 23 23 15.333 36.5 154.8 35 
32 1.3744 vw 6.43 41 0.6 11 0.528 4 39.5 41 1.267 1 1.1 1 
33 2.0333 rst 4.358 34 0.912 21 1.799 21 28.5 34 11.533 27 89.9 27 
34 2.0517 qrst 4.587 36 1.685 33 4.482 33 29.5 35.5 15.267 35 169.9 37 
35 2.4189 lmop 3.72 28 1.905 36 4.633 34 24.17 24 15.667 39 174.57 38 
36 2.0306 rst 4.322 32 0.693 14 0.475 2 28 32 5.733 9 23.2 9 
37 2.3572 lmop 3.861 30 1.979 38 4.72 35 26.17 28 15.533 38 184.97 40 
38 2.541 ijklm 2.955 20 0.192 4 1.227 15 19.75 17 7.5 16 38.38 15 
39 1.0767w 7.473 42 0.195 5 0.691 6 40.5 42 1.933 3 2.7 4 
40 2.23 opqr 3.705 27 0.07 2 1.19 14 26 27 8.533 17 50 17 
41 2.87 fgh 2.531 15 1.97 37 3.451 30 20.33 19.5 14 33 134.27 32 
42 1.8778stu 4.725 37 0.197 6 0.86 8 30.25 38 6.7 12 34.17 14 

Note: MADPR = Means absolute differences of pairs of ranks. Rank shows the position of each genotype according to the stability coefficient in the previous column. 
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that the first two IPCAs captured 70.13 % of the total GEI for sorghum reported that the first (42%) and second (17%) interaction 
vectors accounted for 59% of the total variation of G×E, which is consistent with the present investigation [50] investigated significant 
IPCAs (P < 0.1) in the first (50.7%) and second (18%) to explain the entire interaction [51]divided the G×E effect into two significant 
(P < 0.01) IPCAs, both of which contributed 65.98% to the interaction. However [52], revealed that three significant (P < 0.05) IPCAs 
with contributions of 45.53, 29.87, and 13.21% explained the G×E. Only one significant IPCA was reported [53]. 

The AMMI1 biplot (Fig. 1) indicated that G4 and G16 had higher grain yields than other genotypes, G39, G32, G30, G25, and Bonsa, 
which had below-average grain yields. G24 had a grain yield that was on par with the overall average. G×E levels were high in G23, 
G29, and G39. The G×E of G41, G36, G42, G22, G24, and G6 were lowered, and the G×E of the remaining genotypes was moderate. 
The larger the IPCA1 score, either negative or positive, the more specifically adapted a genotype is to certain environments [54,55]. 
The highest sorghum grain production was in AS20. Environments AS19, JM19, and JM20 all had above-average grain yields. The 
yields for PW19 and PW20 were below average. 

Hence, they were low-yielding environments. In addition, JM20 and PW20, in that order, made greater contributions to the 
interaction. Environments PW19 and AS19 made the least contribution to the interaction, whereas environments AS20 and JM19 made 
a substantial contribution. The length of the environmental vectors from the origin in the AMMI2 biplot, when G and E are plotted 
against PCA1 and PCA2, reveals the strength of the interaction exerted by the environments on the genotypes [56]. The distance of the 
genotypes from the origin also reveals how vulnerable the genotypes are to various environmental factors [57]. 

The AMMI2 biplot is divided into four quadrants, and the nearer the genotypes are to the ordinate axis, the more they show their 
general adaptation [48]. The AMMI2 biplot, JM20, and PW20 exhibited stronger interactions, which means that these environments 
have a higher capacity for genotype discrimination than the others do. AS20 and JM20 interacted moderately. PW19 and AS19, on the 
other hand, exerted the least G×E on the system, suggesting that while they are more representative, they are also the least 

Table 5 
The AMMI analysis of variance for grain yield of 42 sorghum genotypes on six. Environments.  

Source of variation DF SS MS SS explained (%) GE explained (%) 

Treatments 251 1163.9 4.637   
Genotypes 41 479.8 11.702 13.07  
Environments 5 332.1 66.424 80.25  
Interactions 205 352 1.717 6.68  
IPCA 1 45 170.1 3.78  48.33 
IPCA 2 43 80.2 1.866  22.80 
Residuals 117 101.6 0.869   
Error 492 116.9 0.238   

Note: DF = Degree of freedom = Sum of square; MS = Mean square; **Significant at 0.01 probability level. 

Fig. 1. AMMI biplot of 42 sorghum genotypes and environments, and IPCA1 using symmetrical scaling. Note: AS19 = Assosa 2019, AS20 = Assosa 
2020, JM19 = Jimma 2019, JM20 = Jimma 2020, PW19 = Pawe 2020, PW20 = Pawe2020. 
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discriminating environments. 
G18, G23, G29, and G11 all have higher G×E (far from the origin), making them, more sensitive to environmental changes and 

hence better suited to their environments. These genotypes are considered more stable and have a better response to environmental 
changes than other genotypes [58,59]. In contrast, the wide-adapted genotypes G36, G6, G2, G14, and G10 exhibited fewer in-
teractions because they were close to the origin and therefore less vulnerable to environmental changes. However, the other genotypes 
interacted only with insignificantly similar outcomes, as also reported by Ref. [60]. 

3.5. GGE biplots analysis 

In the GGE analysis (Fig. 3), the first two PCAs (PCA1 = 59.03, PCA2 = 20.44) effectively captured 79.47% of the total GGE 
variance. This result is consistent with [4] that the first two PCAs accounted for 79.78% (PCA1 = 46.46, PCA2 = 33.32%) of the 
variance. Additionally [61], reported that 65.05% of GGE variance was explained by the first 18.33% and second 46.72% PCAs, 
respectively. The concentric circles on the biplot, as shown in (Fig. 3), help to visualize the length of the environment vectors, which is 
proportional to the standard deviation within the respective environments and is a measure of the discriminatory ability of the en-
vironments. The genotype that is found in the middle of the concentric circle is considered an ideal genotype for grain production, 
which has to have a high suggestive overall mean performance, which should have a high mean performance (Large PC1) and great 
stability (small absolute PC2) across environments [35]. 

Therefore, genotypes located closer to the ideal genotype are more desirable than others [62]. Hence, G4, G10, and G16 are very 
close to the ideal genotype as compared to others. These three genotypes could be considered suitable genotypes for the six envi-
ronments. Similarly, Ref. [5] identified suitable genotypes, WSV-387 × E− 36-2 is the most ideal genotype for sorghum grain pro-
duction in a yield stability trial. The relative contribution of stability and grain yield for identifying desirable genotypes found in this 
study by the ideal genotype procedure of GGE biplot was also similar to Ref. [63] Teff variety stability studies (Fig. 3). 

The GGE biplot also identified the least suitable G39 genotype, which is very far from the concentric circle. Generally, different 
authors investigated crop yield stability to find suitable genotypes (high-yielding and stable) [60,61,64]. The length of the environ-
ment vectors is a measure of the environment’s discrimination capacity, and a test environment with a smaller angle with the 
average-environment axis (AEA) is more representative than the other environments [35,65]. Hence, PW20 and JM20 were more 
discriminating (informative) and non-representative environments useful for selecting specifically adapted genotypes (Fig. 4). On the 
other hand, JM19 was the least discriminating or non-informative environment, which is less useful because it provides little 

Fig. 2. AMMI2 biplot of 42 sorghum genotypes and environments plotted against PCA1 and PCA2 using symmetrical scaling. Note: AS19 = Assosa 
2019, AS20 = Assosa 2020, JM19 = Jimma 2019, JM20 = Jimma 2020, PW19 = Pawe 2020, PW20 = Pawe2020. Genotype abbreviations are given 
in Table 2. 
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discriminating information about the genotypes. Environment AS20 was a more discriminating and generally representative envi-
ronment [35,43] claim that environments that are both discriminating and representative are appropriate to test conditions for 
choosing genotypes that are widely adapted. Therefore, Assosa (AS20) is the ideal environment for selecting lowland sorghum varieties 
that are often adapted for Ethiopia’s humid lowlands. The environment for JM20, however, was the least suitable one. 

3.6. Mega environment identification 
The analysis of variance showed the presence of highly significant G×E mean squares for grain yield across the test environments. 

For the mega-environment, Which-Won-Where identified the greatest winning genotypes. This also implies that genotype evaluation is 
possible in those few mega-environments with good yield data outcomes. Fig. 5 shows how the biplot of lines that originated from the 
origin can be used to split the six environments into three mega-environments: (1) JM19 and JM20; (2) PW19, AS19, and AS20; and (3) 
PW20, which created the mega-environments [66] showed that the GGE biplot analysis of the twenty-two sorghum genotypes tested in 
fourteen environments identified three mega environments. However, results revealed [42] using 20 hybrids of grain sorghum with the 
same methodology, in Brazil, identified two mega environments. 

The mega-environments obtained are shown in Fig. 5, with this model defined in “which one-where. The vertex genotypes were 
G29, G11, G23, G25, and G39 (Fig. 5). These genotypes had the largest vectors in each direction. The vector of length and direction is 
an extension of the genotype responsible for the tested environments. All other genotypes were contained within the polygon and had 
smaller vectors; that is, they were less sensitive compared to the interaction with the environments of each sector. The G4 genotype was 
the vertex of the mega-environment 1 sector, and it performed best in this group. G10 was the vertex of the mega environment 2 
sectors, and it was the most adapted genotype in this group. Lastly, the G23 genotype was the most adapted in mega-environment 3 
(Fig. 5). Closer relationships between the test environments indicate that the same information can be obtained from fewer envi-
ronments. As a result, a similar environment may be specified for later sorghum grain testing in a new environment [62,67–69]. 

The genotypes and environments found within the polygon were less responsive to environmental cues (Fig. 2). Genotypes from 
polygon vertices that did not cluster in any environment were not suitable for the environments tested. The vertex genotypes (G39) and 
(G25) had the lowest average grain yields in all environments because they had no corresponding environment. Similar results were 
reported for an environmentally inappropriate genotype tested in the Teff GGE biplot analysis [63]. 

Fig. 3. GGE biplot of sorghum genotypes on 6 environments using genotype-centered scaling. Note: AS19 = Assosa 2019, AS20 = Assosa 2020, 
JM19 = Jimma 2019, JM20 = Jimma 2020, PW19 = Pawe 2020, PW20 = Pawe2020. Genotype abbreviations are given in Table 2. 
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Fig. 4. The ideal testing location for 42 sorghum genotypes used in evaluations using environment-centered scaling. Note: AS19 = Assosa 2019, 
AS20 = Assosa 2020, JM19 = Jimma 2019, JM20 = Jimma 2020, PW19 = Pawe 2020, PW20 = Pawe2020. Genotype abbreviations are given 
in Table 2. 

Fig. 5. Mega-environments obtained by the genotype main effects + genotype × environment interaction (GGE) biplot for grain yield of 42 sor-
ghum genotypes evaluated during the crop season of 2019/2020. 
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4. Conclusions 

The results derived from both the AMMI and GGE analyses demonstrated the existence of genotypes exhibiting diverse levels of 
adaptability in various environments. Notably, the remarkable adaptability of genotypes G4, G10, and G16 stood out prominently 
across both the AMMI and GGE evaluations. The mean grain yield was significantly influenced by both genotype variation and 
environmental conditions. From the grand mean of grain yield of six environments, AS20 had the highest sorghum grain yield (3.382 t 
ha− 1), JM20 came in second (3.355 t ha− 1), and PW20 had the lowest (1.618 t ha− 1). AMMI2 model identified the genotypes G18, G23, 
G29, and G11 are particularly sensitive to environmental alterations due to their greater G×E (placed away from the origin), which 
helps them adapt better to their specific environments. Conversely, the more broadly adapted genotypes, G36, G6, G2, G14, and G10, 
showed fewer interactions because of their closeness to the origin. These genotypes are therefore less vulnerable to alterations in their 
environments. From the tested 42 different genotypes, G4 (Mok079) and G16 (SI081) stood out as high-yielding and consistently stable 
genotypes. In addition to their impressive productivity, these genotypes also exhibited beneficial traits like taller plant height. This 
characteristic can be advantageous for small-scale farmers, as it can function as a natural fence and even provide a source of fuel. G4 
was released under the name Assosa-2 after receiving clearance from the National Variety Release Committee of Ethiopia in 2022. G4 is 
also well-suited to Ethiopia’s humid lowland agroecology, where sorghum holds significant importance and its adaptability with the 
long rain-fall pattern prevalent in this region. Environments AS20 were the most representative, while environments PW20 and JM20 
were the most discriminating. Therefore, these environments should be used to select superior genotypes for specific agro-ecologies. 
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